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Abstract: The paper presents a general concept of geodetic observations adjustment based
on application of the Edgeworth' series and the principle of an alternative choice. The
Edgeworth' series approximates the empirical distribution of measurement errors and gives
an opportunity to modify the empirical characteristics of errors distribution. The method
of estimation used is based on the principle of the alternative choice. Its natural robustness
for outliers was the basis for newly created method called PAC-E. The paper presents the
algorithm and some numerical tests that were carried out to compare the results of the
proposed method with the results of the classical LS adjustment. Special attention was paid
on the effect of non-zero excess and robustness of the proposed method.
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1. Introduction 

One of the main directions in development of theory of adjustment of geodetic ob­
servations is the elaboration of a method that can utilise information on probabilistic
properties of measurement errors and also be robust for outliers. Analyses of error
properties and their structure were the basis for development of new models of geo­
detic network. Former research suggest the existence of some anomalies concerning
main parameters in empirical distribution of measurement errors. Some researchers
(e.g. Szacherska, 1974) point out non-zero values of empirical excess that cannot be
neglected and can influence final results of adjustment, especially variance estimators.
Thus it is important to analyse observation data and then to apply the most suitable
mathematical model of empirical measurement errors.

Some authors (Cymerman, 1991; Dumalski, 1995; Dumaiski and Wiśniewski,
1994; Dumalski and Wiśniewski, 1995) proposed to replace the set of possible distri­
butions Ra of measurement errors with an approximating function that could represent
a density function. The Edgheworth' series, which describes the distribution of empi­
rical measurement errors, could be such a function. This probabilistic model gives an
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opportunity to consider some anomalies of empirical distribution of geodetic observa­
tions. Those distribution anomalies usually concern anomalies of the parameters such
as the expected value, empirical asymmetry and the excess. It is a well known fact
that if the maximum likelihood method ML (notified earlier as NW) is used then the
obtained estimates depend on the assumed distribution of measurement errors. Thus
a new method, called ML-E (notified earlier as NW-E), was created by combining
the ML method with the Edgeworth' series. It is an alternative for the earlier propo­
sed methods: PD (notified earlier as RP) (Wiśniewski, 1986) and ML-MND (notified
earlier as NW-MRN) (Cymerman, 1991), where some Pearson's or modified normal
distributions were taken as the probabilistic models of measurement errors.

Robustness for outliers is also a very important problem of adjustment of geodetic
observations, especially when data acquisition and measurement processes are highly
automated. Methods elaborated so far, can be divided into two groups: the passive
methods and the active methods (Kamiński, 1990). Passive methods are based on
some statistical tests that can detect and eliminate outliers. Active methods eliminate
not the outliers themselves but their influence on adjustment results. Those methods
can be divided into three subgroups:
- methods formulated on the basis of probabilistic models of measurement errors,
- methods with modified characteristic functions,
- other robust methods.

Methods like PD or ML-MND should be classified to the first subgroup. Robust­
ness of those methods is the effect of target function modifications and is obtained
just "by the way". Huber's, Hampel's or Danish methods are good examples of the
methods belonging to the second subgroup. Their robustness is obtained by modifi­
cation of other characteristic functions, usually a weight function. The third subgroup
consists of methods, e.g. PAC or MAD (Minimum Absolute Differences method) that
cannot be classified to the first two subgroups.

Most of the presented active methods can also be classified as those belonging
to the class called M-estimation (the class especially well known in mathematics).
M-estimators are derived from characteristic function modification, usually with strong
relationship to influence function (Hampel et al., 1986). The problem of robustness
for gross errors related to the M-estimation class was the main task of many pa­
pers of the last decades (e.g. Yang, 1991; 1997; Caspary and Hean, 1990). Some
authors (Xu, 1989; Yang, 1994) tried also to generalize robust methods to the case of
observations-dependent.

The robust method based on the principle of an alternative choice (PAC) is par­
ticularly suitable for adjustment of observations when gross errors are present. The
specific structure of its target function, that consists of distributions of measurement
errors, made possible to create a new method of adjustment called PAC-E (Dumalski
and Wiśniewski, 1994). This paper presents new development of the PAC-E method
and shows its general practical properties.
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2. The principle of an alternative choice (PAC) 

The principle of an alternative choice was proposed by Kadaj (1978, 1980). The basis 
of it was the assumption that likelihood of different values of the parameter vector X 
(when vector x is observed) is a sum of conditional probabilities P(x/X), contrary to 
the classic method of maximum likelihood where this likelihood is a multiplication 
of those conditional probabilities. Generally, when measurement errors are mutually 
independent, the presented idea leads to the following adjustment criterion 

Il 

_L f (c:i (X))= max 
i=! 

(1) 

where f (c:,. (X)) is a density function of measurement error distribution or any propor­ 
tional function. 

The criterion ( 1) can be treated as the consequence of a choice of the best sum 
of random events from the infinite solutions of the X vector and the correction vector, 
which values are of course dependent on X. Interpreting the criterion, the X vector 
is chosen within the interval of largest number of observations, aside from the fact 
whether there is any outlier or not. This is an advantage of the PAC method as compared 
to the classic maximum likelihood method, where the "multiplicational" character 
of the likelihood function disturbs adjustment results when the observational vector 
includes any outlier. Therefore, the following form of the target function of the PAC 
method was assumed: 

Il 

LPAC (X) = Id* f* (c:i; (X)) 
i=! 

(2) 

l £2 ] where d* is a positive coefficient, and f* (c:1; (X)) = exp --'-2 is a function propor- 
2cr,. 

tional to the normal density function. 
The basic properties of the PAC method, including robustness to outliers, issue 

from properties of the characteristic functions, i.e. influence, weight and rigour func­ 
tions (Cymerman, 1991). According to (2) and taking the form of j*(c:) one can express 
as follows the component of the target function 

{AC (c:) = d* exp[-~] 
2cr2 

(3) 

the influence function 

d[PAC(c:) C: [ £2 l i(JPAC (c:) = --- = - exp -- 
de: cr2 2cr2 

(4) 
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the weight function 

dfPAC (t:) 1 l £2 J WPAC (t:) = --- = - exp -- 
de? 2a-2 2a-2 

and the rigour function 

cf2fPAC(t:) 2 2 l 2 J UPAC (t:) = ---- = (l" - £ exp _ _!__ 
de? a-4 2a-2 

The rough graphs of the listed functions are shown in Figure 1. 

(5) 

(6) 

objective function /PAC(:;) influence function .l ({!PAC(:;) 

-0 ~►

weight function wPAC (::;) 
rigour function + u PAC (c) 

, ----- cg 

-0 CT 

Fig. I. The characteristic functions of the PAC method 

Analysing graphs in Figure 1, according to Kadaj's classification (Kadaj, 1988) it 
can be written that 

(i) WPAC (t:) (cw ⇒ zPAC (t:) EK_, 
(ii) UPAC (t:) (O when s E (-oo;-a-) U (a-; oo) ⇒ zPAC (t:) E K~2). 

It is worth to point out that for each s i- O stands wPAC (t:) < ( wPAC (O) =cw). It means 
that the PAC method is a robust estimation for the whole domain of s. 

3. Edgeworth' series 

The Edgeworth' series is usually given in the following form 

(7) 
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where JE (c) is a function that represents the Edgeworth' series, JN D (c) is the nor­
mal density function, and y1, y2 are the coefficients of asymmetry and the excess,
respectively. The series (7) can also be presented in the form

(8)

where

1 
h2 = 24 Y2g4,

1 
hs = -144YIY2g7,

and

g3 = 3c - c3, g4 = 3 - 6c3 + c4, gs= -l5c + l0c2 - c5,

gG = -15 + 45c2 - 15c5 + c6, g7 = 105c - 105c3 + 2lc5 - c7, (9)
g9 = -45c + 1260c3 - 378c5 + 36c6 - c9.

4. The PAC-E method 

The original form of the target function of the PAC-E method is as follows

n 

LPAC (X)= Ł !ND (c;; (X)) 
i=I 

(10) 

The normal density JND can be replaced by another density function. If additionally
A

one assumes R - RE then

n

LPAC-E (X) = I JE (c,; (X)) 
i=) 

(11) 

where Ro- [0a, X] ER means a distribution belonging to the set R = {Ra : o: E Ta} of
potential probabilistic distributions of measurement errors (0o-, X are their parameters)
(Wiśniewski, 1986). The distribution is represented by the density function and the

relation r (c) ~ JE (c).
The properties of the presented method can be derived from the properties of its

characteristic functions. Detailed graphs of those functions were presented in (Dumal­
ski, 1995).

Now, let us recall some general conclusions. The graphs of all characteristic func­
tions are generally similar to the graphs shown in Figure 1 (the original PAC method).
Thus the properties of the presented method should be identical with the ones of the
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PAC method, at least in terms of robustness. The effect of excess is more significant 
when the influence of observations in the closest vicinity of the centre of distribution 
on adjustment results is larger. That effect decreases when the error gets bigger. ln turn, 
non-zero values of asymmetry make distribution asymmetric but it does not affect the 
robustness of the method. 

5. Adjustment procedure 

The adjustment procedure that applies distributions different than normal can generally 
be presented in the following way (Kadaj, 1980) 

x = AX + E: - the functional model of a geodetic network, 
x ~ Ra [0a, X] - the probabilistic model, (12) 

n 

max LPAC (X) = max ~ f': (X; x;) - the adjustment criterion stemmed from the PAC 
X X U 

i=! 

method application, where 
x E M(n,IJ - the vector of measurements or residuals, 
A E M(n,u) - the design matrix, 
X E M(u, 1 l - the vector of parameters of the functional model of a network, 
£ E M(n,I) - the vector of measurement errors, 
M(a,b) - the set of matrices of dimensions (a, b), 

Assuming that 

the adjustment algorithm changes to the form 

(14) 

Any optimisation method, e.g. Newton's method, can be used to find such X E Xo 
(Xo is a set of possible solutions) that satisfies m:xLPAC-E (X) = LPAC-E (x:). The 
following scheme shows the procedure for Newton's optimisation method 

Xl+I = X1 +r[Q(Xj)r1 g(X)1 
cu+i) = x - Axu+ii (15) 

where T is a coefficient that improves the convergence of the method, g (X) is the 
gradient of the target function, i.e. 
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The Hessian of the same function is as follows 

Q (X) = 82 LPAc-E (X) = -A To (X) A 
ćJXćJXT

( 16) 

(17) 

where D (X) is a diagonal matrix with the following elements on the diagonal 

The sufficient condition for iPAC-E (x) = m:x LPAC-E (X) is that the Hessian Q (X) 

is negative definite. This is true when the matrix D (X) is positive definite. Taking into 
consideration the rigour function of the PAC-E method, it is easy to find out, that not 
every element of that matrix is positive. Thus the Hessian must be checked whether 
it is negative or positive definite during the iterative process. That test can be done 
automatically when applying the Banachiewicz-Cholesky scheme. When many outliers 
occur in the intervals where the rigour function has negative values, sometimes the 
Hessian will become positive definite in the very first iterative steps. For that reason 
Kadaj (1980) proposed to enlarge the interval of positive values of the matrix D (X) by 
overstating the standard deviation. It can be done especially in the first iterative steps, 
while later on, the proper value of er should be restored. 

6. Numerical tests 

The PAC-E method was tested using the following, simulated level network (Fig. 2). 
The set of observations was divided into two parts to test how distribution ano­ 

malies affect adjustment results. Each part contained four fixed and five new points 
(being under adjustment); one fixed and two new points were common for both subsets. 
The same value of the standard deviation er but different excess y2 were assumed for 
the subsets. Zero value of y2 was assumed for the first subset while for the second - 
observations were simulated in such a way that y2 -:f. O. Four variants of observations 
were generated with the parameters shown in Table I. For all variants it was assumed 
that y1 = O (no asymmetry) and that all theoretical heights of the points were equal to 
zero. 
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Fig. 2. The tested network 

Table I. 

Variant l 2 3 4 

a= 3.06 a= 3.06 a= 3.06 (J= 3.06 
Subset I Y2 = 0.00 Y2 = 0.00 Y2 = 0.00 Y2 = 0.00 

Subset II a= 3.06 a= 3.06 a= 3.06 a= 3.06 
Y2 = 0.50 Y2 = I.Ol Y2 = 1.51 Y2 = 0.29 

The tests were aimed to compare the results of the least squares adjustment (LS) 
with the results of the proposed PAC-E method and to find how the non-zero excess 
affected the results. The analyses were based on the comparison of the following norms: 
JJx - x'], = 11x112 (taking X1 = O) - including all the network points; [[X1ll2 - including 
the points from the subset I; [Jx11Jl2 - including the points of the subset II; and [Jxp[l2 - 
including the points belonging to both subsets. The PAC-E method seemed very robust 
to outliers, thus an additional test was carried out to confirm this property. Each subset 
was contaminated firstly with one and later with two outliers. Those errors were placed 
in observations h36 (subset Il). The test results are shown in Table 2. 

The values of the norms [[xll2 and J[x11Jl2 are shown in Figures 3, 4, 5, 6, 7 and 
8 to complete the analyses. 

Robustness of the method is especially visible in Figures 9, 10, 11, 12, 13, 14, 15, 
and 16. 
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Table 2. 
,, Parameter vector X !IXll 2 IIX1ll2 IIXuJI 2 l!Xp\12 Variant Method ' 

X.1 X.2 X.3 X.4 Xs x.6 . x~ fs 
No LS --0.26 --0.84 0.25 2.10 0.22 --0.41 0.58 1.17 2.68 2.28 1.37 0.33 

outliers PAC-E -1.02 --0.86 -0.34 1.54 0.12 --0.37 O.SO 0.60 2.24 2.04 0.86 0.36 

LS --0.26 --0.83 0.29 2.11 0.26 --0.17 0.66 3.38 4.15 2.28 3.45 0.39 
r1= o I outlier 
Y2 = 0.5 PAC-E -1.02 --0.86 --0.34 1.54 0.12 --0.36 O.SO 0.77 2.29 2.04 0.99 0.36 

LS --0.26 --0.82 0.33 2.11 0.30 0.04 0.73 5.39 5.91 2.28 5.44 0.44 
2 outlie. 

PAC-E -1.02 --0.86 -0.34 1.54 0.12 --0.36 O.SO 0.89 2.33 2.04 1.08 0.36 

No LS 0.48 --0.02 --0.33 1.35 --0.35 0.55 0.17 I.li 1.96 1.44 1.25 0.48 
outliers PAC-E 0.43 0.30 0.13 1.14 --0.11 0.22 0.08 0.43 1.36 1.26 0.49 0.17 

LS 0.48 -O.Ol -0.30 1.36 --0.31 0.78 0.25 3.18 3.61 1.44 3.28 0.43 
r1= o I outlier 
Y2 = 1.01 PAC-E 0.43 0.30 0.13 1.14 -O.I I 0.23 0.09 O.SO 1.39 1.26 0.56 0.17 

LS 0.49 0.00 -0.26 1.36 --0.27 1.00 0.32 5.26 5.56 1.44 5.36 0.37 
2 outlier 

PAC-E 0.43 0.30 0.13 1.15 -O.I I 0.24 0.09 0.59 1.43 1.26 0.64 0.17 

No LS --0.31 --0.99 -0.42 2.06 --0.48 0.39 1.64 --0.64 2.99 2.30 1.80 0.64 
outliers PAC-E -1.07 1.04 -0.74 1.45 --0.92 0.28 0.99 -0.40 2.63 2.08 I.IO 1.18 

Yi= O 
LS --0.31 --0.98 -0.38 2.06 -0.44 0.61 1.71 1.43 3.32 2.30 2.31 0.59 

I outlier 
Y2 = 1.51 PAC-E -1.07 -1.04 -0.74 1.45 --0.92 0.27 0.99 -0.44 2.64 2.08 I.Il 1.18 

LS --0.30 --0.97 -0.35 2.06 --0.40 0.83 1.79 3.50 4.66 2.30 4.02 0.53 
2 outliers 

PAC-E -1.07 -1.04 -0.74 1.45 --0.92 0.26 0.98 -0.49 2.65 2.08 1.13 1.18 

No LS --0.26 --0.83 0.31 2.11 0.26 --0.23 0.68 087 2.58 2.28 1.13 0.41 
outliers PAC-E -1.01 --0.83 -O.IO 1.55 0.21 --0.35 0.65 0.37 2.20 2.03 0.83 0.10 

r1=0 
LS --0.26 --0.82 0.35 2.11 0.30 -O.Ol 0.75 2.95 3.83 2.28 3.04 0.46 

I outlier 
Y2 = 0.29 PAC-E -1.01 --0.83 -O.IO 1.55 0.02 --0.35 0.65 0.46 2.21 2.03 0.87 O.IO 

LS --0.25 --0.81 0.39 2.11 0.34 0.21 0.82 5.02 5.60 2.28 5.09 0.52 
2 outliers 

PAC-E -1.02 --0.86 -0.99 1.53 --0.12 --0.27 0.66 0.04 2.16 2.03 0.71 O.IS 
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(Subset Il, variant y1 = O; y2 * O; l outlier) 
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Fig. 7. Values of IIXll2 
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Fig. 8. Values of IIX11ll2 
(Subset Il, variant y1 = O; y2 * O; 2 outliers) 
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Fig. 11. Values of 11x112 
(variant YI = O; Y1 = I.O I) 
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(variant YI = O; Y1 = 1.51) 
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Fig. 15. Values of 11x112 
(variant YI = O; Y1 = -0.29) 
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(Subset li, variant YI = O; y2 = 0.5) 
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(Subset Il, variant YI = O; y2 = I .O I) 
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(Subset li, variant YI = O; Y2 = 1.51) 
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Fig. 16. Values of 11Xull2 
(Subset li, variant YI = O; Y2 = -0.29) 
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The next test was carried out using the simulated network shown in Figure 17. 
The set of observations was generated in such a way that the asymmetry was non-zero 
(so was the excess). 

El fixed points (!, ,VII) 
O new points (1, ,6) IV 

Rys. 17. The test network of geometrical levelling 

Table 3. 

Parametervector .X Ci IIXl'2 Variant Method ., 
X1 ; X2. x3 x4 Xs x/ 

No LS 0.54 0.53 0.57 O.Ol 0.31 0.82 1.29 

outliers PAC-E -0.20 -0.26 -O.IO -0.56 -0.53 -0.30 0.89 
Yi= 0.45 LS 0.89 0.61 0.60 0.08 0.65 2.45 2.82 
Y2 = 1.00 1 outlier 
a= 3.00 PAC-E -0.18 -0.26 -O.IO -0.55 -0.51 -0.39 0.91 

LS 1.16 0.65 0.55 -0.18 -0.64 3.75 4.07 
2 outliers 

PAC-E -0.21 -0.26 -0.09 -0.53 -0.39 -0.19 0.77 

o+--~-~--~-~ 
o 2 
Number of outliers 

Fig. 18. Influence of outliers on adjustment results (LS and PAC-E methods) 
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Table 4. 
;. .. i 

Parameter vector X >:i .. . \ variaiit Meth\.xi c '._' . ux112 11xl; IIX11ll 2 11:x;n 2 
., _:Xi X2 x3 x. Xs x6# .-x, Xs x 

i 

No outliers LS -0.26 -0.84 0.25 2.10 0.22 -0.41 0.58 1.17 2.68 2.28 1.37 0.33 

LS -0.26 -0.83 0.29 2.11 0.26 -0.17 0.66 3.38 4.15 2.28 3.45 0.39 
I outlier 

Y1 = O 
LS. -0.26 -0.84 0.25 2.11 0.22 -0.39 0.59 1.33 2.75 2.28 1.51 0.33 

Yi= 0.5 LS -0.26 -0.82 0.33 2.11 0.30 0.04 0.73 5.39 5.91 2.28 5.44 0.44 
2 outlier 

t.s' -0.26 -0.84 0.26 2.11 0.22 -0.38 0.59 1.44 2.81 2.28 1.60 0.34 

No outliers LS 0.48 -0.02 -0.33 1.35 -0.35 0.55 0.17 I.Il 1.96 1.44 1.25 0.48 

LS 0.48 -O.Ol -0.30 1.36 -0.31 0.78 0.25 3.18 3.61 1.44 3.28 0.43 
1 outlier 

Yi= O 
LS. 0.48 -O.Ol -0.33 1.35 -0.35 0.56 0.18 1.19 2.01 1.43 1.33 0.48 

Y2 = I.Ol LS 0.49 0.00 -0.26 1.36 -0.27 1.00 0.32 5.26 5.56 1.44 5.36 0.37 
2 outliers 

Ls· 0.48 -O.Ol -0.33 1.35 -0.35 0.57 0.18 1.28 2.37 1.43 1.41 0.48 

No outliers LS -0.31 -0.99 -0.42 2.06 -0.48 0.39 1.64 -0.64 2.99 2.30 1.80 0.64 

LS -0.31 -0.98 -0.38 2.06 -0.44 0.61 1.71 1.43 3.32 2.30 2.31 0.59 
I outlier 

Y1 = O Ls· -0.31 -0.99 -0.42 2.06 -0.48 0.39 1.64 -0.69 3.01 2.31 1.82 0.64 

Y2 = 1.51 LS -0.30 -0.97 -0.35 2.06 -0.40 0.83 1.79 3.50 4.66 2.30 4.02 0.53 
2 outliers 

LS' -0.31 -0.99 -0.42 2.06 -0.48 0.38 1.64 -0.75 3.02 2.31 1.84 0.64 

No outliers LS -0.26 -0.83 0.31 2.11 0.26 -0.23 0.68 0.87 2.58 2.28 1.13 0.41 

LS -0.26 -0.82 0.35 2.11 0.30 -O.Ol 0.75 2.95 3.83 2.28 3.04 0.46 
I outlier 

Yi= O 
Ls· -0.26 -0.83 0.32 2.11 0.26 -0.23 0.68 0.94 2.63 2.28 1.18 0.41 

y, = 0.29 LS -0.25 -0.81 0.39 2.11 0.34 0.21 0.82 5.02 5.60 2.28 5.09 0.52 
2 outlier 

LS' -0.26 -0.83 0.31 2.11 0.26 -0.24 0.67 0.78 2.54 2.28 1.06 0.40 

(Ls· - the iterative way) 

The theoretical point heights were assumed equal to zero, so X' = O and E {h;} = O. 
Every observable was "measured" four times to generate the set including 96 elements 
and having the following values of the parameters -y1 = 0.45, -Y2 = 1.00 and t5 = 3.00. 

The test was similar to the previous one, i.e. it was aimed to compare LS and 
PAC-E adjustments with one or two gross errors added to the set of observation to 
confirm robustness of the method. The norms IIXll2 were also used to analyse the 
results (Table 3). 

The PAC-E method provided better results; the norm values of the PAC-E method 
were smaller than the respective ones of the LS method in all variants. The results 
of the LS adjustment were also worse when some outliers occurred. That confirmed 
well known property of the LS method. All observations, including outliers, were 
treated in the same, equivalent way. On the contrary, the PAC-E method exhibited its 
robustness for gross errors (like the classic PAC method) and ignored outliers during 
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the adjustment process. To facilitate the analyses, some norm values are shown in
Figure 18.

Considering the weight function, the LS method can be classified as a neutral esti­
mation (Kadaj, 1984), thus not robust for gross errors. However, applying the iterative
way of the LS solution, i.e. eliminating observations that are suspected to be outliers,
the final results of the adjustment should not differ from those obtained on the basis
of observations free of gross errors. Data in Table 4 containing the results of the LS
adjustment without gross errors and the results of iterative LS method (with outliers
eliminated) confirms that statement.

7. Conclusions 

The presented tests are the basis for the following conclusions. The use of additional
information from the probabilistic model of measurement errors improves final results
of adjustment (Table 2 proves the statement clearly). Let us remind, that the test
network was divided into two parts differing in the value of excess coefficient y2. 
The application of the proposed method improves the results (values of the norms
11Xnll2 are lower), especially for the second subgroup where y2 * O. Excess coefficient
influences the results in the similar way like weights do in the classical method of
adjustment, i.e. measurements with the smallest errors are of bigger importance.

The proposed method is also robust for outliers (similarly to the original PAC
method). The outliers, that occurred in the second subgroup, make the adjustment
result of LS method much worse (higher values of IJXnll2). On the contrary, PAC-E
method "ignored" the outliers, thus it proved its robustness. Also values of the norm
listed in Table 2 confirm the robustness (they are all close to one another, including
11Xnll2 norm). This property is an effect of weight function modification that imputes
lower weights to identified outliers. Thus, if one combines PAC method with another
probabilistic model, such a new method should also be robust to outliers.
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Streszczenie 

W niniejszej pracy ukazano koncepcję metody wyrównania sieci geodezyjnych z zastosowaniem szeregów
Edgewortha i Zasady Wyboru Alternatywy. Szereg Edgewortha jest aproksymantą opisującą empirycz­
ne rozkłady błędów pomiarów. Pozwala ona na uwzględnienie w zadaniach wyrównawczych istotnych
anomalii dotyczących podstawowych parametrów empirycznego rozkładu prawdopodobieństw błędów ob­
serwacji geodezyjnych. Jako metodę estymacji zastosowano Zasadę Wyboru Alternatywy. Na szczególną
uwagę zasługuje jej naturalna odporność na obserwacje odstające, co dało podstawę opracowania me­
tody ZWA-E. W pracy przedstawiono algorytm rozwiązania oraz testy numeryczne. Celem testów było
porównanie wyników wyrównania metody ZWA-E z metodą NK, a w szczególności ustalenie wpływu nie­
zerowych wartości ekscesu na wyniki wyrównania oraz wskazanie na naturalną odporność nowej metody
na obserwacje odstające.


