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Generalisation of a coast line - a multi-fractal approach 

Simplification of a shape of a coastline is one of the best-described issues of quantitative 
generalisation. Schematisation of a coastline shape is a process, which may be relatively easily 
described by means of an algorithmic formula. However, the majority of algorithms consider only 
geometric aspects and river and road networks are generalised by means of the same parameters. 
Many described methods of direct transfer of subjective ways of manual generalisation to computer 
systems have turned out to be ineffective. Application of fractal analysis is an attempt aiming at 
objective implementation of a process of automated cartographic generalisation by means of 
selection of parameters of algorithms of simplification of lines, preceded by analysis of local 
geometric features of modelled objects. The, so-called mono-fractal dimension of objects, 
commonly used in cartometric analysis, DJ, specifies the averaged level of filling of available space 
only. The multi-fractal dimension of analysed objects, as, for example of a coastline, determined by 
means of a method proposed by the author, specifies the multi-fractal spectrum of dimensions, 
D(q). The range of obtained values of the parameter DJ( l .05-e- 1.42) allows for assumption that the 
coastline has multi-fractal properties. 

In this paper the author proposes development of new descriptive and research tools, which may 
be used for investigation of local geometric features of objects presented on a map, as well as for 
simplification of shapes of objects in the process of cartographic generalisation. 

Cartographic generalisation 

In 1866 the German cartographer, E. Sydow, defined three basic issues of 
cartography, which he called "reefs" in the process of map generation: 

l) presentation of the spheroid Earth's surface on a plane, 
2) presentation of the terrain relief, 
3) cartographic generalisation. 

Although these issues were described in the middle of the 19th century, they are still 
considered as the basic issues of the contemporary cartography. A map contains two types 
of deformations of its content. One type of deformations results from presentation of the 
non-developable Earth's surface on a plane. Such deformations can be accurately defined 
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when the form of projection functions is known. The second type of deformations results 
from generalisation of the map content. 

A map, as a mean of transfer of chronological information (information concerning 
location of objects and phenomena in the geographic space as well as relations 
resulting from such locations) is limited by the capacity of information channels 
(Ratajski, 1989). Information capacity of a map results from the scale, destination, 
applied methods of presentation and technical limitations. Therefore, in the process of 
cartographic transfer, reduction of source information by means of its generalisation is 
required. 

The term generalisation originates from the Latin term generalis. The essence of 
cartographic generalisation is "selection of the most important and important elements and 
their rational generalisation" (Saliszczew, 1998), aiming at presentation of certain real 
features on a map, with particular respect to basic, typical and characteristic features of the 
reality. 

Two various orientations may be found in professional literature, which consider 
generalisation as art, as well as the opposite orientation, which considers this process as a set 
of algorithmic rules, which may be automated. Following M.-J. Kraak and F. Ormeling 
(1998) generalisation is connected with unavoidable loss of certain amounts of source 
information. On the other hand, A. Makowski (2001) states, that generalisation should be 
identified with a cartographic method of modelling of the reality. Map production should 
sufficiently consider data acquired in the process of observations of the reality, resulting 
from explicit definition of features and destination of a map. Following this concept, 
generalisation cannot be identified with loss of information due to geometric simp 
lifications. Generalisation is a method of model generalisation of data, performed in order 
to meet certain goals. The basic feature of the process of generalisation is maintenance of 
the basic structure and nature of geographic data. Similar opinions are presented by 
W. Ostrowski (2001), who aliases the process of cartographic generalisation with 
generation of a cartographic model, used for research of a selected fragment of the 
geographic space. Considering the complexity of this space, adaptation of the created 
model to perceptual and intellectual abilities of a map user, by means of rational 
simplification and generalisation of source data, is required. 

Following D. E Richardson (1999) generalisation is a mechanism, which allows for 
abstracting and compressing of real data, with respect to graphic presentation and 
meanings. Abstracting is understood as a process of distinguishing important features of the 
geographic space and their relations. Therefore, in an artistic sense this process reminds 
creation of caricature, where some characteristic features of a modelled object are 
exaggerated and other features, which are considered less important, are neglected. 

Molenaar (1996) specifies generalisation as a "process of abstracting of geographic 
information presentation during the change of a map scale''. This process consists of two 
stages: 
- generalisation of meanings, which relates to abstracting of information and 

settlement of rules, 
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- graphical generalisation, i.e. utilisation of geometric algorithms of simplification of
shapes and graphic symbolisation.

However, generalisation cannot be considered as a mechanical procedure of sequential
application of deterministic rules; it should be considered as a process "based on
understanding" (R. Weibel, 1995). Familiarisation with a structure of generalised objects
requires cartometric analysis of their shapes, mutual relations and spatial differentiation.
Many authors attempted to solve the problem of cartographic generalisation, creating
theoretical models of the generalisation process (Brasse! and Weibel, 1988; Shea and
McMaster, 1992). Work of L. Ratajski (1989), who defines the term of the so-called
generalisation thresholds is considered as one of the best models of generalisation. Shea and
McMaster (1989) proposed the model of generalisation based on three basic issues:

l. Why do we generalise? (definition of goals),
2. When do we generalise? (definition of situation),
3. How do we generalise? (selection of a method and specification of its parameters)

This model has been considered as an effort toward standardisation of the process of
cartographic generalisation.

Development of computer technology, which occurred in the second half of the 20th

century, contributed to numerous attempts to automate the process of cartographic
generalisation. Development of computer-based generalisation origin from the middle of
the sixties (Tobler, 1966). Due to the complexity of the process of cartographic
generalisation, the majority of researches relate to automated reduction of the number of
points that determine a line, by means of utilisation of simplifying operators. The
simplifying operator (A. Iwaniak, 1998) is an elementary transformation of the map
content, which may be expressed by a mathematical formula or by explicit description of
the algorithm. The process of automated cartographic generalisation may be determined as
sequences of such transformations performed with the use of appropriate values of
parameters of a given method.

Five categories of algorithms of reduction of the number of points which create a linear
object are mentioned in professional literature (T. Chrobak, 1999): independent point
algorithm (for example the n-th point method), procedures of local processing (for example
the algorithm of perpendicular distance), unconditional local processing (for example
Reurnann-Witkarn algorithm), conditional expanded local processing (for example Lang
algorithm) and global procedures (Douglas-Peucker: D-P algorithm).

Z. Wang and J. C. Muller (1998) proposed a method of generalisation of linear object
based on analysis of shapes of objects. The basis of this process is recognition and
maintenance of the basic structure of a curve. Analysed shape is considered as a set of
elementary graphical objects (of various shapes, sizes and curvature) which are generalised
by means of operators of deletion, simplification, smoothing and zooming. The majority of
simplification algorithms is based on the concept of the, so-called. characteristic points
(G. Dutton, 1999). This issue has been widely discussed in professional literature; for
example in the opinion of F. Piątkowski (1961), generalisation of linear objects should be
based on the, so-called. generalising points, characteristic for each topographic line - the
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start and end of the line and extreme points of deviation of the curvature. R. McMaster 
(1991) lists a series of disadvantages of utilisation of operators of simplification of lines: 

no functional relation between source and resulting data, 
- lack of a shape optimisation method of open polygons with consideration of 

similarity relations of shapes. 
Such problems may be partially solved by means of a method developed by T. Chrobak 

(1999) - the so-called, elementary triangle method. It allows for selection of characteristic 
points of a topographic line, and also for maintenance of graphical similarity of a simplified 
object to source data, by means of creation new points, depending on the level of complexity 
of a curve. 

Topfer radical law 

This paper presents an attempt to objectivize criteria of determination of the Douglas 
-Peucker (1973) global method of line simplification. The D-P algorithm is based on two 
terms: the basic line and the tolerance zone. The basic line (the basic section) connects the 
starting and ending points of a simplified line and the tolerance zone is a user-defined 
parameter of this method. The wider the tolerance zone is the stronger simplification of 
a shape of a generalised line. The Douglas-Peucker algorithm is determined as follows: 
- orthogonal distance to the basic line is determined for each point of the source line, 
- if all distance are shorter than the assumed tolerance zone, the source line is 

simplified to the basic line, 
- otherwise, the point which is located within the longest distance from the basic line, 

becomes the point of division of the source line into two new lines, 
- for each of them the whole procedure is repeated. 

(SABE) - 15604 points 

2km 

5km 

- 10 km 

- 20 km 

Fig. I. Generalisation of the southern frontier of Poland with the use of Douglas-Peucker algorithm 
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Obtained results depend on the width of the tolerance zone, the number of source points, 
their distribution and density (Fig. 1). Correct generalisation of linear objects performed 
with the use of the global Douglas-Peucker algorithm, requires many initial cartometric 
analyses. Determination of the optimum parameter of the method for the given scale 
interval - the width of the tolerance zone- is not a trivial problem due to non-linear relation 
of this parameter with the length (and shape) of the simplified line (G. Dutton, 1999). The 
attempt of objectivisation of this method consists ofutilisation of the, so-called, radical law. 
T. Topfer (1966) presented a method of cartographic generalisation based on the "radical 
law''. This law is described by the formula: 

(1) 

where: n2 - the number of elements on a resulting map, n, - the number of elements on 
a source map, M2 -denominator of the resulting map scale, M, - denominator of the source 
map scale. 

Topfer has proposed modification of this formula in his later works: 

(2) 

where: x = 1 for point objects, x = 2 for linear objects, x = 3 for surface objects. 

This author stresses that his method may be only used for objectivisation of some 
aspects of quantitative generalisation of topographic maps. Topfer has generalised the 
outline of a plan of Vienna, decreasing the number of sides of an outline, according to 
the specified formula, resulting from modification of the map scale. He stated that 
various coefficients should be applied in the formula, depending on types of generalised 
objects. 

However, acceptance of such an assumption does not solve the problem of objec 
tivisation of selection of values of parameters of generalisation algorithms; it requires 
generation of a set of tables of obligatory values of coefficients, for example 1.2 - for 
administrative borders, 1.4 - for river networks etc. This method also requires the 
introduction of additional assumptions concerning the homogeneity of the structure of 
a river network or a coastline. Therefore it should be stated that methods of global 
''recognition of shapes" do not always lead to determination of appropriate parameters of 
generalisation due to high spatial di versification of source data. So, in the case of objects of 
high diversification of the structure, it is necessary to expand cartometric global analysis by 
a method of local characteristics of a shape and function of such objects (G. Dutton, 1999). 
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Fractal analysis 

Fractal geometry, developed by B.B.Mandelbrot (1982) is one of contemporary 
methods of analysis of the structure of spatial objects. In 1610 Galileo stated that geometry 
is the language of nature and its alphabet consists of triangles, circles and other geometric 
figures. Many shapes, which naturally exist, such as clouds, coastlines or chains of 
mountains, are too complex to be described by means of the language of classical Euclidean 
geometry. Observations natural phenomena, such as river networks or coastlines prove, that 
large-scale structures consist of smaller components, which are similar in their form and 
construction. Such structures, which cannot be described by means of algebraic formulae, 
were defined as geometrically "shapeless" ones for a long time. 

Simple Euclidean shapes loose their structure after magnification. A highly magnified 
circle reminds a straight line without any curvature. However some shapes exist, 
which present complexity of structure independently of the level of magnification. 
Benoit Mandelbrot called them fractals. Let us consider a shape of a developed 
coastline, presented on a map (Fig. 2). If a map at a larger scale is available 
for an arbitrary fragment of the coast, similar distribution of bays and headlands 
may be observed. Smaller bays and headlands occur in every bay; in these bays 
smaller bays occur etc. New details of the structure similar to the image of the 
entire coast are observed at every level of observations (I. Stewart, 1996). 

Fig. 2. A fragment of a coastline of the Great Britain 

Mathematical figure of similar, although strictly deterministic properties, is Koch's 
curve. The Swedish mathematician, Helge von Koch, specified recurrent description of 
generation of this curve as well as its unusual features. Let us assume the unit section (Fig. 
3) as the starting object. Let us divide it into three equal parts and insert an equilateral 
triangle without a base, instead of the central part. The resulting figure occurs in minified 
copies in successive recurrent steps. The same algorithm is applied for each resulting 
section. The final shape of a curve (after infinite number of iteration steps) does not consist 
of any straight sections. This curve has infinite length! 
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Fig. 3. Algorithm of generation of the Koch's curve 

It is obvious, that the natural coastline cannot be modelled by means of this curve 
since the nature does not carve coastlines in the form of equilateral triangles. However, 
the deterministic Koch's curve, as well as the real coastline, have similar structure after 
magnification. The magnified fragment of a coast still looks as a coast cut with bays 
and headlands. This property is called self-similarity. In the case of Koch's curve it has 
explicit nature, in the case of a coastline it has statistical nature. This property is the 
basic property of fractals. The term fractal originates from the Latin adjective fractus 
and the verb frangere, which mean breaking and creation of irregular parts. Following 
Mandelbrot this word is also related to the English term fragmented, so it means both, 
an irregular shape as well as a shape, which consists of parts creating a complicated and 
self-similar structure. 

Another, interesting property of fractals is their dimension, which is understood as 
a coefficient of complexity of the structure, as well as the level of filling of the available 
space. From the topological point of view, a point is a zero-dimensional object, a line is 
a one-dimensional object and a figure, as a square, is a two-dimensional object. 
Homeomorphic transformations (i.e. continuous, mutually explicit transformation, which 
continuously has its reverse transformation), which act with an object, does not change its 
topological properties (Fig. 4). That is· why since topological transformations do not 
preserve shapes of objects. This means that, foe example, a section and the Koch's curve are 
topologically equivalent and characterised by the topological dimension D, = 1. 



198 Robert Olszewski 

Fig. 4. Topological equivalency of flat figures 

Fractal dimensioning 

Therefore, in order to be able to differentiate objects of complex geometry, another 
definition of a dimension is required. Mathematically, the strict definition of a fractal 
dimension of an object (D1) is relatively complicated. However, in many cases, the 
dimension specified by means of a box method, described below, may be sufficient 
approximation of this definition. Let us consider a geometric object located on a regular 
network of the grid dimension equal to s. This is implementation of a classical example of 
Mandelbrot of 1967 - fractal dimensioning of the Great Britain's coastline (Fig. 5). The 
number of grids, which contain (or only touch) figures is marked as N. This number 
obviously depends on the size of squares, which create the network-N(s). Let us repeat this 
procedure several times for various sizes of the grids and present the result on a logarithmic 
diagram. The directional coefficient of the straight of regression, determined by means of 
the least square method, is marked as DP - as a box, fractal dimension. 

I I 
I I 

I I 
' 

I 

' I I 

I 

Fig. 5. Calculation of fractal dimension of the Great Britain's coastline by means of the box method 
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For the Great Britain's coastline DP"' 1.28. Therefore it turns out that the Great Britain's 
coastline has more complex structure than the infinitely crooked Koch's curve (DP 
= log 4/log 3 "' 1.26). When the fractal dimension is determined by means of the box 
method, it is important that the root mean square error of standard adjustment or of the 
determination coefficient R2 is simultaneously calculated. The R2 considerably lower than 
1 (e.g. R2 < 0.9) means that the hypothesis concerning fractal nature of an investigated 
object should be rejected. 

Obviously, tools of fractal geometry are not a universal method of description of 
the nature. B. Mandelbrot (1982) and J. Feder (1988) state that the geometry of the 
nature is the geometry of fractals. However, mathematically "clean" recurrent deter 
ministic fractals do not occur in the nature. Similarly, ideal circles, ellipses or straight 
lines do not occur in the nature. However, the ellipse equation is a good approxima 
tion of a planetary orbit, as the random Koch's curve (in which the direction of 
insertion of an equilateral triangle is randomly specified) allow for coastline modelling 
(R. Olszewski, 2001). 

Random fractals are characterised by statistical self-similarity (each fragment of an 
object is characterised by the same probability distribution function). This means, that 
every fragment is visually similar to the entire figure, with the accuracy of the scale of 
observation (P. Burrough, 1993). 

Fractal dimension D1 of linear and surface objects contains unique information 
concerning metric parameters of such objects. Fractal dimension of an object points how 
metric parameters of an object will change in the process of cartographic generalisation (A. 
M. Berlant, 1998). Linear objects of low fractal dimension (DJ➔ 1) (administrative 
boundaries, road networks) maintain their length during the change of scale. Linear objects 
of high fractal dimension (DJ➔ 2) (meandering rivers, coastlines) rapidly "lose" their 
length in the process of generalisation (B. Klinkenberg, 1992). 

Determination of the value of fractal dimension of mapped objects allows for 
modification of values of parameters of generalisation algorithms (B. Buttenfield, 1989). Q. 
Wang, Y. Hu and J. Wu (1995) attempted to practically apply fractal analysis in the process 
of cartographic generalisation. The authors developed a method of determination of 
parameters of an algorithm of simplification of shapes of a line depending on its fractal 
dimension D.r The objective of this work was to investigate functional or statistical relations 
between "the level of generalisation", i.e. the value of generalisation interval (quotient of 
denominators of the resulting and the source map - M1!M2) and the parameter of the line 
simplification algorithm. However, many important problems of cartographic generalisa 
tion, as for example, the issue of heterogeneity of source data, were not solved by this work. 

Mono-fractal generalisation 

Let us consider shapes of the Polish administrative boundaries and the Great Britain's 
and Island's coastlines (Fig. 6). Source data originates from the European SABE 
Programme (Seamless Administrative Boundaries of Europe). For this data, the geometric 
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accuracy of point location is not higher than 30 m. For example, the Great Britain's 
coastline is composed of 14,770 points (1.41 for each kilometre of the line length). For such 
source data and attempt was made aiming at objective determination of parameters of the 
process of cartographic generalisation. The level of generalisation of a coastline is always 
lower than of other map elements; this line marks the border between two basic areas of the 
Earth's surface: lands and waters. Generalisation of a coastline, river networks and 
hipsometry is often considered as the determinant of the given school of cartography 
(W. Pawlak, 1971). This process is based on geographic analysis of the nature and structure 
of such objects. 

Dfpud = 1, 12 
D,,y,k= 1,09 

D,pud= 1,32 
D,,y,k.= 1,31 

Dfpud= 1,28 
D,cy,k= 1,26 

Fig. 6. Source data 

The general basis of the process of generalisation is hierarchic diversification of 
elements of a set, as well as diversification of internal structure of these elements. Details 
disappear following decreasing of a map scale. Sequence of such disappearing corresponds 
to internal diversification of the structure of simplified objects. 

Every process of generalisation of shapes of lines includes the less important details (at 
the given level). Importance of details is understood as importance of a given detail for 
"geometric similarity" acquired from the shape geometry at the higher level of 
generalisation (W. Pawlak, 1993). This results in unequal or selective neglecting details, 
without disturbing ''the geometry of the higher level shape''. 
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T a b I e I. Fractal dimension of source data 

Dl Dl 
Box method Compasses method 

Island 1.31 (R2 = 0.99) 1.33 (R2 = 0.98) 
Poland 1.12 (R2 = 0.99) 1.09 (R2 =0.99) 
Great Britain 1.28 (R2 = 0.99) 1.26 (R2 = 0.99) 

a/ (Of= 1.28) 

LOG_'.\/"' 2,4789 I· 1,284! • LOG_S 

ccnctanon: r =- .99930 

a) 

LOG_S 

li/ {Uf=l.26) 

LOG_L =- 18,305 - .2575 • LOG_d 
correlation: r-= -,9906 

b) 16.2 

··o 
16.0 

15.8 

15.6 

15.4 

15.2 

!5.U 

14.8 ~--------------------'---.:0...........-J 
' IO li 

LOG_d 

12 13 

Fig. 7. Calculation of fractal dimension of the Great Britains coastline 
by means of box: a - and compasses, b - methods 
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The global Douglas-Peucker algorithm was assumed as the shape generalisation 
method. Fractal dimension of source data was calculated by means of the box method as the, 
so-called, compasses method, with the direct utilisation of properties of the Douglas 
Peucker algorithm (table 1). When the width of the zone of tolerance din the D-P algorithm 
is changed, the resulting image of various shape and length Lis obtained. Presenting results 
of measurements on a logarithmic diagram and calculating the directional coefficient of the 
regression line, we obtain the compasses fractal dimension of an investigated shape: 

L(d) C. d1-0 

where: c - constant 

After finding logarithms of both sides of the equation we obtain: 

Log(L( {d}) = log(c) + (1-D)log(d) 

(3) 

(4) 

Knowing the scale interval, i.e. the quotient of denominators of the resulting and the source 
maps-(M/M1) and the length of the curve on the source map-LP it is possible to calculate 
its length on the resulting map L2, using the formula based on the modified radical Topfer 
law. The exponent x in the original formula (2) may be considered as equivalent with the 
topological dimension of an object, increased by 1: x = D, + l. However, in the opinion of 
J.C. Muller the radical Topfer law should be modified, considering the fractal dimension of 
generalised objects. 

(
M2) l-D1 L =L · - 

2 I M 
I 

(5) 

Substituting L2 to the formula (4) we obtain: 

logL.z-log C 

dz= e i-o (6) 

So the modified radical Topfer law allows for determination of the definite value of the 
parameter of the line simplification method, for example the width of the tolerance zone in 
the D-P algorithm, with the use of the specified scale interval. This method may be 
obviously applied for other line shape simplification algorithms (e.g. Lang algorithm). 
H. Zongyi, Ch. Tao, P. Xiaoping, G. Lizhen (2001) developed the method of generalisation 
of the coastline and the river network based on analysis of fractal dimension of these 
objects. The proposed method allows for simplification of shapes of objects, and also - in 
the case of river networks - for selection of the specified number of elements. 

However, the described method is based on an assumption that such objects as river 
networks or coastlines are homogenous, i.e. they have homogenous spatial structure, which 
is characterised by the constant value of fractal dimension. However, in the case of such 
extensive objects as coastlines, this assumption is false. 
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Basing on analysis of cartometric deformations of lengths and angles of the Australian 
coastline, resulting from generalisation, W. Pawlak (1971) came to the conclusion that the 
type and size of such deformations depend not only on the scale and destination of a map 
and on the characteristic of the cartographic school, but also on spatial location. This author 
notices that deformation sof various fragments of the Australian coast are diversified. For 
the entire Australian coastline reduction of length when transferring from 1 : 5 OOO OOO to 
1 : 80 OOO OOO equals to 64%, reaching 50% for its north-west part and only 8% for its 
south-west part. This diversification is connected with higher development of this part of 
the coastline (Fig. 8). 

D, = 1.03 

Fig. 8. Australian coastline 

The coastline is a spatially heterogeneous object. This means it is impossible to 
perform correct automatic generalisation of the entire shape of the coastline, according to 
unified criteria. For the south-west part, of lower level of terrain relief diversification (D1 
= 1.03) considerably slower degradation and disappearing of details of secondary meaning 
may be observed than in the case of the north-west part, of much higher relief diversification 
(D1= 1.22). This means that the mono-fractal dimension, calculated for the entire object of 
high geographic extension, consist information concerning the "average" complexity of 
the spatial structure only. 

Let us consider now the shape of the Great Britain's coastline (Fig. 9). For the entire 
coast D1equals to 1.28. The fractal dimension of the eastern part of this coast, determined by 
means of the box method, equals to 1.17. For the western part, of much higher level of 
development, it is equal to 1.36. Utilisation of the D-P algorithm with the parameter of the 
width of the zone of tolerance specified by means of formula (6) and the value D1= 1.17 and 
D1= 1.36 allows to obtain two various shapes of the coastline. This leads to the conclusion 
that the fractal dimension of an object is not the sufficient factor of complexity of its 
geomorphologic spatial structure, and, therefore, it is not an objective factor of appropriate 
selection of parameters of cartographic generalisation. 
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Dr= 1.17 

Fig. 9. Generalisation of the coastline of the Great Britain by means of the D-P method 

Multi-fractal generalisation 

Mono-fractal dimension, as the basic measure of fractal analysis, contains information 
on the average level of complexity of the structure of geometric objects and its 
self-similarity. In the case of figures, which are strictly (deterministically) self-similar, DJ 
- by the contrast with the topological dimension D,-is the factor of the level of filling of the 
available space. Deterministic fractals are homogenous, the fractal dimension of an 
arbitrary fragment of a real object, determined by means of a specified method, does not 
depend on an assumed scale of observations (the size) or on selection of this fragment. 

Real objects and natural phenomena, such as geomorphologic forms or natural 
coastlines, are self-similar only in the statistical sense. Stochastic fractals are often 
heterogeneous - and spatially diversified. Their fractal dimension is the function of spatial 
location. The DJ value, calculated for a mountain chain or a river network, depends both on 
the size of the test site as well as on its spatial location. The total fractal dimension of 
figures, which are statistically self-si mi lar, informs about ''average'' properties of an object 
at the assumed scale of observations. Therefore, the obtained value does not correctly 
characterise the entire structure (Voss, 1990). 

Multi-fractal dimensioning is the solution of this problem (Feder, 1988). It consists of 
determination of a set of numerical meters, which contains information on distribution of 
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the fractal dimension for the given structure. Utilisation of multi-fractals means the transfer 
from geometry of sets to investigation of geometric properties of measurements (Falconer, 
1997). It is also the transfer from characteristics of objects, defined by the number to 
functional characteristics (Mandelbrot, 1982). 

In the "classical" fractal approach objects are considered as scaled geometric sets. 
Multi-fractal technique consists of identification of spatial distribution of investigated 
phenomena with the mathematical field of variable density of a measured parameter 
(Pecknold, Lovejoy, Schertzer, Hooge, 1997). In the practice of calculation, determination 
of the continuous spectrum of the numerical range of D1 values consists of determination of 
the finite number of parameters. 

R. Voss ( 1990) proposed to base the numerical procedure of multi-fractal dimensioning 
on the technology of a movable basic field of variable size. The investigated object may be 
expressed in the form of a set of points located in the n-dimensional Euclidean space. For 
such a set, the probability density function may be defined - P(m, L). This function defines 
the probability of occurrence of m points in the basic field of the side (or radius) equal to L. 
The analysis is performed for various scales of observations, specified by the size of the 
basic field L. The function Pim, L) is normalised: 

N 

L P(m, L) = 1 (7) 
m = I 

for all values of L. 
This function may be considered as the standard statistical distribution, and q order 

moments may be defined for this function: 
• The moment of the first order is called the "mass dimension" of the object: 

N 

M(L) = L m · P(m, L) (8) 
m=I 

• In general, the moment of the q order (q =I- O) is expressed by the formula: 

N 

Mq(L) = L m" · P(m, L) (9) 
m=l 

• The moment of zero order defines the entropy of configuration, when the space is divided 
into fields of size of L: 

N 

S(L) = L 1nm · P(m, L) (10) 
m = I 

For fractal objects the following relation occurs: Mq(L) a L0q (for q =I- O) and es<L> a L0 
(for q = O) (R. Voss (1990). The fractal dimension connected with the q order moment may 
be defined by means of the linear regression method on a logarithmic diagram: 
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for q -:I- O (11) 

D = _l_(aS(l)) 
0 loge a1ogl 

The D1 dimension of deterministic fractals, defined basing on moments of an arbitrary 
order is constant and equal to the dimension of self-similarity. The fractal dimension of 
self-similar objects, in the statistical sense, determined by means of the discussed method, 
defines multi-fractal spectrum of dimensions - Dq. Multi-fractal analysis allows for 
decomposing of the initial object into locally "dense" and "loose" areas (Milne, 1996), 
which are characterised by various properties of self-similarity. 

Theoretical methods of multi-fractal dimensioning, described above, were adapted for 
the purpose of analysis of coastlines. The majority of analytical procedures described in 
professional literature (Voss, 1988) may be applied for source data recorder in raster forms. 
In order to determine the multi-fractal spectrum Dq of investigated coastlines, registered in 
the basic GIS system as vector layers, own numerical applications were developed, which 
define ą order moments of the P(m, l) function. 

for q = O (Voss, 1990). (12) 

D1: 
- 1,41 -1,50 
- 1,31 -1,40 

1,21 - 1,30 
1,11 -1,20 
1,00 -1,10 

Fig. I O. Multi-fractal dimensioning of source data 
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/ 

~ of s= 1.32 
D1 m= 1.05-1.42 

Fig. 11. Multi-fractal generalisation of the Island coastline 

Coastlines (continuous linear objects) were substituted by a discrete set of evenly 
located points (every 50 m). For such defined source set the application generates movable 
basic fields in the shape of circles. Utilisation of a circular field results from its optimum 
shape. In the opinion of W. A. Czerwiakow (1978) the circular field, as the most compact 
figure, is the best basis for measurement of values of phenomena, which occur around an 
arbitrary point (a circle centre). 

For every point of measurement the application defines 5 circular fields of such radii, 
that every time the area is increased two times. For each figure the number of model points, 
contained within this figure, is specified. 

For every point of measurement the probability density function may be defined 
- Pim, L). This function defines the probability of occurrence of m points in the basic field 
of the radius L (the scale of observation L = 100 km was assumed for the discussed work). 
The application calculates moments of the function Pim, L) for q = -3, -2, -1, O, 1, 2, 3. On 
this basis the fractal dimension of the coastline is calculated for the assumed scale of 
observation. 
The above procedure was applied for determination of the multi-fractal dimension of source 
data (Fig. 10). Significant part of Polish boundary is characterised by the dimension D1 close 
to 1. The exceptions are: the river boundary along the Bug river and the mountainous 
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watershed boundary. Analysis of geometry of the Great Britain's and Island's coastlines are 
interesting. The northwestern coast of Island and the fragment of the western coast of 
Scotland are characterised by the fractal dimension close to 1.4. They are fragments of 
a coastline, which is well developed and which is under intensive processes of sea erosion. 
Therefore, multi-fractal dimensioning, which defines the local complexity of structure of 
objects, may be a tool of geographic analysis. It is the basis for objective and spatially 
diversified selection of parameters of algorithms of generalisation of shapes of modelled 
objects (Fig. 11). This does not mean the possibility to substitute subjective methods of 
manual generalisation with the automated multi-fractal generalisation, but it allows for 
objective analysis of shapes of objects. This is the solution which may be included in the 
strategy of "enhanced intelligence", proposed by Weibel (1991), an intermediate method 
between utilisation of algorithms with assumptive parameters and expert systems, which 
are currently developed. 

CONCLUSIONS 

Simplification of shapes of lines is one of issues of quantitative generalisation, 
which have been well described in professional literature. Schematisation of a line shape is 
a process, which may be relatively easily expressed by means of an algorithmic formula. 
However, the majority of algorithms considers only geometrical aspects and generalises 
road or river networks, using identical parameters. Many attempts of direct transfer of 
subjective methods of manual generalisation to computerised systems turned to be 
ineffective. However, satisfactory results were obtained for particular operations, related to 
quantitative aspects of generalisation, as, for example, simplification of shapes of lines (A. 
Iwaniak, 1998; T. Chrobak, 1999). Utilisation of fractal analysis is an attempt of 
objectivisation of the process of automated cartographic generalisation by selection of 
parameters of line simplifying algorithms, preceded by analysis of local geometric 
properties of modelled objects. 

The dimension of deterministic fractals DJ (e.g. the Koch's curve) defined based on 
moments of an arbitrary order has the constant value, which is equal to mono-fractal 
dimension of self-similarity for this object. This means that - independently on spatial 
location - every fragment of the Koch's curve has the same geometric properties, equal 
complexity of shapes and fills the available space at the same level. The fractal dimension of 
self-similar objects, defined by means of the discussed method in the statistical sense only (for 
example coastlines) defines multi-fractal spectrum of dimensions - D(q). Extension of 
obtained values of the parameter Dą (1.05 + 1.42) allows to assume that a coastline has 
multi-fractal properties. The mono-fractal dimension - DJ specifies the averaged level of 
filling of the available space. Geometric properties of real coastlines depend on their spatial 
location, size of the analysed site and on the level of cartographic generalisation of source data. 

The terms of fractal geometry, presented above, allow for creation of new descriptive 
and research tools, which have been applied in widely understood Earth sciences since the 
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seventies. Many physical processes were explained by means of fractal analysis, however
fractal geometry has been applied in cartography and geomorphology mainly for the needs
of description of existing terrain forms and not of the process of their generation (Falconer,
1997). Fractals are not the set of completed geomorphologic or hydrographic models, but
they are a set of new ideas, concerning the method of shaping and visualisation of abiotic
components of the natural environment (Klinkenberg, 1992).
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Generalizacja linii brzegowej - próba podejścia multifraktalnego

Streszczenie

Upraszczanie kształtu linii należy do najlepiej opisanych zagadnień generalizacji ilościowej. Schematyzacja
kształtu linii jest procesem, który stosunkowo łatwo można ująć w postaci formuły algorytmicznej. Większość
algorytmów uwzględnia jedynie aspekt czysto geometryczny, generalizując sieć rzeczną i drogową wykorzystując
identyczne parametry. Wiele opisanych w literaturze sposobów bezpośredniego przeniesienia subiektywizacji
procesu automatycznej generalizacji kartograficznej poprzez dobór parametrów algorytmów upraszczania linii,
poprzedzony analizą lokalnych własności geometrycznych modelowanych obiektów.

Powszechnie stosowany w analizie kartometrycznej tzw. wymiar monofraktalny obiektów - Dr, określa
jedynie uśredniony stopień wypełnienia dostępnej przestrzeni. Wymiar mulrifraktalny analizowanych obiektów,
np. linii brzegowych wyznaczany zaproponowaną przez autora metodą, określa multifraktalne spektrum
wymiarów - D(q). Rozpiętość uzyskanych wartości parametru Dr ( 1,05 .,_ 1,42) pozwala sądzić, iż linia brzegowa
ma własności rnultifraktalne. 

Autor zaproponował opracowanie nowych narzędzi opisowych i badawczych, służących zarówno badaniu
lokalnychwlasnościgeometrycznych prezentowanych na mapie obiektów, jak i upraszczaniu ich kształtu
w procesie generalizacji kartograficznej.

Po6epm Onuceecxu 

I'euepanmauns óeperoeoa JIHHHH - nonsrrxa M)'JlbTHcfipaKTaJihHOro nonxona

Pe3IOMe

Ynpouiemre cpopMbl JIHHH 3TO /I)"IUJe scero on11caHHbIH sonpoc KOJlWleCTBeHHOH reHepaJJH3aUHH.
Cxexsaruaauaa cpopMbl JlHHHH 3TO npouecc, KOTOpbIH cpaBHHTeJlbHO nerxo MO)l(eT 6bITb npencrannen
B sune aJJropHTMH'leCKOH cpopMyJlbl. B 60JlblllHHCTBe aJJropHTMOB yYI-ITbIB3eTC51 TOJlbKO 'IHCTO
reoMeTpW!eCKHH acnexr, npOBO.!lR reHepaJJH33UH!O peYHOH H nopoxnoa ceTI-I, HCllOJlb3YR 1-1.aeHTH'IHbie
napar-rerpu. Mnoro 1-13 on11ca1-1HbIX B mrrepa'rype cnoco6os nenocpencraeuuoro nepeuoca cy6beKTHBHbIX
MeTO.!lOB p)"IHOH reHepaJJI-I33UHH B xor-im.ror epmae CHCTeMbl OKa3aJJOCb B MHOrHX CJl)"l351X
He3cpcpeKTHBHbIM. flp11MeHeH11e rppaxram.aoro 3H3.JlH3a aro nom.rrxa o6beKTHBH33UHH npouecca
3BTOMaTH3HpOB3HHOH xaprorparpasecxoa re11epaJ11-13au1111 nyTeM no.a6opa napar-ie.rpon aJJropHTMOB
ynpouieuax JlHHHH, npe.aUJeCTBOB3HHOro aH3Jll13OM MeCTHbIX reoMeTpW!eCKHX Ka'leCTB
Mo.aenHpOBaHHbIX o6beKTOB.

Flonceraecruo npHMeH5leMbIH B K3pTOMeTpHYeCKOM 3HaJJH3Y T.H. MYJlbTHcppaKTaJlbHblH paswer
o6beKTOB - Dr onpeneriaer TOJlbKO ycpennesuyro creneiu, 33llOJlHeHH5l nocrynaoro npOCTp3HCTBa.
Myrn.rurppaxram.nas pa3MepHOCTb 3HaJlH31-IpOBaHHbIX 06beKTOB, u n. 6eperOBOH JlHHHH, onpencrrennas
npencraanemu.n-i 3BTOpOM MeTO.!lOM, onpezienaer MYJlRTHcppaKTaJlbHblH cnexrp pa3MepHOCTl1 - D(q). 
Pasfipoc llOJlyYeHHbIX BeJlI-I'IHH Dr (1,05 1,42) naer B03MO)l(HQCTb cymrn., '!TO óeperoaaa JlHHHR HMeeT
MYJlbTHqlp3KT3JlbHbie CBOHCTBa.

Flpennoxceua paapaóo rxa HOBbIX onucarern.at,rx li !1CCJ1e.aosaTeJlbCKHX 1-IHCTpyMeHTOB,
npeLlH33H3'1eHHbIX K3K nns MeCTHblX HCCJleLlOB3HHH reor-rerprr-recxux CBOHCTB npezicraansexu.rx Ha xapre
06beKTOB T3K H ynpouieau:o lfX cpopMbl B npouecce «aprorpadnorecxof reHepaJJH33UHH.


