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Abstract: The results of analysis of geometrical structure of modular networks are discussd in the
paper. The criteria of technical correctness of such construction were determined. The algebraic
relationship between the network components, e.g. station number, tie points, number of
measurements, was analysed. The determination conditions for a single module and for a surface
network have been introduced considering the existence of elementary modules that are not
internally determined. A comparative test for modular and classical models of network was
performed using a computer program. The results illustrate positioning accuracy achievable with
use of modular networks. The conclusions presented might be helpful when designing surveying
networks.
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1. Introduction

The studies on polar measurements with the free station method were initiated in Germany
at the beginning of the seventies of last century (Geissler and Kern, 1970; Ruopp, 1971).
They had become the basis of the so-called modular networks. The idea of constructing and
calculating such networks was taken from analytical photogrammetry where solving the
block aerial triangulation involves simultaneous transformations of independent models or
aerial photographs (Ackermann, 1970; Ackermann et al., 1970). The concept of modular
networks has appeared in Polish surveying terminology a few years later, e.g. in works of
Gaździcki (1977). It was time when optical instruments (auto-reduction tacheometers) were
commonly used in surveying. To develop a method of quick establishing the surveying
network with simultaneous tacheometrie survey of details was the main goal of introducing
modular networks to surveying. The method, however. did not arise the expected interest
among surveyors in Poland. This was probably because of both: a limited access to
computer technology and a little complicated technical rules G-4. l (GUGiK, 1986) of the
Head Office for Geodesy and Cartography in Poland. On the other hand there is a growing
tendency of setting up the surveying network directly in the field, without using any
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pre-designing stage. Operational points are usually chosen as arbitrary sites and they are 
considered temporary. 

The main goal of this work is the determination of some reliability and determinability 
criteria that characterize the structure of the modular network. The starting point of the 
analysis is to specify theoretical dependences between some geometrical elements 
(observations, number of points) regarding both single (elementary) module and the entire 
network. In order to evaluate the accuracy of positioning by means of modular network, 
a numerical test was performed using a computer program. 

The modular network is a geometric construction with angular and linear elements 
being surveyed. It can be considered as a specific case of a surveying network. The 
surveying network is defined (Lazzari ni et al., 1990) as a set of points marked on the ground 
and measurements, which al low for determination of their positions in a coordinate system. 
In a modular network not all network points are marked. Moreover their function varies in 
the process of establishing the network. 

In the concept of a modular network four types of network points are distinguished (Fig. 1): 
- control points - the points responsible for linking the network to the reference coordinate 

system; originally they are used as target points but not as operational points, 
tie points - the points connecting two or more neighbouring modules with each other; 
they are usually the target points to which the distance and/or direction is measured; for 
the sake of practical use, tie points are frequently fixed on building walls, in particular in 
urban areas; also the details of the first accuracy group, e.g. some elements of territorial 
development network can be used as the tie points, 

- operational points - temporary surveying points; they do not require any marking or 
fixing on the ground: they are not target points, 

- feature points - surveyed points integrated with the structure of the modular network; 
according to technical rules (GUGiK, 1986) of the Head Office for Geodesy and 
Cartography in Poland they should be surveyed in one run together with the remaining 
points of the network. 
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Fig. I. Symbolic scheme of the modular network 
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The general structure of a modular network is shown in Fig. l. The network consists of
single modules (Fig. 2) that are linked with each other. Each pair of two neighbouring
modules should include at least two tie points. The area of a module is determined by the set
of both: tie points and feature points being surveyed from the operational point. If several
modules are tied in row by pairs of tie points then the so-called modular traverse is obtained.
It is quite practical when surveying long linear objects. More detail discussion on modular
network structure is given in literature (Garguła, 1997). Constructions similar to modular
networks are discussed in numerous papers, e.g. (Kadaj, 1975; Nowak, 1995).

/
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Fig. 2. Structure of a single module 

The set of single modules forms a surface modular network (Fig. 3). In practice, the
established modular network is usually irregular with regard to the shape, depending on
arrangement of both tie points and operational points.

® - control point 
• - tic point 
O - operational point 

- feature point 

Fig. 3. An example of a surface modular network 
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2. Defect and determinability of modular network 

To be able to determine coordinates of network points in a given coordinate system on the 
basis of a set of measurements the determinability conditions should be fulfilled. Otherwise 
the network defect takes place. The principles of detection and elimination of modular 
network defects are similar as in classical surveying networks. There are few reasons of the 
network defect. e.g. 
- defective construction of the network that makes impossible to uniquely determine 

coordinates of single points (tie points, operational points) or groups of points (modu !es). 
- lack of control points or their insufficient number. 

To quantify the network defect that corresponds to rank defect of the matrix of normal 
equations (Blaha, 1982; Barriot and Sarrailh, 2003) the following cases are specified: 
- external defect of network ( configuration defect), which equals to the number of lacking 

measurements that are necessary to uniquely determine positions of the network points, 
- internal defect of network (set defect). which equals to the number of lacking geometrical 

elements required to fully link the network with control points. 
The sum of the internal defect U1 and the external one U£ is a global defect U of the 

network 

(1) 

The external defect does not general! depend on a type of the network; it depends on the 
relation between the number of control points used and indispensable number of control 
points. In some cases. e.g. when number of control points used is minimum, the way of 
connection of the network with control points becomes crucial for the solvability of the 
network. An example of a modular network with external defect is shown in Fig. 4. It 
corresponds to the case when UE > O (and also U > O when assuming full internal 
determinability). 
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Fig. 4. Example of the external defect of a modular network 

The defect of the modular network configuration can be caused by a lack of some 
measurements of distances or angles in one or in a few module . Such a case takes place in 
the network shown in Fig. 5. In a modular network, the conditions for the internal 
determinability for particular modules should be fulfilled besides fulfilling the conditions 
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for the internal determinability for the entire network. The global defect for a single
i-module equals to the sum of its internal (U1uJ) and external (U£uJ) defects

(2) 

© - control point 
o - operational point 
• - tie point 

Fig. 5. Example of the configuration defect of a modular network

In this case, the external defect is related to the number of the tie points in a module,
which are common to neighbouring modules. The internal defect of a single (elementary)
module is generally caused by the lack of possibility of surveying of some distances on
a polar site. To eliminate such a defect one should calculate the lacking distances basing on
previously determined coordinates of network points.

Figure 6 shows an example of a module that is not internally determinable. Depending
on the value of the internal defect of i-module U1<;> one deals with a module that is either
determinable or not determinable internally. The problem of internal module deter­
minability is of great importance when calculating modular network (Garguła, 2003).
The presence of indeterminable modules causes the necessity of using special iterative
formulae, already in the stage of determination of approximate coordinates. It is also
worth noting that technical correctness of the network has an impact on its determina­
bility. The correctness consists in relevant configuration of network points and proper
arrangement of measurements. Technical correctness in a modular network will result
m proper construction of elementary modules and their appropriate mutual connec­
tion.

o - operational point 
• - tie point 

Fig. 6. An internally indeterminable module (module defect)
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Full determinability of each module does not ensure determinability of the entire 
modular network (Fig. 7). On the other hand, the fact that some modules are indetermina­ 
ble does not mean that the entire modular network is indeterminable (Fig. 8). Thus the 
whole structure of the modular network affects its determinability. However, one can 
formulate a theorem on network determinability, considering a condition of mutual 
arrangement of tie points. Then the study on network determinability can be reduced to the 
study on determinability of corresponding linear network created by connecting tie points 
(or control points) within each of modules. Every local linear "sub-network" within a single 
module should exhibit determinability (defect) identical with the one of the module; for 
explanation the following example is given. The network shown in Fig. 7 is not 
determinable because its relevant linear "sub-network" (a linear quadrilateral) (Fig. 9a) is 
not determinable. However, a determinable network can be obtained (Fig. 9b) by 
completing its geometric construction with a diagonal line (in fact - with an additional 
module). 
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Fig. 7. An indeterminable network consisting of determinable modules 
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Fig. 8. A determinable network with indeterminable modules 
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Fig. 9. Conversion of an indeterminable network (a) to a determinable one (b) by using an additional module 

The above considerations lead to the following conclusion. If the arrangement of tie 
points allows for setting up of a linear triangular network then the modular network is 
determinable. A comparative analysis like the one presented in the paper can be useful for 
evaluation of local reliability of a network. 

3. Necessary condition for modular network determinability 

The necessary condition for determinability of modular network can be derived using 
widely known inequality (e.g. Lazzarini et al., 1990): 

m?. n (3) 

where m - total number of measurements; n - numbers of unknowns. 
In modular networks the number of unknowns can be expressed as follows: 

n= 2(p,, + p,) - UE (4) 

where p" -total number of tie points; p,-number of operational points; UE-external defect 
of the network. 

Let us assume some features of homogeneity in a modular network, i.e. every module 
contains (in average) q tie points or control points. Then: 

m = Ps (2q - l) (5) 

and substituting (4) and (5) to (3) gives 

Ps (2q - 1) ?. 2(p,,, + p,) - UE (6) 
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The necessary condition for determinable network is the following 

P11 3( UE) q'?.-+- 1--- 
Ps 2 3p, 

(7) 

or 

(8) 

From (7) and (8) following conclusion can be stated. When the number q of tie points in 
the module is minimum, i.e. q = 2, then the minimum number p, of operational points should 
correspond to the total number of tie points p11 multiplied by a factor 2. When q = 3, then 
minimum number of operational points gets reduced to the value corresponding to the total 
number of tie points p"' multiplied by a factor 2/3. In the extreme case, if q ➔ p11, then one 
operational point will be sufficient. 

The problem of choice of q as the parameter of a designed modular network is then 
indicated. As an auxiliary criterion one additional measurement for every point to be 
determined is used. Then 

m = 2p\\ + p,., = 3p,,, 
and using (5) 

p,(2q - 1) = 3p" 

(9) 

(10) 

Hence, for q = 3 as the average number of tie points in a module, the designed number of 
operational points as a function of total number of tie points to be determined is 

(11) 

The mathematical relations shown above can be used for determination (basing on 
reliability parameter) of dependence between total number of tie points and designed 
number of operational points. When the total number of measurements is assumed twice 
larger than the number of unknowns, i.e. 

m = 2n (12) 

then the reliability parameter z can be evaluated (Lazzarini et al., 1990) as 

n 
z=l-­ 

m 
(13) 

With (12) z becomes equal to 0.5. Substituting (4) and (5) to (13) gives 

2p\\ + 2p, - UE 
2 p, (2q - 1) 

(14) 
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what leads to 

(for q = 3) (15) 

In general. for arbitrary q 

4 
Ps=? _q 

(16) 

The example with UE= 3 (free network) illustrates the relation (16) in the form of 
a diagram in Fig. 10. The linear character of the graph indicates the proportional increase of 
designed number of operational points with respect to the number of tie points. 
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Fig. 1 O. Dependence of the number of designed operational points on total number of tie points 

4. Comparative test of modular network and a classical one 

Tie points in a modular network can be treated as the so-called resistant points. Their 
positions (coordinates) are determined basing on the measurements on a polar station 
(auxiliary point). In that case, the operational point is an intermediate geometrical element 
in determining tie points. The same points can be determined basing on a classical network 
of quadrilaterals (without diagonals). It is easy to foresee that the precision of positioning in 
the second case (classical network) will be higher. However, considering the practical 
issues (stations - not fixed and chosen at arbitrary place; less stations), the use of modular 
networks can be more relevant in some cases. The information on the accuracy of position 
determination is very important for the designer of the network. When choosing a network 
type the relation between the accuracy factor (positioning error of a point) and the economic 
one (simplification and shortening time of surveying) can be taken into consideration. 
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a) 

Fig. 11. Error ellipses in test networks: a) classical network, b) modular network 

T a b I e I. Results of accuracy analysis for a model of classical network 

600.0000 200.0000 0.0172 0.0282 0.0330 

2 600.0000 400.0000 0.0172 0.0282 0.0330 

3 400.0000 0.0000 0.0282 0.0172 0.0330 

4 400.0000 200.0000 0.0251 0.0251 0.0355 

5 400.0000 400.0000 0.0251 0.0251 0.0355 

6 400.0000 600.0000 0.0282 0.0172 0.0330 

7 200.0000 0.0000 0.0282 0.0172 0.0330 

8 200.0000 200.0000 0.0251 0.0251 0.0355 

9 200.0000 400.0000 0.0251 0.0251 0.0355 

IO 200.0000 600.0000 0.0282 0.0172 0.0330 

11 0.0000 200.0000 0.0172 0.0282 00330 

12 0.0000 400.0000 0.0172 0.0282 0.0330 

1000 600.0000 0.0000 0.0000 0.0000 00000 

2000 600.0000 600.0000 00000 0.0000 0.0000 

3000 00000 00000 00000 0.0000 \ 0.0000 

4000 0.0000 600.0000 0.0000 0.0000 0.0000 

Average value of mean positioning error 0.0254 

Maximum value of mean positioning error (point No = 4) 0.0355 
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Tab Ie 2. Results of accuracy analysis for modular network 

c.. , 

)Approximate:coorcl,inates 
. 

Mean ---• ·z,, Mea~ positioning error, 
Point No {( V • •. < 

., .111,::c,::f !il t X m, . ,. ·nv,· t,,·:;,;. ,. ''" . 
1 600.0000 200.0000 0.0506 0.0366 0.0625 

2 600.0000 400.0000 0.0507 0.0366 0.0626 

3 400.0000 0.0000 0.0366 0.0507 0.0625 

4 400.0000 200 0000 0.0406 0.0407 0.0575 

5 400.0000 400.0000 0.0406 0.0408 0.0576 

6 400.0000 600.0000 0.0371 00506 0.0628 

7 200.0000 0.0000 0.0366 0.0507 0.0625 

8 200.0000 200.0000 0.0406 0.0407 0.0576 

9 200.0000 400.0000 0.0406 0.0408 0.0576 

IO 200.0000 600.0000 0.0377 0.0506 0.0631 

11 0.0000 200.0000 0.0506 0.0366 0.0625 

12 0.0000 400.0000 0.0506 0.0366 0.0624 

101 500.0000 100.0000 0.0315 0.0315 0.0445 

102 500.0000 300.0000 0.0393 0.0357 0.0531 

103 500.0000 500.0000 0.0315 0.0316 0.0446 

104 300.0000 100.0000 0.0358 0.0394 0.0532 

105 300.0000 300.0000 0.0374 0.0375 0.0530 

106 300.0000 500.0000 0.0355 0.0398 0.0533 

107 100.0000 100.0000 0.0315 0.0315 0.0445 

108 100.0000 300.0000 0.0393 0.0358 0.0532 

109 100.0000 500.0000 0.0315 0.0315 0.0446 

1000 600.0000 0.0000 00000 00000 0.0000 

2000 600.0000 600.0000 0.0000 0.0000 0.0000 

3000 0.0000 0.0000 0.0000 0.0000 0.0000 

4000 0.0000 600.0000 0.0000 0.0000 0.0000 

Average value of mean positioning error 0.0470 

Maximum value of mean positioning error (point No= I 0) 0.0631 

The results of accuracy analysis that was done by using the Geonet program (Kadaj, 
1995) are presented in Fig. 11. Test network models were constructed in a way that allows 
for comparison and accuracy evaluation of both the classical network and the modular one. 
Determination of points numbed 1-12 is assumed dependent on the designed network. The 
task can be solved basing on classical network (Fig. l la), where every point is the 
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operational station. All angles and distances that are possible to measure on a station are 
considered as the measurements. In the case of modular network (Fig. l lb), the operational 
points (numbered 101-109) are chosen in arbitrary place, but in such a way that at each 
point 4 distances and 5 directions to tie points could be measured. Control points (numbered 
1000-4000) are identical for both versions of the network. Thus in both cases the same 
number of measurements is used. Results of preliminary accuracy analysis are compared in 
Table l and Table 2. Mean square errors of point positions and the parameters of error 
ellipses are the criteria of network accuracy. 

Comparison of error ellipses (Fig. 11) leads to the conclusion that the accuracy of point 
determination in modular network is visibly lower (almost by factor 2) than in the case of 
classical network. The analysis of mean square errors (Table l, Table 2) leads to similar 
conclusion. However, it is worth noting that 111 the case of modular network, the average 
value of mean square errors of the positions have been evaluated considering all points 
including operational points (temporary points were not determined). Thus, in the classical 
network 12 points were determined basing on 72 measurements, while in the modular 
network the same number of measurements (72) was used to determine 21 points (12 
temporary points and 9 operational). However, arguments for applying the modular 
network instead of the classical one can be the following: less time and labour consumption, 
and lack of centring errors. 

S. Conclusions 

The following aims have been achieved in this work: 
l. Criteria of correct constructing of single modules of a network have been derived. 
2. Conditions of internal and external determinability for the entire network and for a single 

module have been stated. 
3. Accuracy characteristics for modular network in comparison to a classical one have been 

determined on the basis of numerical tests. 
The following conclusions and remarks result from the analysis performed: 
- Technical value of modular network depends on construction of single modules (e.g. 

number and arrangement of tie points). 
- Network construction should fulfil both determinability conditions for the network and 

internal determinability conditions for every single module. Internal defect of a module 
appears when the number of tie points drops below 2. 

- Every linear local "sub-network" (composed by connecting tie points within a module) 
should exhibit the same determinability factor as the given module. If the linear 
sub-network consists of triangles. then the modular net is determinable. 

- Minimum number of operational points should correspond to the total number of tie 
points multiplied by a factor 2. 

- The average number of tie points in a module may be considered as one of the criteria for 
designing the modular network. 

- Modular network can be used instead of the classical one (with similar number of 
measurements) when simplification of survey and short time of field work become more 
important than high precision of positioning. 
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Streszczenie 

Tematem pracy jest dyskusja nad wynikami analizy struktury geometrycznej pomiarowych sieci modularnych
w aspekcie określenia kryteriów technicznej poprawności tego typu konstrukcji. Podstawą przeprowadzonej
analizy są algebraiczne zależności zachodzące pomiędzy elementami sieci (m.in. liczba stanowisk, punktów
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wiążących, liczba obserwacji). Przedstawiono także warunki wyznaczalności dla pojedynczych modułów oraz dla
sieci powierzchniowych z założeniem istnienia modułów elementarnych niewyznaczalnych wewnętrznie.
W części empirycznej przeprowadzono przy użyciu programu komputerowego, test porównawczy dla modeli
sieci klasycznej i modularnej. Uzyskane wyniki stanowią ilustrację dokładności wyznaczenia położenia punktów
za pomocą sieci modularnej. Przedstawione wnioski mogą być pomocne przy projektowaniu geodezyjnych osnów
pomiarowych.


