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Abstract:Since wind power generation has strong randomness and is difficult to predict, a
class of combined predictionmethods based on empirical wavelet transform (EWT) and soft
margin multiple kernel learning (SMMKL) is proposed in this paper. As a new approach
to build adaptive wavelets, the main idea is to extract the different modes of signals by
designing an appropriate wavelet filter bank. The SMMKL method effectively avoids the
disadvantage of the hard margin MKL method of selecting only a few base kernels and
discarding other useful basis kernels when solving for the objective function. Firstly, the
EWT method is used to decompose the time series data. Secondly, different SMMKL
forecasting models are constructed for the sub-sequences formed by each mode component
signal. The training processes of the forecasting model are respectively implemented by
two different methods, i.e., the hinge loss soft margin MKL and the square hinge loss
soft margin MKL. Simultaneously, the ultimate forecasting results can be obtained by the
superposition of the corresponding forecasting model. In order to verify the effectiveness
of the proposed method, it was applied to an actual wind speed data set from National
Renewable Energy Laboratory (NREL) for short-term wind power single-step or multi-step
time series indirectly forecasting. Compared with a radial basic function (RBF) kernel-
based support vector machine (SVM), using SimpleMKL under the same condition, the
experimental results show that the proposed EWT-SMMKLmethods based on two different
algorithms have higher forecasting accuracy, and the combined models show effectiveness.
Key words: combined model, empirical wavelet transform, prediction, soft margin multiple
kernel learning, wind power

1. Introduction

In recent years, as one of the most promising renewable energy technologies, wind power
has received increasing attention from energy enterprise. However, due to the randomness and
intermittent nature of wind energy resources, wind power can be affected by many factors, and
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the connection of large wind farms to the grid can have a significant impact on the planning and
operation of the grid. Therefore, accurate short-term wind power prediction is one of the effective
means to determine a reasonable dispatch plan and ensure the safe and economic operation of the
power grid [1–3].

Some linear regression-based forecasting methods, such as physical methods and statistical
methods [4], have difficulties to describe the inherent nonlinear characteristics of wind power
time series due to the randomness and intermittence of wind energy resources. Currently, a class
of intelligent forecasting methods including artificial neural networks [5] and support vector
machine (SVM) [6] are widely used in wind power prediction. However, confined by inherent
structure, these methods often suffer from disadvantages such as being easy to trap in local
optimum, over-fitting and showing difficulty in determining the parameters of the kernel function
as well as they cannot provide better prediction results.

In recent years, some advanced statistical methods have been applied to wind power forecast-
ing. In [7], a hybrid short-term wind power forecasting model combining improved variational
mode decomposition and sample entropy (IVMD-SE) data preprocessing and correntropy long
short-term memory (LSTM) that is insensitive to outliers is proposed. Experimental results show
that the method can significantly improve the prediction accuracy and robustness. In the research
of Sinvaldo et al. [8], the authors studied the influence of the instability of wind energy resources
on the prediction results, combining the LSTM network, and two signal decomposition strate-
gies. Variational mode decomposition (VMD) and singular spectral analysis (SSA) are further
proposed, to obtain more reliable prediction results. Ramon et al. [9] introduced a new decom-
position ensemble learning method based on complete ensemble empirical mode decomposition
(CEEMD) and stacking-ensemble learning (STACK), and the multi-step prediction strategy is
used to predict the wind energy of the wind farm in Brazil. For wind power prediction, Yldz et
al. [10] designed a model combining VMD and an improved residual-based deep convolutional
neural network (CNN), the experimental results verify the effectiveness of the prediction model.
In addition, as can be observed from the methods presented in [11–13], compared with a single
prediction method, satisfactory prediction results can be obtained by using different decomposi-
tion methods for wind power with non-linear and non-stationary characteristics. Therefore, this
paper attempts to reduce the non-stationarity of wind speed data by pre-processing them using
empirical wavelet transform (EWT) [14]. EWT is an adaptive signal decomposition method based
on wavelet analysis proposed by Gilles, which has a detailed mathematical theory basis and can
avoid the phenomenon of mode mixing and false modes in an empirical mode decomposition
(EMD) [15] method.

Kernel learning methods are effective ways to solve the problem of nonlinear pattern analysis
problems. Themultiple kernel learning (MKL) [16,17] model offers greater flexibility in mapping
different features of heterogeneous data by the most appropriate kernel function, which ultimately
leads to a more accurate representation of the data in a new combinatorial space, thus improving
the classification accuracy or prediction accuracy of the sample data [18]. However, in practical
application, the traditional MKL method cannot achieve good prediction results because it only
selects the smallest base kernel and discards other useful ones. These methods can be regarded
as hard margin MKL, and SimpleMKL [19] is a kind of hard margin MKL. The SimpleMKL
obtains sparse kernel combination through additional weight constraint and weighted L2 norm
regularization. Soft margin multiple kernel learning (SMMKL) [20] can be regarded as an
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extension of a soft margin SVM [21]. This method effectively avoids the drawback of the hard
margin MKL method (e.g. SimpleMKL) in solving the objective function by selecting only a few
basis kernels and discarding other useful ones, and improves the prediction accuracy. At present,
soft margin MKL method has been successfully applied to classification [20].

Based on the above analysis, a new EWT-SMMKL method for short-term wind power pre-
diction is proposed in this paper. EWT is used to decompose the original wind speed series
with non-stationary characteristics, SMMKL is used to predict the wind speed, and the final
predicted value is obtained through the wind speed and wind power conversion curve. The main
contributions of this paper are summarized as follows.
1. A new prediction model (EWT-SMMKL) is proposed. Firstly, considering the strong non-

linear and non-stationary characteristics of wind speed or wind power data, the EWT is used
to preprocess the original time series data to improve the predictability.

2. Secondly, taking into account the difficulties of selecting the parameters of the kernel functions
in SVM as well as only selecting the minimum number of base kernels in the traditional MKL,
the SMMKL method is used to establish the prediction model to further improve prediction
accuracy.

2. Methodology

2.1. EWT method

EWT is a type of adaptive wavelet decomposition method which can extract the mode signal
components of the compactly supported Fourier spectrum by establishing appropriate orthogonal
wavelet filter banks and performing adaptive segmentation on the Fourier spectrum of the original
signal [14]. The purpose of EWT is to decompose the signal f (t) into the sum of the N+1 intrinsic
mode function (IMF) fk (t).

The signal to be analyzed, f (t) is transformed by the Fourier transform, which is marked
as f̂ (ω). It is assumed that the Fourier support interval [0, π] is segmented into L continuous
segments, the boundaries ωl of each segment as the center between two consecutive maxima,
and each segment is denoted Λl = [ωl−1, ωl] (ω0 = 0, ωL = π). A transition phase at ωl points
is defined, and its width is Tl = 2τl . τl = γωl (0 < γ < 1), where τl is transition zone variables
and γ is the coefficient.

The empirical wavelet is defined as a band-pass filter on each partition interval Λl , which can
be obtained by the construction of Littlewood-Paley andMeyer wavelets. Similarly to the classical
wavelet transform, the detail coefficients W e

f
(l, t) and the approximation coefficients W e

f
(0, t) are

represented by (1) and (2), respectively, as:

W e
f (l, t) = 〈 f , ψl〉 =

∫
f (τ)ψl (τ − t) dτ = F−1

(
f̂ (ω)ψ̂l (ω)

)
, (1)

W e
f (0, t) = 〈 f , φ1〉 =

∫
f (τ)φ1(τ − t) dτ = F−1

(
f̂ (ω)φ̂1(ω)

)
, (2)

where: φl (t) is an empirical scaling function and ψl (t) is an empirical wavelet, the detailed
expression of the two can refer to [14]. ψ̂l (ω) and φ̂1(ω) are the Fourier transforms of ψl (t) and
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φl (t); ψ̂l (ω) and φ̂1(ω) are the complex conjugate of ψl (t) and φl (t). F−1(·) denotes the inverse
Fourier transform and (·) denotes the complex conjugation.

The signal reconstruction and empirical mode fn are given by (3) and (4):

f (t) = W e
f (0, t) ∗ φ1(t) +

L∑
l=1

W e
f (l, t) ∗ ψl (t)

= F−1

(0, t) ∗ φ̂1(ω) +

L∑
l=1

(l, t) ∗ ψ̂l (ω)

, (3)

f0(t) = W e
f (0, t) ∗ φ1(t), f l (t) = W e

f (l, t) ∗ ψl (t), (4)

where ∗ is the convolution symbol.

2.2. Hard margin MKL method
Given a set of training data, S =

{(xi, yi) |i = 1, . . . , N
}
, xi ∈ RD . When using a v-SVM

model [22], similar to [20], the primal MKL problem with L2-norm regularization is written as:

min
fm,b,ξi,ξ

∗
i

1
2

*
,

M∑
m=1
‖ fm‖Hm

+
-

2

+ C

vε +

1
N

l∑
i=1

(
ξi + ξ

∗
i

)
,

s.t. yi − *
,

M∑
m=1

fm(xi) + b+
-
≤ ε + ξi ξ ≥ 0,

*
,

M∑
m=1

fm(xi) + b+
-
− yi ≥ ε + ξ

∗
i , ξ∗i ≥ 0, ε ≥ 0,

(5)

where: fm(xi) = 〈 fm, ϕ (xi)〉, ξi , ξ∗i represent the slack variables, C is the regularization param-
eter. ε is the insensitive loss function, v is an upper bound on the fraction of training errors and a
lower bound on the fraction of support vectors (0 ≤ v < 1), b is the bias. M is the total number of
the base kernel. α, α∗ represent the Lagrange multiplier, α = [α1, . . . , αl]T , α∗ =

[
α∗1, . . . , α

∗
l

]T
.

By using the Lagrange transform, the dual problem of hard margin MKL is

max
α,τ

τ : SVM{km, α} ≥ τ ∀m = 1, . . . , M, (6)

where:

SVM{km, α} = −
1
2

N∑
i, j=1

(αi − α
∗
i )(α j − α

∗
j )km(xi, xj ) +

N∑
i=1

(αi − α
∗
i )yi ,

km
(
xi, xj

)
= ϕm (xi)T ϕm

(
xj

)
,

ϕm(x) is the mapping function to map the data x from X to the reproducing kernel Hilbert space
H , k1, . . . , kM denotes the M base kernels.

Alternatively, the dual problem in (14) of hard margin MKL can also be written as

max
α

min
µ

µmSVM{km, α}, (7)
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where: µ =
[
µ1, . . . , µM

]T , µm is a coefficient that measures the importance of the m-th base
kernel

U =


µ���

M∑
m=1

µm = 1, 0 ≤ µ


.

Then the final output of hard margin MKL is given by

f (x) =
N∑
i=1

M∑
m=1

(
αi − α

∗
i

)
µmkm (xi, x) + b. (8)

2.3. SMMKL method
Inspired by the soft margin SVM, in this section, the kernel slack variables are introduced

for each base kernel. The kernel slack variable ξm is defined as the difference between the target
margin τ and the SVM dual objective SVM{km, α} for the given kernel km, that is

ξm = τ − SVM
{
km, α

}
∀m = 1, . . . , M . (9)

Then, the loss function is defined as Zm = l (ξm),∀m = 1, . . . , M , where l (·) is any gen-
eral loss function. Two loss functions are used in the paper, they include the hinge loss (i.e.,
l (ξm) = max(0, ξm)) and the square hinge loss, (i.e., l (ξm) = max(0, ξm)2).

In addition, the hinge loss soft margin MKL and the square hinge loss soft margin MKL are
respectively abbreviated as SM1MKL and SM2MKL described in the following sections, and the
naming methods of the two soft margin SVM are the same as here.

2.3.1. SM1MKL
Based on the definition of the kernel slack variable for each base kernel, when the kernel

slack variable is introduced for hinge loss, the following objective function for the primal form
of SM1MKL is as follows [20]:

min
µ, fm,b,ξi,ξ∗i

1
2

M∑
m=1

‖ fm‖2Hm

µm
+ C


vε +

1
N

N∑
i=1

(ξi + ξ∗i )

,

s.t. yi − *
,

M∑
m=1

fm(xi) + b+
-
≤ ε + ξi, ξi ≥ 0, (10)

*
,

M∑
m=1

fm (xi) + b+
-
− yi ≥ ε + ξ

∗
i , ξ∗i ≥ 0, ε ≥ 0.

The Lagrange transformation is performed on (10).
Set the partial derivatives of the original variables fm, b, ξi , ξ∗i , εv and µm in a Lagrange

form to zeros, and substitute the primal variables into a Lagrangian function using corresponding
Karush–Kuhn–Tucker (KKT) conditions. The corresponding objective function for the SM1MKL
can be further described by the following:

min
τ,α,ξm

−τ + θ

M∑
m=1

ξm,

s.t. SVM {km, α} ≥ τ − ξm, ξm ≥ 0, m = 1, . . . , M .

(11)
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The objective function of SM1MKL is to obtain the maximum margin τ as a certain error
exit in the m-th base kernel, and the parameter θ is used to balance the loss term represented by
the slack variables ξ ′ms and the margin τ. By using the strong duality theorem, the constrained
optimization problem of solving SM1MKL is transformed into solving the following optimization
problem:

min
µ

max
α

J (µ, α), (12)

where:

J (µ, α) = −
1
2

M∑
m=1

N∑
i, j=1

(αi − α
∗
i )(α j − α

∗
j )µmkm(xi, xj ) +

N∑
i=1

(αi − α
∗
i )yi ,

U1 =


µ���

M∑
m=1

µm = 1, 0 ≤ µ ≤ θ1


,

and 1 ∈ Rm denote the vector of all ones.
The objective function of SM1MKL is the same as the objective function in [21], thus it is

convex, which can be solved by using the block-wise coordinate descent algorithm [23], that is

min
µ

M∑
m=1

am

µm
, (13)

where

am =
1
2

N∑
i, j=1

(αi − α
∗
i )(α j − α

∗
j )µ

2
mkm(xi, xj ).

Suppose am > 0, m = 1, . . . , M and a1 ≥ a2 ≥ · · · ≥ aM > 0, by introducing Lagrange
multipliers λ, ηm, ξm for the constraints in (13), the following Lagrange function can be obtained:

L =
M∑
m=1

am

µm
−

M∑
m=1

µmηm −

M∑
m=1

ξm(θ − µm) + λ *
,

M∑
m=1

µm − 1+
-
. (14)

The partial derivative of L with respect to µm is set to zero. According to the complementary
KKT condition, for 0 < µm < θ, the following formula can be obtained:

−
am

µ2
m

+ λ = 0, or µm =

√
am

λ
. (15)

According to (15), for all cases of am > 0, the constraint µm ≥ 0 can be replaced by µm > 0.
Defineω, which means the number of elements in µwhose value is strictly equal to θ, the solution
of the above problem can be written as:

µm =




θ, m ≤ ω

(1 − ωθ)
√

am

M∑
p=ω+1

√
ap

, m > ω . (16)
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By following [20], and combining with the above analysis, we get the algorithm of SM1MKL
that is briefly summarized in the following steps:
Step 1 – Initialize µ1 = 1/M , t = 1.
Step 2 – Obtain αt by solving the sub-problem in (12) using the standard Quadratic Program-
ming (QP) solver with µt .

Step 3 – Calculate am, m = 1, . . . , M and update µt+1. µt+1 can be updated by solving the
sub-problem in (13).

Step 4 – t = t + 1, determine whether the stop condition of the algorithm is satisfied. If it is
satisfied, the algorithm stops, the optimal solutions α, µ are given; otherwise, return to Step 2.
Define obj(t) as the solution of (12) obtained in the t-th cycle, and set the stop condition:

abs
((
obj(t) − obj(t − 1)

)
/obj(t − 1)

)
≤ 1e − 3.

Step 5 – Compute the output of SM1MKL.

yt = f (xt ) =
N∑
i=1

M∑
m=1

(αi − α
∗
i )µmkm(xi, xt ) + b. (17)

2.3.2. SM2MKL
The original form of the objective function for SM2MKL is as follows [20]:

min
µ, fm,b,ξi,ξ∗i

1
2

M∑
m=1

‖ fm‖2Hm

µm
+ C


vε +

1
N

N∑
i=1

(ξi + ξ∗i )

+

1
2θ

M∑
m=1

µ2
m ,

s.t. yi − *
,

M∑
m=1

fm(xi) + b+
-
≤ ε + ξi, ξi ≥ 0, (18)

*
,

M∑
m=1

fm(xi) + b+
-
− yi ≥ ε + ξ

∗
i , ξ∗i ≥ 0, ε ≥ 0.

Similarly to SM1MKL, the following constrained optimization problems of SM2MKL can
be expressed as:

min
τ,α,ξm

−τ +
θ

2

M∑
m=1

ξ2
m,

s.t. SVM{km, α} ≥ τ − ξm, m = 1, . . . , M .

(19)

Similarly to (13), the objective function problem for solving SM2MKL is transformed into
the following problem:

min
µ

max
α

J (µ, α) +
1
2θ

M∑
m=1

µ2
m (20)

and

U2 =


µ���

M∑
m=1

µm = 1, 0 ≤ µ


.
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With a fixed µ, the optimization problem with respect to α is a standard QP problem, which
can be optimized with the QP solver. When α is fixed, the kernel combination coefficient can be
updated using an algorithm based on projection gradient descent. Following [22], the gradient pt
of the optimization problem in (20) with respect to µ can be computed as:

pm = −hm +
1
θ
µm, m = 1, . . . , M, (21)

where

hm =
1
2

N∑
i, j=1

(αi − α
∗
i )(α j − α

∗
j )km(xi, xj ).

The coefficient µ is updated by using the coefficients µt at the current iteration, that is

µ∗sub = ΠU2

(
µt − ηtpt

)
, (22)

where: ΠU2 (·) is the simplex projection operation and ηt is the updating step size.
The procedure of an SM2MKL algorithm is summarized as follows:

Step 1 – Initialize µ1 = 1/M , t = 1.
Step 2 – Obtain αt by solving the sub-problem in (12) using the standard QP solver with µt .
Step 3 – Calculate µ∗sub that can reduce the objective function value for the problem in (20) and
update µt+1 = µ∗sub.

Step 4 – t = t + 1, determine whether the stop condition of the algorithm is satisfied, where the
stop condition is the same as the algorithm of SM1MKL. If it is satisfied, the algorithm stops,
the optimal solutions α, µ are given; otherwise, return to Step 2.

Step 5 – Compute the output of SM2MKL according to (17).

3. EWT-SMMKL model

Combining the advantages of EWT and SMMKL methods, a new combination prediction
method for short-term wind power prediction is proposed in the paper. The overall combined
prediction process is shown in Fig. 1.

In the paper, according to the way of time series modeling, the wind speed prediction model
is established as follows:

ŷ(t + ∆) = f (xt ) =
N∑
i=1

M∑
m=1

(
α∗i − α̂

∗
i

)
µ∗mkm (xi, xt ) + b∗, (23)

where: ∆ represents the prediction step size, xt = (yt−1, . . . , yt−D ) is the multi-dimensional input
vector, i.e., historical wind speed data, D is the embedding dimension. M is the number of the
base kernel, N is the number of wind speed data sets and ŷ(t +∆) is the corresponding predicted
output.

The specific implementation steps are as follows:
Step 1 – According to (1) and (2), the original wind speed sequence with strong randomness
and non-linearity is decomposed into a series of different mode components, i.e., stationary
subseries using an EWT algorithm.
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Fig. 1. Flow chart of EWT-SMMKL combined prediction

Step 2 – Establish different prediction models using the proposed SMMKL methods for each
sub-sequence and the corresponding predicted values can be obtained according to (23).

Step 3 – Finally, based on the wind speed prediction output of each sub-series the final predic-
tions are superimposed according to (3) and (4).

Step 4 –Consistent with the solutionmethod in [25], thewind power predictions can be obtained
by wind speed-to-wind power conversion curve.

4. Experimental analysis

In the following case, to measure the prediction performance using different MKL methods
for wind power prediction, three polynomial functions and six radial basic function (RBF) kernel
functions are selected as basic kernel functions when using SM1MKL, SM2MKL, SimpleMKL
algorithms, and the kernel functions’ form are as follows:

k (xi, xj ) =
(
(xi · xj ) + 1

)p
, (24)

k (xi, xj ) = exp
{
−




xi − xj



 /2δ

2
}
. (25)
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The degree of the polynomial kernel function is selected from p = {1, 2, 3}, the RBF kernel
function using six different bandwidth parameters from 2δ2 ∈ {0.01, 0.1, 1, 10, 50, 100}, and the
regularization parameter C = 100. The parameter θ is introduced for SM1MKL and SM2MKL,
for SM1MKL, θ ∈ {1/M, 0.1, 0.2, . . . , 1}; for SM2MKL, θ ∈

{
10−5, . . . , 104, 105

}
. Moreover, the

RBF kernel function is selected as the kernel function of an SVM, and the algorithm implementing
the SVM uses LIBSVM software [24]. The optimal parameters are determined by using five-fold
cross validation on the training set.

In addition, to evaluate the performance of the model, the mean absolute error (MAE),
root mean square error (RMSE), standard deviation (Std) [25] of the MAE are used, which are
expressed as follows:

MAE =
1
N

N∑
i=1
| ŷ(i) − y(i) | , (26)

RMSE =

√√√
1
N

N∑
i=1

( ŷ(i) − y(i))2, (27)

Std =

√√√
1

N − 1

N∑
i=1

( ŷ(i) − y(i) − EMAE)2 , (28)

where: y(i) is the actual value, ŷ(i) is the prediction value of the prediction model and N is the
number of samples in the test set.

4.1. Data
The Western dataset provided by National Renewable Energy Laboratory (NREL) [26] in

the United States was used for the experiments in this section and the data were sampled at a
time interval of 10 min and a spatial interval of 2 km. Sixty-eight grid points (i.e., 680 Vestas
v-90 3-MW wind turbines) located 10 miles west of Denver were selected for the experiment,
where each data sample contains the average of the wind speed and wind power provided by 68
grid points at the same time. The average of two consecutive samples from the original dataset
was used as the selected new data, and the data were sampled at an interval of 20 min. The test
dataset contained wind speed data from December 1 to December 7, 2004, and the wind speed
data contained in the previous 14 days were used as training.

4.2. Experiments analysis and results
First, the original wind speed of the training data set is transformed using the EWT method,

and by choosing the relative amplitude ratio δ = 0.5, the wavelet number L = 4 can be calculated.
Therefore, the output of EWT consists of a band-pass filter bank with one scale function and four
wavelet functions. Figure 2 shows the extracted five mode component signals after EWT.

Secondly, for each component signal of wind speed (F0-F4), a time series modelling method
was used to establish a multi-step prediction model for the SMMKL method 60-minutes in
advance. The embedded dimension of each sub-series model is set as D = 6.With different kernel
functions selected, Table 1 shows a comparison of the Std value for different MKL methods for
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Fig. 2. Mode signals extracted by the EWT

wind speed prediction 60-min ahead with different combinations of kernel functions. According
to the results in Table 1, the SMMKL method exhibits higher robustness than the SimpleMKL
method, and the best prediction accuracy is obtained when three polynomial kernel functions
and six RBF kernel functions are selected as the kernel functions combination of the SM1MKL
method.

Table 1. Comparison of Std of different MKL methods for 60-min ahead power prediction under different
kernel function combinations

Kernel function SimpleMKL SM1MKL SM2MKL

Three polynomial kernel 4.2805 3.8735 4.0088

Six RBF kernel 4.2931 3.8639 3.9729

Three polynomial mix six RBF kernel 3.9531 3.4033 3.6493

Figure 3 shows the distribution comparison of kernel weight using SimpleMKL, SM1MKL
and SM2MKL algorithms when establishing the prediction model based on F0 component for

Fig. 3. The distribution of the weight coefficient of each base kernel



812 Jun Li, Liancai Ma Arch. Elect. Eng.

60-min advance prediction. Among the index numbers of d indicated by the x-axis, the first three
indexes correspond to the polynomial kernel and the other indexes correspond to the RBF kernel.
It can be observed that the kernel weights of the SimpleMKL method are sparse, and some useful
base kernels may be discarded.

Finally, the wind speed predictions are output by superimposing the wind speed predictions
of each sub-series and the final power predictions are obtained by wind speed-to-wind power
conversion [25]. Figure 4 to Fig. 6 show the comparison of the multi-step prediction results,
errors and normalized errors of the prediction models based on different algorithms for 60-
min ahead wind power prediction on the test set, where the normalized error is defined as:
error/Pnorm × 100%. From the results in Fig. 4 to Fig. 6, it can be concluded that the combined
prediction methods based on EWT and SMMKL can accurately predict the actual wind power
value with low fluctuations in prediction error, shows a good prediction effect, with the EWT-
SMMKL method achieving the best prediction accuracy.

Fig. 4. Comparison of results using EWT-SMMKL methods for 60-min ahead prediction

Fig. 5. Comparison of errors using EWT-SMMKL methods for 60-min ahead prediction

Table 2 to Table 4 shows a comparison of the errors when predicting wind power 20, 40 and
60 minutes in advance based on different algorithms on the test dataset. To verify the prediction
performance of the EWT-SMMKL model, this experiment also compares its prediction results
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with those of SVM and other methods. As can be seen from Table 2 to Table 4, the two EWT-
SMMKL methods exhibit better predictive performance compared to the single MKL method.

Fig. 6. Comparison of normalized errors using different SMMKL methods for 60-min ahead prediction

Table 2. Performance comparison of different methods for power prediction 20-min ahead of test set

Method MAE Std RMSE

SVM 1.2031 2.3722 1.8222

SM1SVM 1.1140 2.2309 1.9397

SM2SVM 1.1099 2.2242 1.9265

SimpleMKL 1.1511 2.2043 1.8130

SM1MKL 1.0093 1.9966 1.7499

SM2MKL 1.1015 2.2719 1.7655

EWT-SM1SVM 1.2142 2.4984 1.8881

EWT-SM2SVM 1.1587 2.3932 1.8511

EWT-SimpleMKL 0.9619 1.9860 1.5169

EWT-SM1MKL 0.9479 1.9641 1.5167

EWT-SM2MKL 0.9492 1.9528 1.5035

Figure 7 further shows a comparison of the MAE values with the prediction step size for
the EWT-SMMKL method after the multi-step prediction of wind power from 20 minutes to
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180 minutes in advance. The results in Fig. 5 show that the combined forecasting method based
on EWT-SMMKL has better prediction performance than SMMKL and other methods, with a
significantly lower MAE value, and that the EWT-SM1MKL method has the best forecasting
results.

Table 3. Performance comparison of different methods for power prediction 40-min ahead of test set

Method MAE Std RMSE

SVM 1.6062 3.2843 2.6544

SM1SVM 1.5487 3.0849 2.6349

SM2SVM 1.5512 3.0934 2.6396

SimpleMKL 1.5340 3.1762 2.5572

SM1MKL 1.3004 2.6357 2.2991

SM2MKL 1.3963 2.9328 2.3493

EWT-SM1SVM 1.5201 3.1587 2.4166

EWT-SM2SVM 1.4676 3.0236 2.3802

EWT-SimpleMKL 0.9834 2.0079 1.5710

EWT-SM1MKL 0.9488 1.9565 1.5173

EWT-SM2MKL 0.9522 1.9733 1.5191

Table 4. Performance comparison of different methods for power prediction 60-min ahead of test set

Method MAE Std RMSE

SVM 1.9889 4.1172 3.4167

SM1SVM 1.9504 3.9266 3.3217

SM2SVM 1.9515 3.9260 3.3219

SimpleMKL 1.8977 3.9531 3.2157

SM1MKL 1.6878 3.4033 2.9254

SM2MKL 1.7233 3.6493 2.9638

EWT-SM1SVM 1.8061 3.8270 2.9560

EWT-SM2SVM 1.7435 3.6402 2.9112

EWT-SimpleMKL 1.1198 2.2427 1.7388

EWT-SM1MKL 1.0269 2.0975 1.6674

EWT-SM2MKL 1.0793 2.2001 1.6213
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Fig. 7. Comparison of prediction errors in terms of MAE based on different methods for different steps

5. Conclusions

For short-termwind power prediction, a combined predictionmethod based onEWT-SMMKL
is proposed. After theoretical analysis and the establishment of comparative experiments, the
following conclusions are drawn.

1. EWT can effectively improve the non-stationarity of nonlinear wind speed data and improve
the prediction accuracy of short-term wind power prediction based on decomposition
results.

2. The SMMKL method not only retains the advantages of the hard margin MKL method in
that the prediction results do not depend on the kernel function and its parameter selection,
but also selects as many useful base kernels as possible for prediction, providing better
prediction performance in short-term wind power prediction.

3. The prediction performance of the EWT-SMMKL method is better than SVM and other
singleMKLmethods in dealing with short-termwind power prediction. Based on the above
analysis, the proposed short-term wind power prediction method is feasible.

The analysis based on the above results shows that the proposed short-term wind power
forecasting method is feasible. In future works, combining the proposed SMMKL method, the
researchers plan to use new decomposition approaches, such as VMD to preprocess the data
needed to further improve prediction accuracy.
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