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Local modelling of the disturbing potential with the use
of quasigeoid' heights, gravimetric data and digital terrain model

In the paper the model of the disturbing potential based on the lower-degree harmonic
spherical polynomials and the local density model of topographic masses has been proposed.
Topographic masses are represented by DTM. The model parameters are fixed by the use of
quasigeoid heights as well as a dense network of gravity points. Preliminary analyses of the model’s
robustness of gravimetric data errors have also been included.

INTRODUCTION

Interpolation of quasigeoid £ heights based on a network of points with known normal
and geometric (GPS — ellipsoidal) heights, is probably the simplest method of satellite
levelling. Because the density of points with known ¢ is not sufficient enough the method
is not useful (especially in the mountains). Connecting the quasigeoid height and the
gravity disturbances dg with disturbing potential 7, we can replace quasigeoid height
interpolation problem onto constructing a proper model of the disturbing potential
problem [3, 6]:
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where: H is normal height, ¥, is mean normal gravity value between ellipsoid and
telluroide, y, is mean normal gravity value between ellipsoid and terrain surface, y is normal
gravity value on ellipsoid, W, is value of the gravity potential on geoid, U, is value of the
normal potential on ellipsoid, T, is derivative of the disturbing potential in the Z-direction,
in local horizontal co-ordinate system, with the Z-axis directed towards Zenith.

' Quasigeoid of Molodensky.
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Quantity of data, which can be taken to build this model is much higher because, except
of points with known &, we can include points with measured gravity.

There are doubts if the gravity data (gravity anomaly, gravity disturbances) is precise
enough for such kind of models. With geometrical interpretation of gravity shifts using
vertical gradient (~0.3 mGal/m) (1 mGal = 10~ ms™) we can obtain:

e accuracy of the gravity measuring (~0.02 mGal) ~6.6 cm,
e real accuracy of the gravity anomaly (~1 mGal) ~3.3 m.

In case when the disturbing potential is being modelled, this interpretation seems to be
too simple because both the gravity and the gravity potential depend on more factors than
the position of point. I can illustrate this by a simple example. On Fig.1 it is showed
a homogeneous sphere and the point P on the sphere surface.

If we want to change gravity by 0.3 mGal, we must move the point P along the radius by
I m. It will make change of the gravity potential value by 9.82 m* s™.

The same change of the gravity (0.3 mGal) at the point P we can obtain by putting mass
point mp under this point in the r distance. However the change of the gravity potential,
produced by the mass mp is just 3.2 X 10~ m? s In the height it is concerned as a few
hundreds of a part of millimetre.

Fig 1. Homogeneous sphere with the radius R = 6371 km and the constant GM = 3986005 x 10° m® s, point with
mass mp = 5 x 10% kg in the distance r = 105 m from point P

This example shows that it is not easy to define how the errors of the gravity anomaly
have influence on the disturbing potential. Everything depends on the used gravity potential
model. In models which use the law of universal gravitation (i.e. mass points model of
Bjerhammar-Aronow or density of topographical masses model proposed in the paper)
these errors may only slightly disturb the calculated potential.

The model of disturbing potential

The proposed model consists of two components:
e harmonic spherical polynomials of lower degree representing main component of the
influences of topographical masses and irregular mass distribution within the Earth.
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e based on the digital terrain model featured as parallelepiped blocks (DTM), the density
model which represents remainder influences.
The DTM grid contains area, where results of measurements have been given.
Generally, this model has the following form:
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where: n — quantity of DTM zones (there will be composed different linear density model

for each zone g, (x;, y;, Ziy M= quantity of parallelepiped blocks (DTM) in zone j, X;;, X5, Yi1»

Y Zi2s 2 — coordinates defining singular, parallelepiped DTM block, P(X,, Yp, Z,) — point

where the potential is calculated, T,(X,, Y,, Z,) — derivative T(X,, Y,, Z,) in the Z direction,
!

W, Yo 2p) = 2 fi(x, ¥, 2,)b, — harmonic spherical polynomials of lower degree with
k=1

unknown coefficients b, [1], 0,(x; ¥, z) = ay;+a,;x;+a,;y;+a;;z, — linear density model
with unknown coefficients Qyjp Ay @y, Gy

Application of the method demands solving of integrals presented in the equations (2)
and (3). The solutions are presented in the appendix.

The model described by equations (2) and (3) allows us to write observation equations
for disturbing potential and its derivative in a form:

T+v =T Y, Zp) @
0g+v = -T,(Xp, Yp, Zp)
where: v is residuum, 7 and dg are observations (gravity disturbance can be obtained from
the fundamental equation of physical geodesy [3], using known, approximate quasigeoid
model), T(X,, Yp, Z,) and T,((X,, Y, Z,) are given by equations (2) and (3) models with
unknown coefficients b, and a,;, a,; a,;, a,;
Unknown coefficients have been determined by least squares method using covariance
matrix.

Numerical example

The data prepared for the example was generated on the base of DTM grid covering the
square of 100 x 100 km with constant density of topographical masses (2750 kg/m®). Test
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network was located at central part of the square. Within this region (test network) in
different depth there were put 7 mascons. The DTM represents the area of the Sudety
Mountains. On the basis of this data model the observable values were calculated: T at
9 points, 0g at 121 points as well as test values of the disturbing potential 7., which will be

test?

calculated from the proposed model which bases on 121 points (Fig. 2).
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Fig. 2. Location of points with ,,observed” disturbing potential values T, ,,observed” the gravity disturbances dg
and calculated, testing, disturbing potential values T,

test

The following maps present gravity anomaly and disturbing potential within the area of
the test network.
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Fig. 3. Maps of gravity disturbances dg (mGal) and disturbing potential T (based on 9 points) (m?s™),

taken as observed values
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Fig. 4. Map of calculated (theoretical) disturbing potential values (7,) on the base of 121 testing points (m’s™)

2025 DTM blocks with the site of 500 m, used in disturbing potential model have been
divided into 25 zones (Fig. 5).
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Fig. 5. The DTM division into zones and schematic marked blocs at the one zone

Based on this data the model (2, 3) was formed.
The following maps show the values calculated from the model of the disturbing
potential 7,, as well as differences dT =T, — T,, between theoretical and calculated values:

lCSl

e standard deviation stdev(dT) = 0.07 m’s™
e maximum value max(d7) = 0.222 m’s™
e minimum value min(dT) = —0.139 m’s™
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Fig. 6. Maps of the values calculated from the model of the disturbing potential 7,

and the differences dT = T, —T,, (m’s™)

CONCLUSIONS

In my opinion — very high accuracy of the disturbing potential calculated from the
model may appear because of simplicity of the data model. Final verification of the
proposed model should be done using real data.

Looking back at the required accuracy of the gravity anomaly I would like to add that

random disturbing of its values by + (0+1) mGal does not make any significant change of
calculated disturbing potential at testing points.

Appendix

Integrals solutions:
Auxiliary marks:

X—Xp=Ax
yi—Yp =4y
z—Zp, = Az

NCG=X) 2+ 0= Yol + (2 - Z,) =
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a)Disturbing potential
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(1) see Forsberg, Tscherning C. (1997)
(2) the author’s solution
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dxdydz see Forsberg, Tscherning C. (1997)
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Solutions of the integrals (3) and (4) may be built on the basis of solutions of the integral
(2), by exchanging proper variables.

b)Gravity anomaly

Zi2 Yia X
_J‘ J' J‘ (agj+a,;x;+ayy,+a;;z)Az
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dxdydz =
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(7) see Nagy (1996)
(8) the author’s solution

i2

T j[ ]. 4 dxdydz =

Ly Vi
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f I %dxdy exchange proper variable at solution (6)
Vi X
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1)

Solutions of the integral (9) may be built on the basis of the solutions of integral (8),

exchanging proper variables.

(10) the author’s solution

T Yoo

J f J. a”ZAZ dxdydz = a, J. I ] %dxdydz_

i Yo X i Y Xa

Zf J. dxdy X

‘1X|

dxdydz  see Forsberg, Tscherning C. (1997)

Ziy Y

ey X
N =

R
N =

2

dxdy  exchange proper variable at solution (6)
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Lokalny model potencjatlu zaklécajacego wyznaczony na podstawie odstepow quasigeoidy
danych grawimetrycznych i cyfrowego modelu terenu

Streszczenie

W pracy zaproponowany jest model potencjatu zakidcajacego oparty na wielomianach harmonicznych
niskiego stopnia oraz lokalnym modelu gestosci mas topograficznych reprezentowanych przez NMT. Do
wyznaczenia parametréw modelu proponowane jest wykorzystanie danych wysokosci quasigeoidy i gestej sieci
punktéw z wyznaczonymi zakléceniami grawimetrycznymi. Przeprowadzona jest takze wstepna analiza
odpornosci modelu na niedokladnos$ci przyjetych do obliczen zakiécefi grawimetrycznych.

Mapex Tposnosuu

MecTHast MOJE/Ib OTEHIHAIA BO3MYILEHHI ONpe/ieIéHHOr0 HA OCHOBe PACCTOAHHA KBa3ureoja
IPABHMETPHYECKHX AHHBIX H HH(POBOH MOJETH MECTHOCTH

PeswomMe

B paborte npennoxeHa MoOAE b MOTEHUHANa BO3MYILEHHH, OCHOBaHa Ha TAPMOHUYECKHX MOJIMHOMaX
HHU3KOH CTEMeHH, a TAKKE Ha MECTHOH MOZENHU IUIOTHOCTH TONOrpadu4eCKULX MacC, MPEACTaBAAEMbBIX
I1(pPOBOH MOAEILI0 MECTHOCTHU. [IJ1s1 onpeaeieHus MapaMeTPOB MOIE/IY NPEANaraeTCst UCNOJb30BaTh
BLICOTBI KBAa3UI€OUIa, ¥ IYCTOH CETH MyHKTOB C ONPEAENEHHLIMU TPABUMETPUUECKHMH BO3MYIUEHUSIMHA.
IlIpoBeneH TOXe NpeaBapUTESILHLI aHaIM3 YCTOMYMBOCTH MOMEIH K HETOYHOCTSM MPUHATBIX AJIS
BBLIYMCIIEHHH TPAaBUMETPUYECKHX BO3MYILEHHUH.



