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Classification of the signals presenting
different representations of the same process

In this paper there are presented results of applying the methods of the time series analysis to the
problem of recognizing small boats. It has been showed that the acoustic signals of the boats can be
classified by means of clustering algorithms.

INTRODUCTION

The classification of collected during diagnostic tests data gives us a better view on
process of exploitation of the mechanism, Thus we can distinguish differences in dynamics
of the whole system and obtain information about its shape, The problem of data
classification has been intensively studied in the literature, detail discussion can be find in
the following [1-7]. The common approach is based on computing a set of characteristic
features for each time series, and then by comparing these values, the investigated objects
are classified to different groups. The same situation we may find during investigating data
from diagnostic measurements. One of the most difficult situations is when we have to deal
with very similar signals, and we do not have any clues about the relations between signals
and corresponding classes. An example of such situation can be meet when we have signals
obtained from the objects of the same type.

In this paper we are going to identify objects, by splitting the collection of measures into
different clusters. On this base we can compare two recordings made with time interval and
check how the dynamics differs.

Our data contains different representations of the same process, they came from the
hydro-acoustic experiment with different types of boats. From the variety of possible
characteristics we have chosen the hydro-acoustic one, due to its attractiveness from the
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diagnostics point of view. During the sea trial we can record data, which presents the whole 
dynamics of the system (boat), tests at harbour cannot reveal such a results. Interaction 
between sea environment and the hull, including different mechanism on board, all this can 
give us better view on the changes in dynamics of the system. All those features are 
reflected in the hydro-acoustical signals. 

1. Experimental data 

The fingerprints of each ship are the unique vibrations of the hull, when the sea 
surface interacted with it while the ship is moving. If the distribution of those 
vibrations is totally random then hydro-acoustical signals should have also stochastic 
component and all the attempts to investigate this phenomenon by using deterministic 
methods must fail due to the stochastic nature of this process. By searching for these 
signatures we can answer the question about the vibration distribution and this would 
substantiated using nonlinear time series analysis methods to investigate hydro-acoustic 
phenomenon. 

So far many attempts have been made to detect behavior characteristic for deterministic 
systems in the data coming from the real world. Finite number of points as well as finite 
resolution of those kind of data makes this investigation difficult to obtain satisfactory 
results. In this particular case we would like to use the method of surrogate data [8, 9], which 
provides statistical test for the null hypothesis that the data has been generated by a linear 
stochastic process. If this null hypothesis cannot be rejected, then most results of a nonlinear 
analysis are not correct. This kind of test is based on comparing the value of nonlinear 
measure for the original data and a number of surrogates. 

2. Description of the data 

In order to check the character of the vibration distribution we introduce hypothesis 
that the data was generated by a stationary Gaussian linear stochastic process. Computing 
nonlinear statistics on the data allows distinguishing deviations from the null hypothesis, 
our main purpose is to show that the original data x~, differs significantly from the 
surrogates which are design as realizations of the null hypothesis. 

The original data consists of samples of sound recorded on the test area while boat was 
approaching to the sensor. The sound made by the ship is detected by hydro-phones (sensor) 
which are connected to the standard PC computer equipped with the sound card. Recordings 
were downloaded into the hard-disk as a .wav files. The whole recording consists of 
2.500.000 samples, therefore we split it, and for further considerations we have used only 30 
segments of length 10000 points starting from the beginning of the recording. We decided 
to chose this part, due to its attractiveness from the analysis point of view. The boat is 
relatively far from the sensor and the signal is contaminated by the sound background of the 
sea. Both of them, boat and sea present a specific dynamics and in fact they can be 
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considered as autonomous systems, however in the recorded signal they are represented by 
one observable. 

The surrogate data is a set of data which mimic the original one, however consistent 
with the null hypothesis. For the presented conjecture we generated {x~}, k = l, ... ,B 
surrogates of the specific type, in our case they should be realization of the Gaussian linear 
stochastic process. 

An example of the data is presents in the Fig. 1, this particular segment was recorded 
when the boat was in a distance of 1.5 nautical mile from the sensor, the lower panel 
presents an example of surrogate data created according to the scheme presented in the 
paper of Schreiber and Schmitz [10]. 
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Fig. l. Example of the data applied to the test 

When creating tests for nonlinearity we should take into account two parameters. The 
first one, is its size a, which is the probability that the null hypothesis is rejected although it 
is in fact true. And the second, called level of significance 1 - p (usually the value of p is 
specify a priori, and then test is design with accordance to its value). 

3. Tests against determiinism 

3.1.Measures of nonlinearity 

There exists several examples of different statistical methods (see for instance [8, 
11-13]) which have been developed in order to reveal the nature of the considered time 
series. 
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We decided to apply two types of nonlinear statistics t = t ( {x"} ): 
1. As a first one, nonlinear prediction error with respect to a locally constant predictor 

F defined by 

(1) 

The prediction is performed over one time step and it is done by averaging over the future 
values of all neighboring delay vectors closer than E in m dimensions. 

2. The second quantity it is cross-prediction errors, which can be expressed by the 
following formula 

1 l-1 

ax2 y = ~ li --->Yk+I - FxCyk) 112, 
' L' k=(;-:_l)r+l 

(2) 

where: L' = L- (m - l)r- 1) - number of delay vectors, and F zeroth order model as it is 
proposed in the [11]. 

Calculating those nonlinear observable require using time delay embedding according 
to the following scheme, where embedding vectors in m dimensions are created by: 
xn = (x, - (m - I)T'"'' xn), - 'Z' is the delay time. 

4. Results of the tests 

We generated the surrogate data according to the scheme described in [10], which is 
the appropriate method when the null hypothesis states that the data has been generated by 
a Gaussian linear stochastic process. This is the simplest description of a purely stochastic 
process, therefore we decided to applied this hypothesis. 

The method is based on the phase randomized surrogate series S= {sn, n= 1, ... ,N} which 
has the same power spectrum as the time series X = {xn, n = l, ... ,N}. The temporal 
correlations in the original data are not preserved in the surrogates. The surrogate is 
obtained by determine the Fourier transform of the original data X, randomizing the phases, 
and inverting the transform. 

The probability distributions of the nonlinear statistic t = t ( {x"}) remains unknown to 
us, therefore we applied a non-parametric, rank-based test, suggested in [14]. If the data 
deviates from the surrogates in a specific direction then we can reject the null hypothesis 
( one-side test). According to the size of the test a, we create B = 1/ a - 1 surrogate sets and 
then compute the test statistic t0 on the original data and on each of the surrogates (tk, 
k = l, ... ,B). 

For the prediction error, we expect nonlinearity in the data to appear in the lower values. 
Thus in this case we perform one-sided tests. All tests were carried out at the 95% level of 
significance, it means that for one-sided test we have created 19 surrogates. 



Classifications of the signals presenting different ... 231 

Our data is a typical example of field measurement, it is strongly contaminated by the 
noise. In this particular case the nature of noise can have dual substance, the first source is 
a measurement noise, and the second one as we have already said is the natural sound 
background of the sea. 

Assuming that the second type of noise and the distribution of unique vibration of the 
hull (when the hull is interacted with the sea surface) can be well described by the Gaussian 
linear stochastic process [ 15] we can expect that those features should be reflected in the 
results of the test. Simply in the presence of the stochastic components in our data test for 
nonlinearity should fail. 

Conducted tests reveal that for one-sided test we achieved the 95% level of significance 
each time, results of one of the tests are presented in the Fig. 2. 
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Fig. 2. Prediction error as a discriminating statistics 

In order to precise our results we decided to apply method described in [5] which is based 
on the clustering algorithm. The main idea of using this algorithm in the test for 
nonlinearity, is to classify the total set of surrogates and original data, say K into two groups, 
from which one has only 1 element. As a dissimilarity measure cross-prediction errors were 
used. For conducting the test we used 9 surrogates and the original data, thus the probability 
that if the algorithm turned out the original data is 1/ K = 0.1, if it is true then we can reject the 
null hypothesis with the ( 1 - ( 1/ K)) x 100% = 90% of significance. For each combination of 
surrogates and original data from the set of 30 segments we obtained the rejection of the null 
hypothesis with the 90% level of confidence. An example of the answer given by the 
clustering algorithm is presented on the Fig. 3 and on the Fig. 4. As we have seen there 
are two clusters and one of them singled out the one element which contain the original 
data. 



232 

0.4

0.38

0.36

0.34

0.32
"' Cl

0.3

0.28

0.26

0.24

Marek Przyborski, Andrzej Stateczny 

◊
◊

◊

'Cluster nr l' ◊
'Cluster nr 2' ■

◊

◊
◊

■0.22 .____,____,___..____,_____.___.,____,
0.32 0.325 0.33 0.335 0.34 0.345 0.35 0.355

D1 
Fig. 3. Results of clustering - another file from the whole set of 30 recordings 
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Fig. 4. Results of clustering - a sample file from the whole set of 30 recordings 

We applied two nonlinear statistics in order to reveal the possible nature of considered 
signals. Taking into account results of conducted tests we can conclude that the null 
hypothesis can be rejected because original data can not be well described by the Gaussian 
linear stochastic process. It means that our assumption about the nature of hull's vibration is 
false, thus its distribution can be predicted due to deterministic nature of that process. 
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The null hypothesis which has been chosen in fact is the simplest one, however in our 
opinion it presents the main drawback in the field of investigation hydro-acoustics data. The 
possibility to reject the hypothesis of stochastic nature of that signals opens the way to 
extract the most important features of the object by means, for example nonlinear time 
series analysis. This allows us to characterize each type of object by the set of suitable 
parameters. 

4.1. C 1 ass if i cat i o n of the dat a 

Since the data represent the same phenomena, however each time recorded under 
slightly different conditions (type of the ship, differences in the shape of the propellers, 
differences in the hydrodynamical features of the hulls, meteorological conditions, sea 
level, different interactions between ships' hulls and sea surface) we assume that the 
attractors created by those systems (different classes of boats) are quite similar, therefore 
we are able to classify those signals to the corresponding class of similar dynamics. 

We have eliminated the noise influence by the method of noise reduction with local 
projections [16-19], with the following parameters: embedding dimension m = 20, 
dimension of projection q = 5, size of the neighborhood k = 30 (for detail discussion of 
choosing those parameters see for example [ 16-19]. After filtration, our data is prepared for 
clustering, which is based on the following procedure: 

• preprocessed data is used for computing similarity measure, 
• then the results create the dissimilarity matrix, 
• this matrix is used by the clustering algorithm to classify the data to the clusters. 

In this particular case the data was prepared in the following mode: The whole 
collection of signals has been divided into parts of lengths 10000 points each. To compute 
the similarity measure those parts have been split into 40 sequences. We assumed that the 
number of signals which is used to calculate the dissimilarities, correspond to the number of 
clusters N, thus we do not have to chose the optimal partitioning into clusters. 

If we want to classify K clusters into L classes first of all we have to define a membership 
index vf vix (see the [5]) it is equal 1 when cluster i is located in class Ę and is equal O if 
otherwise, then the class definition can be described by 

c<~) =i: vf = 1 (3) 

we want to form class where the average dissimilarity d (x, y) of clusters within class is 
minimal, so if the number of clusters in class Ę is define as 

J

1cw1 = I vc0 
i =I 1 

(4) 
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then in the class ( g the average dissimilarity of cluster i to other clusters in the same class is 
described by 

(5) 

thus, the average dissimilarity of clusters in class Ę can be expressed as 

J

D<~l = (1/IC<ell) L v/tl D/tl 
i= I 

(6) 

of course for the total average we have to take the sum over all clusters, finally we can 
obtained the optimal partitioning into classes by finding the minimum of cost function 
which can be expressed as follow 

K I J 
E = LD = L -.- L v<el v<el d (x y)

~= I 1c<s)1 i,j= I 
I 

J '
(7) 

To compare the results obtained by the use of raw data and preprocessed by nonlinear 
noise reduction scheme, we show the scores obtained on clustering of 3 different signals. In 
the Fig. 5 results obtained on the raw data are present, the Fig. 6 shows the results with the 
clean data. The differences are very small. Thanks to our a priori knowledge about 
recordings we know that there should be 3 different signals. 
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Fig. 5. Results of the clustering the row data 
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Fig. 6. Clustering the data after noise reduction 

From Fig. 5 and Fig. 6 we cannot draw such a conclusion, therefore we decided to apply 
the singular value decomposition (SVD) method, in order to select the most important 
components from the recordings [2, 17, 18, 20, 21]. In our particular case we have chosen 
components. Conducted tests revealed that the most informative is the first principal 
component. Below there are results of clustering algorithm conducted on signals processed 
by SVD (see Fig. 7). 
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Fig. 7. Clustering the data after processing by SVD method 

CONCLUSIONS 

The above considerations lead us to the conclusion that classifying the experimental 
data on the base of similarities in the dynamics is possible, and in such a difficult case as 
hydro-acoustic signals which contain a very high level of noise applying nonlinear methods 
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lead to satisfying results. However it is necessary to add that one of the most important 
problems remains still open - methods of noise reduction. 

As we said the main application we see among the diagnostics methods. Characteristics 
obtained on machine working under different regime at sea (not during laboratory tests) are 
more reliable than tests in the harbour. We can diagnosis the power transmission system of 
the ship in its natural environment (at sea). Possibility to distinguish region with different 
dynamics gives us tool to analyze interaction between different devices on board. By means 
of cross-correlation integral we are able to check how differ certain parameters from the last 
test. Of course possibility to obtain hydrodynamics characteristics of the hull and propeller 
during the sea trial is also very important. This kind of analysis hydro-acoustics data can be 
very helpful in the field of naval architecture. 
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Klasyfikacja sygnałów zastosowanych w różnych procesach

Streszczenie

Artykuł prezentuje rezultaty zastosowania metod analizy szeregów czasowych do rozwiązywania problemu
rozpoznawania małych lodzi.

Wykazano, że sygnał hydroakustyczny generowany przez lodzie może być klasyfikowany przy zastosowaniu
algorytmu klasteryzacyjnego.

Mapes Ihuutiopcru 
Auozceic Cmameuuu 

KJiaccHq>HKa~WI caruanos npeJ:1CTaBJU110~Hx pasuste npencraanenua Toro-lKe npouecca 

Pe3IOMe

B crarse npezicrasnenu peayns'ra'ru np11MetteH1rn MeTO/:1OB ananasa BpeMeHHbIX p51AOB no npoćnexre
pacnO3HaHl151 aeóorn.umx JIO/:lOK. Iloxasaao, 'lTO aKYCTl1'leCKl1e caraanu JIOAOK MOryT 6hITb
KJ1acc11cp111..111poBaHbl np11 TIOMOll\11 KJiaCTepttblX anropttTMOB.


