
GEO IJEZJ,\ I KART OGRAFIA 

GEODESY i\ :-iD CARTOGR,\PIIY 

Vol 53. !\o 3-4. 200➔. pp. 1-U-157

(E) Polish Academy of Sciences 

The characteristics of the kinematics of the post-mining
dislocation process

Wiesław Piwowarski

Department of Mining Arcus Protection
Academy of Mining and Metallurgy
30 Mickiewicza :\I.. 30-059 Crucow

e-mail: piwow:1r@uci.agl1.cdu.pl 

Received: I April 200-HAccep!ed: 26 November 200.+

Abstract: The paper concerns the analysis of the kinematics of the dislocation process that affects 
surface points within the area of underground exploitation. The problem discussed in the paper is 
the estimation of the changes concerning spatial configuration of a body, forced by underground 
influence, Observations of the real process show that the trajectories indicating the dislocations of 
the medium points are irregular. The deterministic description of the examined process, as a rule, 
generates smooth trajectories of point dislocation. Therefore, as is natural, the analytical 
representation of the process cannot be approximated to measurement results with arbitrary 
accuracy. The entropy has been assumed as the measure of the randomness of a given process. It has 
been shown then that the entropy is not constant. Hence the description of the post-mining 
dislocation process has been presented as a stochastic model. The quantitative results of the 
description have been put to a statistical estimation. 
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l. Introduction

Formal description of physical processes is usually given by differential equations that 
contain certain parameters, characterising physical properties of phenomena and the 
environment (Knothe, 1953; Litwiniszyn. 1956). Identification of a model, i.e. deter­ 
mination of its parameters is based on the results of measurements of a selected process 
attribute. Unavoidable errors of measurement and the "randomness" of discussed processes 
are the reason that those elements usually cannot be expressed by means of the function/(.). 
but they are expressed as a family of functions jj.f.). Therefore, description of the majority 
of real processes leads to replacement of the function f(.) into the random function/~(.) 
(Bugiel and Piwowarski. 2003; Oksendal, 1998). The parameter OJ is sometimes 
interpreted as an element of the probabilistic space. Similar reformulation frequently 
includes additional conditions. The procedure of replacement of coefficients in the 
equations that describe the discussed process with random elements concerns temporal 
evolution of a large number of material particles - the Hamilton equation. Therefore. for 
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particular solutions usually a set of dynamic variables is introduced to the system of 
differential equations. which determine the state of the system at the moment r. when the 
state of the system at the moment 1 = t0 is determined. 

The subject of considerations is an attempt to specify dislocations of material points of 
a rock mass. as a result of forcing, which leads to deformations of its primary structure. 
Therefore the description of the non-stationary process of post-mining dislocations is 
analysed. 

2. Characteristics of the deformation process 

Bodies- in particular solid bodies - present the ability to resist deformations and damages. 
On the other hand. they are elastically and plastically deformed under the influence of 
external forces. Underground exploitation results in changes of the primary conditions of 
stresses within the surroundings of mining areas. and in induction of changes of the field of 
dislocations by rheological properties of the rock mass. In such situation post-exploitation 
voids are tightened. floor layers are often damaged what results in local cavings to the 
exploited space. 

Rheological models of description of the rock mass dislocation field (Kisiel, 1973). 
although coherent from the formal point of view, have many limitations with respect to their 
utilisation. Projections based on differential equations (including rheological models) are 
significantly sensitive to modifications of assumed (idealised) additional conditions 
concerning the medium. Therefore, dislocations and deformations of the rock mass, caused 
by underground exploitation, are most frequently determined with the use of the Knorhe 
geometric-and-i n te grai theory (Knothe, 1953 ). It should be stressed, however. that 
geometric-and-integral theories do not explicitly consider the medium properties. On the 
other hand, those models exhibit the important feature (additiveness), what results in their 
natural use in cases of diversified mining-and-geological conditions. 

In the process of consideration of deformations of a body, the surface of deformation 
is determined. It is a geometric object that, for each point of the deformed body, 
allows for determination of a relative elongation E of an elementary linear object 
surrounding the given point. In general. the deformation surface P0 is the 2nd order 
surface described by the formula: 

3 3 

Po= L,E;.1X7 + 2 L,Ei.J+ix;· X;+1 
i= I i,:;;,J 

where E;.1 - deformations in principal directions. 
In order to describe the level of deformation of an element of a body. dislocations 

of points of a certain subspace should be determined. In general, the vector of 
dislocations. which is the continuous function of co-ordinates (Farin, 1993), is described 
by the relation (1) 

- 13 u= (fJ(U;. Yi) i=I (l) 
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where 11; - components of point dislocations. 
Y; - model parameters. 

The condition of continuity of a body imposes limitations on the components of small 
deformations. what results from the equations of deformations inseparability (Saint-Venant 
equations). Those equations allow for the determination of the components of dislocations 
11; (i= l, 2, 3) when the body occupies the uni-coherent area. In the case of a multi-coherent 
area additional conditions must be met for each of the cross-sections, which are by 
convention traced through a given body, in order to obtain the uni-coherent area in vicinity 
of the conventional cross-section. The rock mass is not a uni-coherent area. what- in formal 
description - usually leads to singularities. It becomes another issue, which is not the 
subject of analysis presented in this publication. 

3. Trajectories of the dislocation process 

Discussion will consider the limit approximation of the results of description of a transient 
field of dislocations. on the basis of applied theories of rock mass movements. with respect 
to the results of measurements. It is not assumed that the limit approximation of the 
representation to the results of measurement is coherent; it is only expected that the 
appropriate measure of approximation does not exceed specified permissible values. 
Definition of another formula of projection of the analysed process will be an implication of 
violation of the permissible measure of approximation. 

The projection (1) requires that operators [ ip] are defined and that parameters 
y; I:~ 1 are specified. Identification of y; is performed on the basis of measurements of the 
process trajectories. Let the equation (2) describe dislocation of a point in time. Let us then 
analyse the solution of the equation (2). 

u (0, x) = f (x) 

l > O, 

:=­ 
Transformation 

(2) 

Fig. I. Evolution of medium configuration within three-dimensional space 
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The function 11: [O. 00] x R" ~ R is called the classical solution of the problem (2) 
(Rudin. 1970), if it fulfils the following conditions: 

1) 11 is continuous in a closed set [O. 00] x R"; 
2) u has continuous derivatives, i.e. :lu,, u,,. u,,x1; (i, j = l. .... n) and fulfils the 

equation (2) in the set (0. 00) x R"; 
3) 11 < 00 and it fulfils the initial condition u(O. x) = f(x); u is limited. 

The theory of differential equations proves that V f: R ~ R continuous and limited. the 
problem (2) has exactly one solution and for 1 > O x E R" we obtain 

u(1,x) = frrr, X - y)f(y)dy for t > O, XE R" 
R" 

where X; = R" is the standard. n-dimensional Lebesgue measure. and 

l ( l ') f(t,x) =--,exp --[x[- 
(4m)' 4t 

(3) 

(4) 

It may be proved that the solution of the equation (2) in the form (3) exists and that it is 
the unique solution. If f: R" ~ R is continuous and limited. then the classical solution exists, 
as it was stated earlier. 

The differential operator in the equation (2) can be expressed as follows: 

a ,, a2 
L=-- L-, 

ar i=I (ax;)- 

After differentiation and V c E R" the identity occurs: 

L(f(t,x - c)) = 0 for t > 0 x E R" 

Then. continuing the formal differentiation of (3) we get 

L11(t,x)= fLf(t,x-y)f(y)dy for t>O, xE R" 
R" 

(5) 

(6) 

Differentiation is performed with respect to time t and two times with respect to spatial 
variables X;. After those operations are completed, all components have the same form: 

Q(x,y) l lx - y 12} --exp - 
fa 4t (7) 

where Q - a polynomial of the maximum second order, a - a constant > O. 
Since the kernel f(t,x - y) has the form (7), the function 11(1,x) is continuous for 1 > O, 

x E R'1. It is important that the function u(t,x) fulfils the initial condition: u(O,x) = f(x). 
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Besides. the integral over/?" aims to zero for 1 ~O.This proves that: lim u(t,x) = f(x) 
1-10+ 

with respect tox. Therefore, from the continuity off results the continuity of the solution in 
points (0. x), x E /?". Moreover, from (3) it results that I u(t,x)I :=:; sup lfl what implies the 
continuity of the solution of the equation (3). 

Since trajectories of dislocations obtained from measurements of the process are 
characterised by deviations around the average value, it is reasonable to analyse entropies of 
the solutions of the equation (2). Let us consider the family of {p1

}1;,0 operators that are 
defined as follows (Lasota, 2002): 

p1f(x) = J.['(t,x - y)f(y)dy ) 

p of(x) = f(x) 
(8) 

Operators p 1 : L 1 (/?") -4 L 1 (/?") are double stochastic operators. For f E L 1 (/?") the 
following relation occurs: 

u(t,.) = f/f l 2 0 (9) 

Let us note, that if f: R" ~ R is continuous and f < 00 then the function utt, x) = p1f(x) is 
a semi-group solution of the initial problem (2). For the equation (2) the strong relation 
between the classical and the semi-group solutions exists (Lasota, 2002), namely: 

lim supllu.(t,.) - uk (t,.)11 L' = O 
J.:-~oo 1;?:Q 

(10) 

The relation (l O) results from the following deduction: continuous functions of compact 
media create a dense set in L 1 (/?"), if f E L 1 (/?"). Let (fd be a series of continuous and 
limited functions ~fin the norm LI and uk (t, x) = v't: (x) and p' operators are stochastic; 
therefore: 

li u(t,.) - uk(t,.) li L' = IIP1f - r'i. li L' :=:; Ilf - h li L' (11) 

The theorem on the increase of entropy will be presented for the needs of the future 
considerations. 

THEOREM (on the increase of entropy): If the function 17: [O, 00) ~ R is continuous and 
concave and the operator p : L 1 (x 1) ~ L 1 (x2) is double-stochastic, then for each density 
f E D(x1), such rhea 17°f E L1(x1). i.e. fulfilling the condition: 

H ,1(!) > -oo (12) 

Vr 2 O entropy H,1(p
1f) is determined. 

On the basis of the above equation, if f E D(/?") and fulfils the condition (12) then 
Vt 2 O for the entropy H n (p'f) the relation (13) occurs 
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H(p''f) 2 H(p''/) for 12 2 t1 2 O (13) 

Besides. for an arbitrary initial function f E D(R") the following estimation exists: 

11 
H(p'f) 2 -(l + ln4nt) for I> O 

2 

Then. estimation of the entropy H(p'f) from the top equals to (Lasota, 2002): 

n M 
H(p'f)::::: -(1 + ln4nt) + - for l > O 

2 4t 

where M - the second finite moment in the form of (16) 

M = f lxl2J(x)cix 
R" 

n (l) H(p'f) = -(1 + ln4nt) + O - ; 
2 I 

[ 
n lx I 2] H(p'f)::::: - I p1f(x)ln[(1,x)dx = - I p'f(x) -21n4n, - 41 dx 

- p'J is the density; therefore 

n l f , H(p'f) ::::'. -ln4nt + - lxl- p'f(x)dx 
2 4t 

R" 

( 14) 

(15) 

(16) 

l ~(r) l If :3 a constant t0 such that: sup : 12 lo < 00 then (14) and (15) may be written as: 
CX(t) 

( 17) 

where /3(t) = O(a(t)) for/~ 00 and the density fis specified by (16). 
The above estimation results (Lasota, 2002) from the following facts: 
- From the integral Gibbs inequality: 

(18) 

(19) 

Basing on Fubini theorem (Rudin. 1970) let us calculate the integral for non-negative 
functions in the equation (19); we get 

flxl2p'f(x)dx= f ff f(l,x-y)J(y)dy)lxl2dx=2tn+M (20) 
R" R" li/'' 
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for 1 "---7 oo the relation (17) will have the form: 

H (p'f) = 0.511l n 1 + 0(1) (21) 

When the components that may be estimated by constants in the equation (17) are 
neglected, it turns out that the entropy of distribution of the field for asymptotic conditions 
(large t) considerably depends on the space dimension. 

Entropy characterises the randomness of a priori results, i.e. before an experiment is 
performed. As it turns out from considerations concerning the process of dislocations, 
generated by the equation (2), entropy differs from zero. what means, that the process has 
the characteristics of the random process. 

Physical conditions mean that the process of dislocations depends on time and on 
mining-and-geological conditions (i.e. on parameters); therefore it may be considered as 
a stochastic process. The process u(r, cv) is a measurable function. i.e. ut], w) : = ¢ with 
¢: Q "---7 U. where Q - the space of events. U - the space of implementations of w E Q; 
u E U. The process u(1. w) : Tx Q "---7 R. 

If the process u(!. w) is a measurable stochastic process, then, following the Fubini 
theorem. it is measurable as a function oft for almost all w E Q; therefore implementations 
(trajectories) are also measurable. 

4. An attempt to describe the stochastic process of post-mining dislocations 

Let us consider the following random process {(,},n 

(, = li (i - t; ~,) (22) 

Reference to the physical process of rock mass dislocations 

Considering the random nature of the process. the equation of the displacement 
trajectory may be written in the form (23): 

1 
d ((t) = k[t, ((t)] + crlt. ((t)] ~(t) 
dz 

((t =O)= O 
(23) 

The first component of the equation (23) is the deterministic description, and the 
second component is the stochastic approach to irregularities of the trajectories of 
the process. 

Following Knothe (Knothe, 1953) let us assume the deterministic part (23) as the 
solution of the linear differential equation (25) 

f ( = f((k; y) 
l ((t = O) = O (24) 
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As it is known from the theory of differential equations. the problem (24) has the unique 
solution: 

((x,r)=e'YJ((k(.c)) (25)

where Śk(x) - asymptotic value of displacement at the moment 1. 
It has been assumed in this publication that (k(.) will be determined according to 

Knothe theory (Knothe, 1953). For x E R2 we have: 

Śk(c;,rk;t) =Di:, ff(t;.J\)-; fJ exp[- n
2
((x1)2 + (x2)2)]dx1dx2) (26) 

i=I l a,\ P1,;1 P 

where f(r ;, J\) - function of time, 
D. J\. p - appropriate coefficients and parameters of the theory, 
P - the trace of projection of the field of exploitation onto a horizontal plane. 

For the discrete implementation the model (23) may be expressed in the following way: 

li

Ś11+I = L,CJ· Ś11-j+I + £11+1
j= I 

(27) 

where £; - the random component, 
c1 - parameters resulting from the solution of the initial equation. 

The relation (27) represents a model of a forecast of a non-stationary process of 
post-mining displacements, resulting from underground exploitation. 

5. Verification of the process projections 

Characteristics of observation lines and underground exploitation 

Two observation lines. the line Nol and the line No 2. located within the "Bogdanka" Coal 
Mine. have been selected for further analyses. Those lines are located over the caving walls 
No O, l. 2 and 3, which are situated within the central part of the mine (Fig. 2), in the coal 
bed 382/2. The average thickness of the exploited layer equals to 2.9 m and the average 
depth of exploitation equals to 690 m. The distance between points of observation lines 
No l and No 2 equals to approximately I O m. 

As a result of identification of parameters of Knothe theory the following values of the 
optimum parameters tg/3 and a have been achieved for the observation lines: 

Line l: tg/3 = 1.65 
Line 2: tg/3 = 1.89 

a= 0.94 
a= 0.79 

mW= 38.6 [mm] 
mW= 32.6 [mm].
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Fig. 2. The scheme showing the development of underground exploitation and the location of measuring points 

Verification covers: 
comparison of projections of the process of dislocations according to Knothe theory and 
description, which considers stochastic disturbances (model), with the results of 
measurements (meas), 
implementation of the analysis of correlation between particular variables, 
the statistical T-test for dependent variables. 
diagrams of the range for statistical parameters, 
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Fig. 3. Distribution of horizontal dislocations determined for the optimum parameters of Knothe theory 
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- the distribution of deviations between the results of measurements and the theoretical
results (theor). The STATlSTlCA n, PL (Slaby and Luszniewicz; 2001) has been used
for that purpose.
The results of a survey and of the modelling of vertical dislocations within the

area of underground exploitation affect are presented in Table l (line 1) and in
Table 2 (line 2).

Tab Ie I. The results of modelling and of dislocation surveying of Line I 

Line l <, ..;,

Point No U1ńn1r U;,.,,,_, o.: U11111x - U,1i,,or Point No Ur11(•(1r U,,,.-1.,s u,,,(/ ... Un,t1,r - Ut1u:1.1r

I' [mm] [mm] [rńmJ [mm] [mm] [mrn] [mm] [mm] 

1210 904 904.0 974 o 1221 295 473.6 428 178.6

3058 900 832.7 973 -67.3 3069 253 342.0 392 89.0

1211 896 908.3 971 12.3 1222 208 396.9 356 188.9

3059 887 878.4 964 -8.6 3070 163 340.9 323 177.9

1212 874 91 l.8 954 37.8 1223 1 J7 288.J 293 171.1

3060 859 883.1 942 24.1 3071 71 242.3 267 1713 

1213 842 903.2 927 61.2 1224 24 189.8 247 165.8

3061 822 905.3 909 83.3 3072 -22 144.0 236 166.0

1214 799 893.8 889 94.8 l225 -69 99.2 2"" 168.2.).) 

3062 775 881.2 867 106.2 3118 -117 -20.8 241 96.2

1215 747 873.1 842 126.1 1226 - 163 13.2 257 176.2

3063 718 868.1 814 150.1 3119 -209 -55 5 281 153.5

1216 687 831 S 785 144.8 1227 -255 -77.5 310 177.5

3064 654 810.6 755 156.6 3120 -301 - 124.2 343 176.8

1217 619 769.4 722 150.4 1228 -348 - 161.0 379 187.0

3065 583 487.2 688 -95.8 3121 -391 - 128.7 416 262.3

1218 544 714.8 651 170.8 1229 -435 -242.0 454 193.0

3066 505 677.4 615 172.4 3122 -477 -230.0 492 247.0

1219 467 652.8 581 185.8 1230 -520 -318.8 530 201.2

3067 426 585.0 544 159.0 3123 -561 -468.1 568 92.9

1220 383 566.0 504 183.0 1231 -600 - 378.6 605 221.4

3068 340 480.5 467 140.5 3124 -641 -324.6 645 316.4
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Tab I c 2. The results or modelling and or dislocation surveying of Line 2 
.. 

" 
·•·· ··• Line I 

U,!Jł·~;-
.. o.: , Uma.r: --:- . Uthror Point No / l/mi,is u.: ul//(/.\"- Uihrnr- Point No 

u-; ul/lflX < 
[1rin1]:{ . [mrn] [mrn] [mm] [mm] i· [mm] [mm] Jmm] 

3010 888 888.0 889 o 3029 142 249.8 146 107.8 

3011 855 894.6 S56 39 6 3030 !OS 2266 112 118.6 

3012 819 1205.2 820 386.2 3031 76 150.1 82 74.1 

3013 7S0 993.0 781 213.0 3032 43 874 51 44.4 

3014 739 837.8 7.JO 98.8 3033 IO 44.8 29 34.8 

3015 699 809.6 701 110.6 3034 -23 - 163.6 34 -140.6 

3016 657 779 O 658 122.0 3035 -54 -76.9 59 -22.9 

3017 614 774.7 615 160 7 3036 -8S 52.0 91 140.0 

3018 570 774.2 572 204.2 3037 - 122 -96.8 124 25.2 

3019 528 710.1 530 182. I 3038 - 156 -2349 157 -78.9 

3020 484 705.0 486 221.0 3039 - 191 -304.1 191 - 113. l 

3021 441 63 l .8 443 190.8 3040 -226 -3508 226 -124.8 

3022 399 591.6 401 192.6 3103 -263 -367.1 264 - 104.1 

3023 361 544.0 363 183.0 3104 -303 -316.3 303 -13.3 

3024 321 467.6 323 146.6 3105 -344 -443.3 344 -99.3 

3025 282 395.9 285 113.9 3106 -387 -720.6 387 -333.6 

3026 245 393.4 247 148.4 3107 -430 -1148.3 430 - 718.3 

3027 209 370.3 212 161.3 3108 -475 - 1726.3 475 - 1251.3 

3028 177 277.1 180 100.I 3109 -520 - 2033.9 520 - 1513.9 

The distribution of theoretical horizontal dislocations (Fig. 3) u; (t = cost, x) is the 
U,,,ror representation based on appropriate equations of Kn o the theory (Knothe 1953 ). 
The results of measurements of vertical dislocations have been used for the determination of 
the optimum parameters of equations. Parameters for horizontal movements have not been 
identified since the equations describing the process are the closed entity. 

Testincr the conditions for residuals between the standard results of measurements , U,,, ns 
and the re resentation. which considers the random com onent of the rocess, U,,,,,,,. 

The vector of residuals E 

df 
C = ull/('{(S - Urht·or 

(i) E= (E1, ••• ,E,,) independent. 
(ii) E(E;) = O, 
(iii) E; - quasi-normal distribution - what results from histograms. 
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Quasi-normality of the distribution of residuals states. that the model, which 
considers the randomness. is the good approximation of a standard (results of surveying 
meas u re men ts). 

.. u 
900 

800 

700 

600 

E 500 .ś
C 400 
Q 
ro 300 u o 
<li 200 
i5 
ro 100 
c
o 

.r:!o
L 

Q umoda/ 

. u meas 
+ utnc' ;;JS - unodo/ 

-300 : 

-400 - 

-500 1 

Fig. 4. Distribution of horizontal dislocations U (x: r = con SI) 

Measures of deviations with respect to the central trend Q; have been determined. The 
following values have been obtained for the results of measurements and modelling of the 
horizontal dislocation: 

(Q'uarit'ne Q;/ 

Q,,, 140 145 

Q,1, 200 198 

Q,1, 260 262 

Q,1, 320 315 

Fig. 5. The diagram showing quantiles Q; 
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Deviations between U11wn, - Umodd and U11,odd- Ur111•10· have been respectively cumulated. 
thus creating the separable series: X; E (- 100. -90 .... , 180), with n; E (1, 2, ... , 12). 

dj 
Therefore it is possible to generate the histogram of the structure: hist(x) = n;. if 
x E {11;-1,11;}. This definition has the following meaning: 

11,, 

f hist(x)dx = l 
li() 

(28) 

The distribution of the x variable in the form: hisr(x) = 11;, referred to the normal 
distribution, presents evident discrepancies. Therefore the interrelation (U11w0" Umodei) has 
been investigated. Appropriate calculations have been performed using the ST A TIS TICA 
TM PL software package; results have been listed in Table 3 for discrete variables. The 
results obtained indicate the existence of the strong interrelation between the variables U111en, 

and Umodei· In the formal sense, the following inequality is satisfied: 
l(U111cn.1• Umode)I::; IIUmcn.,II · IIUmodcill ⇒ u/111'0\' U11111dd are linearly dependent. The values Umea.,, 
and U111,,d,·I are respective vectors. whose co-ordinates are listed in Table l. Parameters of the 
deterministic model U1110,1,,1 have been iteratively determined with reference to the results of 
measurements of vertical dislocations. 

The distribution of horizontal dislocations model (27) U (x; t = const.i (Fig. 4), has not 
been investigated with respect to statistical measures since distortion with respect to the 
measurement results is not important in this case. Adequate statistical measures have been 
determined for the field of vertical dislocations for the line l (Table 3, Fig. 5). The line 2 can 
be analysed in a similar way. 

T a b I e 3. Statistical measures 

Variable 

u/1/rOS 

Umod,•I 

U,l1i-or 

U111()(1,.,- U,111-(), 

!NTERRELA TION MA TRIX 

1 

Umm/el uc: Um,.m. - U11indrl U111odrl - u,hn1r 

where U111eos - results of measurements of the horizontal component of dislocations, 
Umodet - results of modelling of the horizontal component of dislocations, with 

consideration of randomness, 
U11,""' - results of modelling of the horizontal component of dislocations, in 

accordance to Knothe theory. 
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The T-test for dependent sam_12.l~ 

Tab Ie 4. Results of Student's Tues: 

Standard 
Number of 

Variable Mean 
deviation 

measurements Differences T Probability p 
N·. 

U,,,,.,,,. 203.07 39636 44 

Um,.,,h,f 202.59 :;94_50 - 04S 0.105 0.9 I 7 

U,,wn,· - U,,w,,, I S.70 410.19 - 15.93 1.65S 0.105 

UIIW//S - U,,,,,,,,., 1.29 2436 - 

U,,,,,,,,.,- U,licor 15.45 52.86 - -14.16 - 1.670 O [02 

6. Results of the analysis 

The paper presents analysis of the kinematics of a non-stationary process of horizontal 
dislocations of points of a measuring line, within the areas of the influence of mining 
exploitation. The analysis concerns particular mining-and-geological conditions. The 
discussed model ling procedure of a non-stationary process is not limited with respect to the 
geometry of the exploitation area that generates the field of dislocations. The standard of the 
horizontal component of mining dislocations is created by the results of measurements of 
dislocations of points within the entire time interval of observations {t0, ... , tk}- 

Usually the accuracy of description of non-stationary vertical dislocations, based on the 
deterministic projection - Knothe theory considering the development of underground 
exploitation - is not a fully acceptable approximation in a sense of the mean error measure, i.e. 
11111 > m,, """"P'' The relation 11111 > 11111 accept (non-requested relation) is confirmed by the results of 
estimation of the entropy of the process of dislocations. Variability of the entropy of the process, 
resulting from the formal analysis, creates arguments concerning the stochastic nature of the 
process of dislocations. It turns out from analysis that strong limitations exist within the obtained 
accuracy of deterministic description with respect to results of measurements. 

Therefore an attempt was made to build a formula, which would consider the random 
irregularity of the process. It has been assumed that the investigated process is 
a combination of a deterministic component and a random value. Deviations around the 
average value have been estimated on the basis of the chronologically ordered set of the 
results of measurements of dislocations, assigned to a corresponding moment: 

{11; (r0). 11; (11), .... , Il; (r")} ~£{u; U11+1)lu; (to). U; (t1), .... , U; (t11)}. 

Numerical results of modelling of the kinetics of horizontal dislocations with use of the 
modified formula within an area of the developing underground exploitation have been 
performed in the form of diagrams. Qualitative characteristics of the description are 
satisfactory in this case. Statistical evaluation of projection as well as appropriate measures 
and the T-test are the basis for drawing the conclusions, that the modified formula of 
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description of the investigated process is a better approximation to the results of
measurements than deterministic models.
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Streszczenie

Praca dotyczy analizy kinematyki procesu przemieszczeń punktów powierzchni terenu w obszarze oddziaływania
eksploatacji podziemnej. Rozważono problem określenia zmian konfiguracji przestrzennej ciała wymuszonych
wpływem eksploatacji podziemnej. Obserwacje realnego procesu wskazują, że trajektorie przemieszczania się
punktów ośrodka cechuje lu nieregularność. Z kolei opis deterministyczny badanego procesu generuje z reguły
gładkie trajektorie przemieszczania się punktu. Z natury więc nie można przybliżyć odwzorowania procesu,
z dowolną dokładnością do wyników pomiaru. Analizowano więc entropię procesu charakteryzującą losowość
danego zjawiska. Wykazano. że entropia nic jest stała. Przestawiono więc próbę opisu danego procesu jako
złożenie odwzorowania deterministycznego i procesu losowego.


