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Local modelling of the disturbing potential with the use
of quasigeoid 1 heights, gravimetric data and digital terrain model

In the paper the model of the disturbing potential based on the lower-degree harmonic
spherical polynomials and the local density model of topographic masses has been proposed.
Topographic masses are represented by DTM. The model parameters are fixed by the use of
quasigeoid heights as well as a dense network of gravity points. Preliminary analyses of the model's
robustness of gravimetric data errors have also been included.

INTRODUCTION

Interpolation of quasigeoid ~ heights based on a network of points with known normal
and geometric (GPS - ellipsoidal) heights, is probably the simplest method of satellite
levelling. Because the density of points with known ź, is not sufficient enough the method
is not useful (especially in the mountains). Connecting the quasigeoid height and the
gravity disturbances og with disturbing potential T, we can replace quasigeoid height
interpolation problem onto constructing a proper model of the disturbing potential
problem [3, 6]:

r (Wo-Wo) YH-'Yh T .,,+---+--H=- y y y 
og = -T, (1) 

where: H is normal height, 'YH is mean normal gravity value between ellipsoid and
telluroide, yh is mean normal gravity value between ellipsoid and terrain surface, y is normal
gravity value on ellipsoid, W0 is value of the gravity potential on geoid, U0 is value of the
normal potential on ellipsoid, T, is derivative of the disturbing potential in the Z-direction,
in local horizontal co-ordinate system, with the Z-axis directed towards Zenith.

' Quasigeoid of Molodensky.
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Quantity of data, which can be taken to build this model is much higher because, except 
of points with known t, we can include points with measured gravity. 

There are doubts if the gravity data (gravity anomaly, gravity disturbances) is precise 
enough for such kind of models. With geometrical interpretation of gravity shifts using 
vertical gradient (-0.3 mGal/m) (1 mGal = 10-5 ms:") we can obtain: 
• accuracy of the gravity measuring (-0.02 mGal) -6.6 cm, 
• real accuracy of the gravity anomaly (-1 mGal) -3.3 m. 

In case when the disturbing potential is being modelled, this interpretation seems to be 
too simple because both the gravity and the gravity potential depend on more factors than 
the position of point. I can illustrate this by a simple example. On Fig. I it is showed 
a homogeneous sphere and the point P on the sphere surface. 

Ifwe want to change gravity by 0.3 mGal, we must move the point P along the radius by 
1 m. It will make change of the gravity potential value by 9.82 m2 s-2• 

The same change of the gravity (0.3 mGal) at the point P we can obtain by putting mass 
point mp under this point in the r distance. However the change of the gravity potential, 
produced by the mass mp is just 3.2 x 10-4 m2 s-2. In the height it is concerned as a few 
hundreds of a part of millimetre. 

p 

mp 

Fig I. Homogeneous sphere with the radius R = 6371 km and the constant GM= 3986005 x I 08 m3 s-2, point with 
mass mp = 5 x I 08 kg in the distance r = I 05 m from point P 

This example shows that it is not easy to define how the errors of the gravity anomaly 
have influence on the disturbing potential. Everything depends on the used gravity potential 
model. In models which use the law of universal gravitation (i.e. mass points model of 
Bjerhammar-Aronow or density of topographical masses model proposed in the paper) 
these errors may only slightly disturb the calculated potential. 

The model of disturbing potential 

The proposed model consists of two components: 
• harmonic spherical polynomials of lower degree representing main component of the 

influences of topographical masses and irregular mass distribution within the Earth. 
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• based on the digital terrain model featured as parallelepiped blocks (DTM), the density 
model which represents remainder influences. 

The DTM grid contains area, where results of measurements have been given. 
Generally, this model has the following form: 

T(Xp, Yp, Zp) = W(Xp, Y p, Zp) + 

c± f J' J' J (!i (X;, Y;, z) dxdyd;
J=I i=I z;, y,, -';, ✓(x;-Xp)2 + (y;-Yp)2 + (z;-Zp)2 

(2) 

(3) 

where: n - quantity of DTM zones (there will be composed different linear density model 
for each zone Qi (x;, Y;, Z;), m - quantity of parallelepiped blocks (DTM) in zone j, x;,, X;2, Y;,,
Yi2, Z;2, z;2 - coordinates defining singular, parallelepiped DTM block, P(Xp, Yp, Zp) - point 
where the potential is calculated, Tz(Xp, Yp, Zp)- derivative T(Xp, Yp, Zp) in the Z direction, 

I 

W(xp, v-. Zp) = L fk(xP, yP, zP)bk - harmonic spherical polynomials of lower degree with 
k=l

unknown coefficients bk [l], Q/X;, Y;, z;)= a0J+alJx;+a2Jy;+a3Jz; - linear density model 
with unknown coefficients a0i' a,i, a2i' a3l

Application of the method demands solving of integrals presented in the equations (2) 
and (3). The solutions are presented in the appendix. 

The model described by equations (2) and (3) allows us to write observation equations 
for disturbing potential and its derivative in a form: 

T +v = T(Xp, Yp, Zp) 
ćg +v = -Tz(Xp, Yp, Zp) 

(4) 

where: vis residuum, T and óg are observations (gravity disturbance can be obtained from 
the fundamental equation of physical geodesy [3], using known, approximate quasigeoid 
model), T(Xp, Yp, Zp) and Tz((Xp, Yp, Zp) are given by equations (2) and (3) models with 
unknown coefficients bk and a0i, a,i, a2J, a3/ 

Unknown coefficients have been determined by least squares method using covariance 
matrix. 

Numerical example

The data prepared for the example was generated on the base of DTM grid covering the 
square of 100 x 100 km with constant density of topographical masses (2750 kg/rrr'). Test 
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network was located at central part of the square. Within this region (test network) in 
different depth there were put 7 mascons. The DTM represents the area of the Sudety 
Mountains. On the basis of this data model the observable values were calculated: Tat 
9 points, o g at 121 points as well as test values of the disturbing potential T1e,t> which will be 
calculated from the proposed model which bases on 121 points (Fig. 2). 

10000 + + + + + + + + + + + 
+ + + + + + + + + + + 
+ + + + + + + + + + + + 8g 5000 )(• .. •)(• .. •)( 
+ + +•♦•♦•♦•♦•♦•+ + + 

I ••••••••••• + + +••·······••+ + + X ••••••••••• T o + + +)(♦•♦•)I(•♦•♦)(+ + + ••••••••••• + + +••·······••+ + + ••••••••••• • t.: + + +••·······••+ + + -5000 X••••X••••X + + + + + + + + + + + 
+ + + + + + + + + + + 

-10000 + + + + + + + + + + + 
-10000 -5000 o 5000 10000 

[m] 

Fig. 2. Location of points with ,,observed" disturbing potential values T, ,,observed" the gravity disturbances og 
and calculated, testing, disturbing potential values T,est 

The following maps present gravity anomaly and disturbing potential within the area of 
the test network. 

óg T 

E 

[ml [ml 

Fig. 3. Maps of gravity disturbances og (mGal) and disturbing potential T (based on 9 points) (m's"), 
taken as observed values 
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Fig. 4. Map of calculated (theoretical) disturbing potential values (T1"1) on the base of 121 testing points (rrr's=') 

2025 DTM blocks with the site of 500 m, used in disturbing potential model have been 
divided into 25 zones (Fig. 5). 

I 1000 

E 

w 

-1l000 
-1l000 I 1000 

[m] 

Fig. 5. The DTM division into zones and schematic marked blocs at the one zone 

Based on this data the model (2, 3) was formed. 
The following maps show the values calculated from the model of the disturbing 

potential Tm as well as differences dT =T1e,1 - Tm between theoretical and calculated values: 

• standard deviation stdev(dD = 0.07 m2s-2 

• maximum value max(dD = 0.222 m2s-2 

• minimum value min(dD = -0.139 m2s-2 
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Fig. 6. Maps of the values calculated from the model of the disturbing potential Tm 
and the differences dT = T,e,. - Tm (m's") 

CONCLUSIONS 

In my opinion - very high accuracy of the disturbing potential calculated from the 
model may appear because of simplicity of the data model. Final verification of the 
proposed model should be done using real data. 

Looking back at the required accuracy of the gravity anomaly I would like to add that 
random disturbing of its values by± (0-c- l) mGal does not make any significant change of 
calculated disturbing potential at testing points. 

Appendix 

Integrals solutions: 
Auxiliary marks: 

X;-Xp = fu 
Y;-Yp = ~y 
Z;-Zp = ~ 
✓(x;-X/+(y;-Yp)2+(z;-Zp)2 = r 
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a) D i s t u r b i n g p o t e n t i a 1 

Z;2 )';2 X;2 

f f f a0 + a 1 . x. + a1 . y + a3 z 1 1 ' -J ' 1 ' dxdyd: = 
Z;1 Y;1 X;1 T 

42 Y;i X;2 f f f a01 dxdydz. + 
Z;1 Y11 x;i r 

J' T Y a,Jx; dxdyd: + 
Z;, )';, X;, T 

42 )';z X;z f f f _a,1_Y; dxdyd; + 
r 

42 )';2 X;2 

fffa,.z -1
-' dxdyd; + 

l;i Y11 X;1 r 

(1) 

(2) 

(3) 

(4) 

(1) see Forsberg, Tscheming C. (1997) 
(2) the author's solution 

Z;, )';, Xp 

f- ·f- f- a, .x 11 ó.z2+i:u2 L). 2+fu2 
_ , ~dxdydz=a,1[ 113(!'!,.z 2 lnJ!'!,.y+rJ+!'!,.y y 2 lnl!'!,.z+rl+ 
°'il J;1 X;1 

(5) 

!'!,.z!'!,.yr) 1:::1::: [ + L\;2 t l} dzdy X;z + x, l: f.: l} dxdydz 1 
X;i 

see Forsberg, Tscheming C. (1997) 

Solutions of the integrals (3) and (4) may be built on the basis of solutions of the integral 
(2), by exchanging proper variables. 

b)Gravity anomaly 

- J' Tr (ao1+a,1X;+a2:Y;+a31z;)l'!,.z dxdyd; = 
Z;1 )';1 X;1 r 
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Z;1 _l';1 X;1 Ó,z f f f aoJ 3 dxdyd: + (7) 
Z;1 Yr1 X;1 T 

Z;2 Y,2 X;2 & f f f a1JX3 dxdyd: + (8) 
Z;i )';i X;1 f 

Z;2 .\';1 X;1 Ó,z f f f azJY dxdyd: + (9) 
Z;, Y;, X;, T

3 

z.) y.) x.) r { { a3Jz3& dxdyd; + (10) 
Z;1 )';1 x,1 f 

(7) see Nagy (1996) 
(8) the author's solution 

(11) 

)';, X;1 1 f f -dxdy r 
)';1 X;1 

exchange proper variable at solution (6) 

Solutions of the integral (9) may be built on the basis of the solutions of integral (8), 
exchanging proper variables. 

(10) the author's solution 

r r r 03
) z3& dxdyd; = -: [ r r r ~ dxdyd: - Z J' T ~ dxdy • 

"-il );1 X;1 r .:.;1 );1 X;1 );1 X,1 Z;i 

z,, Y;z X;1 l f f f -;: dxdyd; see Forsberg, Tscherning C. (1997) 
Z;1 )';1 X;1 

)';2 X;1 1 f f -; dxdy exchange proper variable at solution (6) 
Yn X;i 
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Lokalny model potencjału zakłócającego wyznaczony na podstawie odstępów quasigeoidy
danych grawimetrycznych i cyfrowego modelu terenu

Streszczenie

W pracy zaproponowany jest model potencjału zakłócającego oparty na wielomianach harmonicznych
niskiego stopnia oraz lokalnym modelu gęstości mas topograficznych reprezentowanych przez NMT. Do
wyznaczenia parametrów modelu proponowane jest wykorzystanie danych wysokości quasigeoidy i gęstej sieci
punktów z wyznaczonymi zakłóceniami grawimetrycznymi. Przeprowadzona jest także wstępna analiza
odporności modelu na niedokładności przyjętych do obliczeń zakłóceń grawimetrycznych.

Mapek Tposuoeuu 

Mecruas MOAeJib norenuaana BOJMy~e,rnii onpenenenuoro na ocnose paccroanua xnaaareona
rpaB11MeTpw1eCKHX AaHHbIX If uarppoeoa MOACJIH MeCTIIOCTII 

Pe3JOMe

B pafiore npennosceaa M0lleJib noreauaana B03MYIUeHHH, OCHOBaHa Ha rapMOHWJeCKHX IT0JIHH0Max
HH3K0H CTeneHH, a TaKJKe Ha MeCTHOH Monenu ITJIOTH0CTH TOnorpaqJHYeCKJ-lUX Mace, npezicraanaer-n-ix
UHCJlpOBOH MOlleJib!O MeCTH0CTH. lln.<I onpeneneuns napar-rerpoa M0)leJIH npennaraercs HCITOJib30B3Tb
BblC0Tbl xaaaareouna, H rycroii cer a nyHKTOB C onpeneneiuu.ncni rpaBHMeTpHYeCKHMH B03MYIUeHH51MH.
Flponenen T0JKe npenaaparern.nua 3HaJIH3 ycTOHYHBOCTH M0lleJIH K HeTOYHOCT.<!M npHH.<!Tl.,IX l1Jl51
Bl.,l'-!HCJier-mii rpaBHMeTpHYeCKI-IX B03MyllleHHH.


