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A concept of solution of correlative observations in photogrammetry 

One of the basic processes in photogrammetry consists of identification and measurements of 
conjugate (homologous) points located within image overlapping. In analytical photogrammetry this 
process is solved manually by an observer. In digital photogrammetry this process is solved 
automatically by software and it is called image matching. This process has considerable importance 
for automation of orientation or aerial triangulation of photographs. The accuracy of image matching 
process influences the accuracy of determination of image orientation elements and computed point co­ 
ordinates. This article presents the author's idea concerning matching of digital images with regard to 
correlation between neighbouring pixels. First, the problem of correlation between point co-ordinates 
will be examined in analytical photogrammetry, what will simplify considerations related to digital 
photo gram metry. 

INTRODUCTION 

It was assumed in the publication [2] that one of three successes of last years was "the new 
matching strategy" connected to correlated observations in digital photogrammetry. The new 
method is of great interest. This proves that the problem of correlation observation is not 
important exclusively in geodesy, but also important in digital photogrammetry. In this work 
the author attempts to approach the problem, starting from correlative observations in analytical 
photogrammetry. Thus, the basis for formulation of some advice concerning utilisation of such 
observations in digital photogrammetry will be created. 

Considering types of compared data, the image matching process for all proposed solutions 
can be divided into two groups: 

- area-based matching - ABM. 
- feature-based matching - FBM. 
The ABM method is more accurate than the FBM method and is widely applied in digital 

photogrammetry. The ABM method, firstly proposed by Ackermann (1984) was improved and 
developed within next 10 years by Foestner, Grun, Rosenholm and others, with consideration 
of various geometrical conditions, as: area-based matching using a surface model [13]; muti­ 
point area-based matching [5); multi-image area-based matching [9] and others. 

Photogrammetry is based on mathematical formulation of solutions of geometrical 
relations, which occur between an image and the terrain surface. Such a mathematical model 
has to correspond to real relations at the moment of taking photographs. It has been stated that 
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correlation between point co-ordinates (correlation between pixels) occurs as early as the 
moment of generation and recording of a photographic (or a digital) image. [7), [12). 

The theory of correlative observations itself is conventional in its nature, however its 
efficient and effective practical use in order to solve a particular problem still remains 
important. The basic task of elaboration of correlative observations in this work is to formulate: 

variance-covariance matrix (correlative matrix) to determine relative orientation 
elements of a model, which is the smallest unit of aerial triangulation. 
approach to a problem of correlative observations in digital photogrammetry. 

The algorithm for solution of correlative observations at single model reconstruction 
in analytical photogrammetry 

The aim of this section is to discuss the algorithm for computation of model relative 
orientation elements with respect to correlative observations in analytical photogrammetry. The 
example of calculations is presented at the end of this section. 

In order to determine 5 elements of relative orientation measured co-ordinates of certain 
number of points, located evenly in the model area, are performed. Six Gruber's points are 
used, according to Fig. I. 

' I 
Uł'--~b--.~
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Fig. I. Six Gruber's points. 

One observation equation will be formulated for every point, for the parallax, with an 
assumption that image point co-ordinates were expressed at the scale, where z'= z"= 1, [14): 

(x"y')d<p-(1 + y'y")dw-x"dx + (x'-x")by+ (x'y"-x" y')bz+ q = vq (1) 

where: 
dip, dto, dX, by, bz - elements of model relative orientation ( w; ((): x: - rotation angles); 
x, y image point measured co-ordinates, divided by the camera focal length f Signs (') 

and(") correspond to the left and the right image, respectively. 
The case when correlation between point co-ordinates 1, 2, 3, 4 exists, is considered 

(similarly for points 1, 2, 5, 6) for solution of the system (1). For this the covariance matrix 
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must be created for these point co-ordinates. Vertical parallaxes (1) of six Gruber's points are 
defined as the system of equations: 

q1 = Y1 - Y1 

q2 = h - h 
(2) 

The equation system (2) is to show that vertical parailaxes are the functions of measured 
coordinates of homologous points in the left and right image. To solve the system (1) we 
should form the covariance matrix C. General form of the covariance matrix of vertical 
parallaxes is represented below [8]: 

(3) 

where: 

i=l,2,3, ... 6 

q; = [qi q2 q3 % y 
J; = ~; y;- ... y; y; ... y~ J~] T 

Cy - the covariance matrix of ordinates for 6 points (3b); clq;/oy; - Jakobian's matrix (3a): 

2 1 -1 o o o o mq, c'M2 c'f,% 
2 o o 1 -1 o o mq2 mq216 

C= ;[:} (3a) 

symetr part 
2 o o o o 1 -1 m 
% 
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2 m. C .• C .. C .• C .• 
Y1 Y1Y1 Y1J2 J1Y2 ]1]6 

2 m. C .. C •• C •• 
]1 J1Y2 Y1Y2 J1Y6 

2 m. c. c. 
Y2 Y2Y2 Y2Y6 

2 

Cy= 
m. C •• 
]2 ]2]6 

symmetr. part 

2 m. 
]6 

(3b) 

It is assumed that: 
- RMS errors of measured image co-ordinates are identical and equal to my 

- according to [ 11]: the covariance matrix elements between two points ( correlation 
coefficients) are the function of their distance.Thus: 

- cy'i:y"i= pm/,- where p- correlation coefficients between ordinates of conjugate point on 
the left and the right image (point matching) i= 1, 2, ... ,6. 

- cy'i:y'k = Pi.km/; where Pi, k - correlation coefficients between ordinates of points i, kin 
one image. In our case they are p.; f>o; Pc-- (Fig. 1). 

- cy'i:y"i+m = O; m = 1, 2, ... ,5 (no point matching). 
After introducing these elements to the matrix (3b) and multiplication by the matrix (3a), 

according to (3), the C matrix is obtained: 

(1-p) Pb Pa Pc Pa Pc 
(1-p) Pc Pa Pc Pa 

(1-p) Pb o o 
C= (4) (1-p) o o 

symmetr. part (1-p) Pb 
(1-p) 

It should be stressed that the matrix (4) contains two kinds of correlation coefficients. The 
first coefficient p is the correlation coefficient of conjugate point on the left and the right image 
(homologous points), which is located on the main diagonal of the matrix. Successive 
coefficients are the correlation coefficients of co-ordinates having the same name (x-x or y-y) 
between points on one image (left or right), located symmetrically in relation to the main 
diagonal of the matrix (pa, Pb, Pc,), 

The covariance matrix for 9 or 15 points (or more points located evenly in relation to the 
image base b) can be created similarly to the formula (4). 

From the equation system (1) the formula (5) can be obtained. 
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AX+L=V given C (5)

where: A- the matrix of unknown coefficients,
X= [d<p do) dx dby dbzf - the vector of unknowns,
L = [q1 ą2 •••••f - the vector of vertical parallaxes which are the functions of image

observed coordinates,
V= [vą1 Vązf - the vector of corrections for vertical parallaxes,
C - the matrix in the form (4); T - transpose.

The unknowns X will be calculated under the condition [VTC-1V] = min.
It is known that the accuracy of the determined model spatial co-ordinates (X, Y. and Z)

depends to large degree on the accuracy of model relative orientation elements. Small changes
of relative orientation elements (d<p, dos, dx dbz, dby) cause considerable changes of computed
model spatial co-ordinates. The author [11], in a simplified manner derived the final formula of
this relation (in image scale):

dX = xdN; dY = ydNs; dZ = -fdN (6) 

N{x-b ( (x-b)
2J,ł (x-b),v } dN = b f dbz + I+ I r<p + I ,/ dco - ydx 

d'l\r _ N{2x-bdb [i (x-bX2x-b)]J [2x-b jb]J 1vs-- --- z+ +~--'-'--~ a<p+ --y+- aOJ- 
b 21 21 2/ 2y 

[ 
b(x -b )] N } - y - 

2
y dx + 2dby 

where: x, y - the measured image point co-ordinates related to the right image;
by, b: - the image base components.

Basing on (6), the mean square error for the model spatial co-ordinates m/, m/, m/ equals to:

(7)

A= )2 {[x-b]2mfz + [r2 + (x-b)2 ]2 mi+ [(x-b)y]2m~ + y2 l2m:} 

B= 4)2 {(2x-b)2m;z+[(x-bX2x-b)+212Y mi+ ;2
~

2(2x-b)+l2b[ m~ + [2/-b(x-b)]21: •m:)+ N
2

mt 
y 4
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For image shown in Fig.I points 1, 2, 3, 4 have the following co-ordinates (assuming a= b 
- for simplicity): 1( O, O); 2( b, O); 3( O, b); 4( b, b). Basing on (7) the mean square errors of 
model spatial point co-ordinates may be calculated; they are presented in Table l below: 

T a b I e I. Mean square errors of model point co-ordinates 

Point 2 2 2 
m 

X my mz 

I o o Hl 

2 H2 o H3 

3 o H4 HS 

4 H6 m HS 

Where: 

Hl=( :J {b'm;, +L'm;}; L=(r' +b'); H2=N'J'm; H3=( :J J'm; 
H4 =( ~ J i'2'm; + R'm! +9Pm; + N' J'm! +b'm;.} 
Q=~f2+b2),- R=(r2-b2); P=b2f2 

H5 =( :)' {b'm~ +L'm; +b'm! + Pm;} 
H6 = (N)2{J2mi + b2m~} 

H7 = ( ~ J {4 J' m; +L'm! + 4Pm; + N' J'm! + b'miJ 
HS=( 7)' {J'm; +b'm:} 
In order to explain the created matrix (4) the numerical example is presented. 
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Numerical example 

Data used in this example are the measured co-ordinates and parallaxes of 14 image points 
on the stereo-pair. To use the formula (1) these data were divided by the camera focal length 
and presented in Table 2, for 6 Gruber's points. 

Tab I e 2 . The coordinates and paralalaxes of image points divided through camera focal length 

Co-ordinates of 6 Gruber' s points 

Points x' y' x" y " q
20= 1 0.058354 0.077338 -0.573663 0.059217 -0.01812 

21 =2 0.618048 -0.014132 -0.024636 -0.032200 -0.01807 

22 = 3 0.123386 0.600774 -0.502333 0.578371 -0.02240 

23 =4 0.653513 0.525816 0.013375 0.499775 -0.02604 

24 =5 -0.040338 -0.497229 -0.698836 -0.523888 -0.02666 

25 =6 0.551908 0.564189 -0.104453 -0.584621 -0.02043 

In order to specify the matrix elements (4) practical values my= mą= ±10 µmare assumed. 
From definition of the vertical parallax ą = y' - y" and basing on (3) p = 0.5 its minimum values 
are Pa = Pb = 0.3 and Pc = 0.2. After introduction and multiplication of these values according 
to (3) the final matrix Cis obtained in the form (4). 

We execute 3 computational variants: 
variant I: relative orientation elements are determined from large numbers of vertical 
parallaxes (14 points) and are considered as "true" values. 
variant 2: relative orientation elements are counted from six Gruber's points, assuming 
no correlation between vertical parallaxes. 
variant 3: as the variant 2, with assumption of the correlation between vertical 
parallaxes. 

Basing on (5) RMS errors of relative orientation elements for three variants are counted to 
estimate an internal accuracy. They are presented in Table 3: 

Tab I e 3. Root mean square errors of relative orientation elements of a model 

RMS errors of model relative orientation elements 

Variants ±m<p ±ntW ±mX ±mby [mm] ±m•, [mm] ±nlo 

1 2'.21 J'.65 0'.87 O.IOI 0.042 2.18 *10·' 

2 4'.80 4'.26 2'.01 0.267 0.104 4.18 *IO-' 

3 3'.13 2'.32 l'.70 0.180 0.103 4,35 * 1 04 

m./m, 2.17 2.58 2.31 2.61 2.48 Ratio of RMS 

1.95 1.78 2.45 
errors 

mj/rn, 1.41 1.41 

m:v'm2 0.65 0.54 0.85 0.67 0.99 
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The correlation coefficients between relative orientation elements are also calculated; they 
are presented in Table 4: 

Ta b I e 4 . The correlation coefficients between relative orientation elements 

p pqx,, Pwx P,pby P,pb, Pwx pox,y Pox,, Pxby Pxbz Pbybz 
Variant 

I -O.IO -0.06 -0.08 +0.76 -O.IO +0.98 -0.08 -0.17 -0.12 +0.04 
2 -0.12 -O.IO -0.12 +0.75 +0.08 +0.98 +O.Ol -0.04 0.00 0.00 
3 -0.06 -0.13 -0.08 +O.SI +0.08 +0.95 -O.Ol -0.08 -0.08 +O.Ol 

Basing on Tables 3 and 4 it may be noticed that: 
- RMS errors of variant 3 are considerably smaller than for the variant 2 (between 0.54 

and 0.99 times). 
- the correlation coefficients of relative orientation elements have the highest values for 

(cv; by) and (<p; bz) other values are practically equal to O. 
The accuracy analysis of calculated model co-ordinates for three variants to be discussed. 

For this purpose it is necessary to calculate the ratio of RMS errors between particular variants. 
Thus it is possible to confirm, to what degree the accuracy of computed model co-ordinates 
would be improved with the use of the covariance matrix (4). 

Basing on Table 1, 3, the RMS errors of three co-ordinates for four points in reconstructed 
model for three variants and then the ratio of errors (kx; ky; k,) for particular variants, are 
calculated (Table 5). 

T a b I e 5 . The ratio of RMS errors between particular variants 

Ratio of RMS errors Point kx kv k, 
1 variant 2/variant 1 1 o o 2.19 

2 2.17 o 2.17 
3 o 2.35 2.22 
4 2.18 2.42 2.20 

2 variant 3 /variant 1 1 o o 1,49 
2 1.40 o 1.41 
3 o 1.54 1.50 
4 1.41 1.55 1.46 

3 variant 3 /variant2 1 o o 0.69 
2 0.65 o 0.65 
3 o 0.63 0.68 
4 0.66 0.65 0.69 

Basing on Table 5 it may be noticed that for small correlation coefficients (0.2 and 0.3) 
introduced to the matrix (4) to determine model relative orientation elements (variant 3) the 
accuracy of model spatial co-ordinates better than for the variant 2 may be obtained. Improved 
accuracy of the variant 3 in relation to the variant 2 is characterised by coefficient kx, ky, k,, 
which are 0.65 times smaller. 
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The single model is the smallest block of aerial triangulation. The accuracy of the block 
depends on many factors, as the size, quantities and ways of distribution of control points etc., 
and, first of all, on the single model accuracy. 

A concept of a solution of correlative observations in digital photogrammetry 

Digital photogrammetry using GPSffNS techniques to determine image external 
orientation elements has been highly developed recently. The automatic aerial triangulation has 
been practically applied for production purposes [IO]. The main change between analytical 
photogrammetry and digital photogrammetry concerns the stage of measurements and 
interpretation executed by an observer is taken over by computer software. This allows for 
implementation of fully automated systems in digital photogrammetry. Investigation of 
matching points of digital stereo-images can be performed solved automatically [l]. The degree 
of automation depends on different factors, such as image scale, type of terrain, image quality. 
Practical examples relate to photogrammetric elaboration of mountainous areas, such as Alps in 
Switzerland [IO]. 

As it was already mentioned in introduction, one of the successes of the last two years is 
connected with correlative observations. The problem of correlative observations in digital 
photogrammetry is still interesting at the international scale. It is one of the directions of 
investigations aiming at technological improvements in digital photogrammetry. In my opinion, 
this problem refers first of all to the correlation between pixels, which was discussed earlier 
publications [7], [12). The obtained accuracy of image matching, with counted probability of 
point matching with accepted correlation model between pixels, is higher than 25% than for the 
model assumed without correlation [7], depending on signal-to-noise ratio. 

OEEPE-ISPRF experiments [2) relating to automatic aerial triangulation on different digital 
stations, executed by 21 institutions were published. They confirmed that the block stability 
depends on the number of measured tie points. Between JOO and 300 points on one stereo-pair 
are required. The large number of points should be considered. In some systems (HAT, HAT*, 
Match, FGI), it is required to locate points according to Gruber's schema (Fig. 1 ). These points 
can be divided into 15 groups on the image; thus one group has about 9 neighbouring points. 
Such a number of points in one group result in high correlation among pixels (points). This 
problem should be taken into account in the process of elaboration. 

The aim of monitoring of digital images is to create the 3-D model. The advantage of 
digital photogrammetry relies on the possibility of direct observations and discussions - by the 
observer and customers - of the obtained stereoscopic model (3-D). Such possibilities do not 
exist in conventional photogrammetry; in this case exclusively observer performs 
measurements. Automation of matching process of monitoring is considered as the basic 
method, which influences the accuracy of successive processes. The area-based matching 
(ABM) method is mostly used and implemented basing on the least square rule; sometimes it is 
called LSM (least squares matching). Observations applied in this method are grey values of 
pixels. To improve accuracy of the traditional ABM method, the additional constraints, such as 
differences of scale of the left and right images [4) [6); the presence of neighbouring pixels co­ 
ordinates [ 13) and of variable weight models to multi-point LSM [5) are introduced to the 
observation equation system. 
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This article presents the author's proposal relating to the ABM method with regard to
correlation between the neighbouring pixels and the central pixel of the active window. The
correlation between neighbouring pixels in image should be understood with respect to the
probability i.e. when a certain event occurs (quantity of photon at the pixel) influences the
probability of appearing the second event (quantity of photon at neighbouring pixels) [12].

The publication [12] presents relations between the correlation coefficient of two
neighbouring pixels (points) and their intensities of light, which characterise light amplitudes
A1 and A2 

(8)

where: 1, 2 - the pixel indexes in one line (or column),
a - the spatial angle between two light rays reflected from the ground with the vertex

in the camera projection point (Fig. 3). The values of amplitudes A in the image are
characterised by magnitudes of grey level g:

(9) 

Grey values of all pixels will be normalised on one image in the following way:

- gij 
gij =

g(pą)max
(10)

where: i= 1, 2, ... p, ... n;j = 1, 2, ... , ą, ... m - the pixel index; p, q - the pixel index of maximum
grey value. The values giJ, change in the interval (O -1). 

Rosenholm [11] proposed normalisation of grey value for the matching process as follows:

(11)

where: Sg - the grey value difference between points in the left and right windows (images);
g - the grey value of point (pixel) in the left window;
d - the radius from the centre point of the left image to the image point;

x, y - the image point co-ordinates of the left image; c1 c2 .•• c6 - coefficients to be
determined. From (9) the following formula may be derived:

(12) 

Looking at Fig. 3 the angle value from scalar product may be determined:

(13) 
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where: sc=[xc Ye -Jf; S;J= [x;J Yi.j -ff - vectors of the central pixel (point c) co-ordinates, and 
neighbouring pixels (points' (i, j)). 

A .. • • 
(l,}-1) (I,j) (l,j+1) z 

B c1-1,Jl 

(I, j-1) (I, j) (I, j+1) 

(I+1,j) 

C (1-1.1-1) (1-1 , j) (1-1 , ]+1) 

(I+1,j-1) (I+1,J) (1+1 ,]+1) 

Fig. 2. The pixel centres Fig. 3. The spatial angle a 

In the ASM method measured observations are grey values. Now we will try to form the 
covariance matrix assuming the accepted model of correlation between neighbouring pixels. 
The error equations system for a simple, one-dimensional case may be written as follow [5]; 
[Il]: 

v(x;) = -g'' (x; )x0 + ~1 (x; )- gr (x; )] 
v(x,) = [n' (x; )- nr (x; )] 

(14) 

where: i - pixel index; l; r - the left and right image number; x - one-dimensional axis x; 
n1 (x;); nr(x;) - noises of the left and right image; 
i(x;), g'(x;) - measured grey values of left and right image; 

g'1(x;) - the gradient of the left image; 
x0 - the unknown shift of the transformation. 

The equation system (14) should be solved under the condition vTC1v =min.For this target 
we must form the matrix C. 

We will introduce simple signatures: 
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(15) 

Basing on (3) we can build the matrix C using the created matrix Cx and [op; I [ox;] - 
Jakobian's matrix. For the needs of illustration, we assume 3 neighbouring pixels with numbers 
1, 2, 3 on definite lines (Fig. 2A) and errors of measurements are equal to m.. The matrix C for 
the system (14), used in order to solve three observation equations will have the form: 

(1- p) !. (1-p- p ) P1,2 2 1,2 

C= _!.. (1-p- p ) 1 _!.. (1-p- p ) ·2·m2 (16) 2 1,2 2 1,2 X 

P1,2 _!._ (1-p- p ) (1- p) 2 1,2 

where: p - the correlation coefficient of the central pixel in the left and right windows, P1.2 - 
the correlation coefficients between the central pixel with the left or right one in the image. 

The system (14) will be solved by the iteration method, assuming the initial value of the 
gradient as equal i (x;). The gradient g"(x;) may be also calculated with higher accuracy by 
means of Robert's method: 

(17) 

The matrix (16) can be created in a similar manner for more neighbouring pixels, as it is 
shown in Fig. 2B and 2C. There are two kinds of correlation coefficients in the matrix (16). 
One of them refers to the correlation between pixels in one image, which coefficients have been 
determined according to (12). The second prefers to the correlation between two central points 
of the window in the left and right images (window matching). This correlation coefficient may 
be determined for the general case (different scale and different orientation of two images), in 
the following way [6]: 

f, f ((g' )T(i, j ))- g;T )· (gr (i, j )- g;) 
i=I j=I P=-r================= (18) 

i=I j=I i=I i=' 

where: m; n - sizes of a window; i(i, j), g'(i, j)- grey level values in the left and right window; g: - the mean grey level value of the right window; g1
sT - the mean grey level value in the left 

transformed window; T(i, j) = Qp[i, j, lf - new co-ordinates of (i, j) after affine 
transformation. 

Basing on (12) and (18) all elements of the matrix (16) will be counted; i.e. the matrix of 
type (16) is fully constructed. The ABM process will be explicitly solved under the condition 
vTC-1v = min. 
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If some geometrical constraints related to image matching are added to the proposed idea, a 
global concept of image matching will be obtained, as it was mentioned at the beginning. 

CONCLUSIONS 

It should be admitted, that the new tendency in development of digital photogrammetry is 
grows basing on analytical photogrammetry. The new digital input data result in new ideas and 
new methods of solutions. The general rule to elaborate correlative observations is continually 
obligatory wherever we deal with measurements. The problem of correlation between point co­ 
ordinates in analytical photogrammetry is somehow similar to the problem of correlation 
between pixels in digital photogrammetry. Two ways may be applied in order to consider the 
problem of correlation in analytical or digital photogrammetry: 

to construct a system, which possesses instruments correcting this correlation. 
- to consider this correlation in the process of data processing by means of software 

packages, 
Solving the problem of correlation in photogrammetric observations, both in the case of 

analytical and digital photogrammetry, allows to increase the accuracy and probability of 
delineated terrain co-ordinates. 

REFERENCES 

[I] F. Ackermann, P. Krzystek, Complete automation of digital aerial triangulation. Photogramrnetric Record. England, 
1997. 

[2] C. Heipke, Automatic aerial triangulation: results of the OEEPE-ISPRS test and current developments. 
Photogrammetric Week' 99. Wichmann. Germany, 1999. 

[3] L. Tang, Z. Poth, T. Hohlhop, C. Heipke, J. Batscheider, Automatic relative orientation - realisation and 
operational tests. IAPRS*. Vienna, Belgium, 1996. 

[4] A. Stefanidis; T. Schenk, On the application of scale space techniques in digital photogrammetry. IAPRS*. 
Washington. USA, 1992. 

[5] Xiaoliang Wu, Multi-point least squares matching with array relaxation under variable weight models. IAPRS* 
Vienna. Belgium, 1996. 

[6] Xiuguang Zhou, Non-linear scale and orientation free correlation matching algorithm based on edge 
correspondence. IAPRS*, Amsterdam. Holland, 2000. 

[7] D. Mingyue, The evaluation of acquisition probability in image matching. IAPRS* Washington. USA, 1992. 
[8] E. Mikhail; Analysis and adjustment of survey measurements. NNR. 
[9] P. Agouris; T. Schenk, Multiple image matching. IAPRS*. Washington. USA, 1992. 
[IO] T. Kerten, Digital aerial triangulation in production - Experiences with block Switzerland. Photogrammetric 

Week' 99. Wichmann. Germany, 1999. 
[11] Wang Zhizhuo, Principles of Photogrammetry (with Remote Sensing). Press of Wuhan Technical University of 

Surveying and Mapping. Beijing. China 1990. 
[ 12] Luong Chinh Ke A problem of correlational observations in photogrammetry (unpublished). Institute of 

Photogrammetry & Cartography. Warsaw University of Technology. Poland, 2000. 
[ 13] M. Mustaffar, Accuracy improvement in automated surface measurement. Vienna. Belgium, 1996. 
[14] Co-works, Fotogrametria analityczna. (Analytical photogrammetry at the Polish Cartographic Publishing House) 

PPWK Warszawa Poland, 1972. 
*IAPRS - International Archives of Photogrammetry and Remote Sensing. 

Received December 5, 2000 
Accepted April 4, 2001 



44 Luong Chinh Ke 

Luong Chinh Ke 

Koncepcja rozwiązania problemu skorelowanych obserwacji fotogrametrycznych

Streszczenie

Jednym z podstawowych procesów w fotogrametrii jest identyfikacja wraz z wykonaniem pomiarów punktów
homologicznych znajdujących się w pasie podwójnego pokrycia zdjęć. W fotogrametrii analitycznej proces ten jest
rozwiązywany przez obserwatora, natomiast w fotogrametrii cyfrowej, automatycznie poprzez oprogramowanie.
Proces ten jest nazywany spasowaniem obrazów (image matching). Proces spasowania ma znaczenie przy
automatyzacji wykonania orientacji w aerotriangulacji bloku zdjęć. Dokładność spasowania obrazów wpływa na
dokładność wyników wyznaczania elementów orientacji i wartości współrzędnych punktów.

Artykuł przedstawia koncepcję spasowania obrazów cyfrowych z uwzględnieniem korelacji między sąsiadującymi
pikselami.

Jlyone T.fuH Ke 

Konnenuns peureuaa npo6JieMl,I KOppenHpOB3HHI,IX 4>0TorpaMMeTjJH'leCKHX Ha6mo.QeHHH

Pe3IOMe

OAHHM H3 OCHOBHbIX npoueccos B cpoTOrpaMMerpHH nsnaercs HAeHTHcpHKal{Hll H BbinOJIHeHHe H3MepeHHH
rpaacęopuapoaaaaux uearpansusrx TO'leK, HaXO/llIU{HXCll B 30He /lBOHHOro rtepexpsrrus CHHMKOB. 8 
aHaJIHTH'leCKOH cpornrpaMMerpHH )TOT npouecc peuiaerca Ha6JIIOAaTeJieM, a e UHcpposoii cpOTOrpaMMeTpHH
aBTOMaTH'leCKH, xcpea nporpasoay. 3TOT npouecc naasrsaerca COBMeU{eHHeM H306paJKeHHH (image matching).
Ilpouecc COBMeU{eHHll HMeeT 3Ha'leHHe B cnyxae aBTOM3TH3al{HH nsmonaenas OpHeHTHpOBaHHll B
cpOTOrpHaHrym11{HH 6JIOKa CHHMKOB. To'IHOCTb COBMeU{eHHll H306paJKeHHH BJIHlleT Ha TO'IHOCTb peaynsraros
onpenenenaa 3JieMeHTOB opaeirrauna H BeJIH'IHHbl KOOpAHHaT TO'leK.

B crarse npencrasnena KOHl{eill{HJI COBMeU{eHHll UHcppOBb!X H306paJKeHHH C Y'leTOM xoppenauaa MeJKAY
coceAHHMH llHKCeJilIMH.


