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Power system oscillation damping controller design:
a novel approach of integrated HHO-PSO algorithm

Ramesh DEVARAPALLI and Vikash KUMAR

The hybridization of a recently suggested Harris hawk’s optimizer (HHO) with the tradi-
tional particle swarm optimization (PSO) has been proposed in this paper. The velocity function
update in each iteration of the PSO technique has been adopted to avoid being trapped into local
search space with HHO. The performance of the proposed Integrated HHO-PSO (IHHOPSO)
is evaluated using 23 benchmark functions and compared with the novel algorithms and hybrid
versions of the neighbouring standard algorithms. Statistical analysis with the proposed algo-
rithm is presented, and the effectiveness is shown in the comparison of grey wolf optimization
(GWO), Harris hawks optimizer (HHO), barnacles matting optimization (BMO) and hybrid
GWO-PSO algorithms. The comparison in convergence characters with the considered set of
optimization methods also presented along with the boxplot. The proposed algorithm is further
validated via an emerging engineering case study of controller parameter tuning of power system
stability enhancement problem. The considered case study tunes the parameters of STATCOM
and power system stabilizers (PSS) connected in a sample power network with the proposed
IHHOPSO algorithm. A multi-objective function has been considered and different operating
conditions has been investigated in this papers which recommends proposed algorithm in an
effective damping of power network oscillations.

Key words: Harris hawk optimization, Power system stabilizers, STATCOM, FACTS,
particle swarm optimization

1. Introduction

1.1. Motivation and research background

The process of optimization involves the search for the best possible solution
for a specific problem with certain constraints. These optimization problems can
be the real-world problem from the field of engineering, economics, business, pat-
tern recognition, control objectives, image processing, filter modelling etc., that
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do not have any proper accurate solution [1]. Modern metaheuristic algorithms
are capable of dealing with robust optimization as it offers good computation
power, and they do not require substantial computation time. Some of the algo-
rithms with their inspiration of design has been listed in Table 1. Most of the
proposed algorithms needs to address the following two main issues, i.e. No free
lunch theorem (NFL) and determination of exploration and exploitation process.
The NFL theorem suggests logically that a particular algorithm cannot be suited
for solving all the optimization problem [2]. This means that a specific algorithm
may be best suited for a given set of problems but can fail for other problem sets.
The other issue of an algorithm is that it must have a balanced exploration and
exploitation process. It is evident that too much exploitation leads to a trapped lo-
cal optimum, whereas excess exploration leads to unsuitable results hence proper
balance between the two is necessary [3].

Table 1: Few optimization algorithms and their inspiration

Algorithm Inspiration Year
Simulated Annealing (SA) [7] Metallurgical annealing 1983
Genetic Algorithm (GA) [8] Evolution 1975
Particle Swarm Optimization (PSO) [9] Bird flock 1995
Artificial fish-swarm Algorithm (AFSA) [10] Fish and Bird flock 2003
Ant Colony Optimization (ACO) [11] Ant colony 1996
Termite Algorithm (TM) [12] Termite colony 2006
Artificial Bee Colony (ABC) [13] Honey bee 2006
Wasp Swarm Algorithm (WSA) Movement of Wasps in nature 2007
Monkey Search (MS) [14] Monkey climbing process 2007
Imperialistic Competitive Algorithm (ICA)
[15] Imperialistic competition 2007

Biogeography Based Optimizer (BBO) [16] Study of biological organisms in terms
of geographical distribution 2008

Firefly Algorithm (FA) [17] Social behavior of fireflies 2009
Group Search Optimizer (GSO) [18] Animal searching behavior 2009
Gravitational Search Algorithm (GSA) [19] Law of gravity 2009
Fireworks Algorithm (FA) [20] Explosion behavior of firework 2010
Bat Algorithm (BA) [21] Echo location behavior of bat 2010
Fruit Fly Optimization (FFO) [22] Fruit foraging behavior 2012

Flower Pollination Algorithm (FPA) [23] Pollination process of flowering
species 2012

Krill Herd (KH) [24] Herding behavior of Krill 2012
Dolphin Echolocation (DE) [25] Echolocation ability of Dolphin 2013
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Table 1 [cont.]

Algorithm Inspiration Year
Grey Wolf Optimization (GWO) [26] Hunting behavior of grey wolves 2013
Black Hole Optimization (BHO) [27] Black Hole phenomena 2013
Mine Blast Algorithm (MBA) [28] Mine bomb explosion 2013
Dragonfly Algorithm (DA) [29] Swarming behavior of dragonflies 2015

Moth Flame Optimization (MFO) [30] Movement of Moths around a light
source 2015

Henry Gas Solubility Optimization (HGO)
[31] Governed by Henry’s gas law 2015

Ant Lion Optimizer (ALO) [32] Hunting nature of ant lion 2015
Lightening Search Algorithm (LSA) [33] Natural phenomena of lightening 2015
Artificial Algae Algorithm (AAA) [34] Living behavior of microalgae 2015
Virus Colony Search (VCS) [35] Virus infection and diffusion 2016

Shark Smell Optimization (SSO) [36] Ability of shark in finding its prey by
smell sense 2016

Multi-Verse Optimizer (MVO) [37] Multiverse theory 2016
Whale Optimization Algorithm (WOA) [38] Social behavior of humpback whale 2016

Crow Search Algorithm (CSA) [39] Intelligent food hiding behavior of
crows 2016

Dolphin Swarm Optimization Algorithm
(DSOA) [40]

Mechanisms of dolphin in detecting,
chasing and preying on swarms of sar-
dines

2016

Sine Cosine Algorithm (SCA) [41] Fluctuating behavior of sine and cosine
function 2016

Thermal Exchange Optimization (TEO) [42] Newtons law of cooling 2017
Grasshopper Optimization Algorithm (GOA)
[43] Swarming behavior of grasshopper 2017

Electro Search Algorithm (ESA) [44] Orbital movement of electrons around
the nucleus 2017

Spotted Hyena Optimizer (SHO) [45] Social behavior of spotted hyena 2017
Human Behavior-Based Optimization
(HBBO) [46]

Human behavior is the main source of
inspiration 2017

Lightening Attachment Procedure Optimiza-
tion (LAPO) [47] Lightening attachment process 2017

Salp Swarm Algorithm (SSA) [48] Swarming behavior of Salp during nav-
igating and foraging in oceans 2017

Mouth Brooding Fish Algorithm (MBFA)
[49] Lifecycle of mouth brooding fish 2017

Butterfly-Inspired Algorithm (BIA) [50] Mate searchingmechanism of butterfly 2017
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1.2. Literature review

The recent development in computational intelligence has opened a gateway
to a number of nature-inspired optimization algorithm which imitates the natural
or biological behaviour of the organisms in the environment [4]. In the literature,
nature-inspired algorithms are basically classified under the categories of the
evolutionary algorithm [5], swarm intelligence and physics-based algorithm [4].
The evolutionary algorithms are based on the evolutionary process of a natural
organism [6]. It randomly generates a set of a possible solution and runs a num-
ber of iterations with self-improvement of the best-fitted solution. Evolutionary
algorithms are often known as genetic algorithms. They are relatively slow at ap-
proaching the best possible solution. The main concept is based on the Darwin’s
theory of evolution i.e. evolutionary process is slow as it consists of a series of
small steps starting from a bad position and moving through moderate state it
reaches to the best state. All the evolutionary algorithms follow a similar pattern
where a population of individuals is in an environment with a limited amount of
resources. Under this competitive condition natural selection process begins (i.e.
survival of the fittest). Two important ideas that forms the basis of evolutionary
systems are: (i) Recombination and mutation to create diversity in the population,
thereby promoting novelty. (ii) Selection scheme that brings the mean quality of
solutions in the population after each mutation. Genetic Algorithms do not need
any gradient information of solutions as it evaluates the individuals based on
fitness and hence are suitable for such real-life problems with unknown search
space.

In the case of swarm intelligence algorithm, they utilize the information of the
search space to proceed with the algorithm. Some of the recent optimizing algo-
rithm based on this concept are PSO, CS, DA, GWO, ACO, MFO ADC, etc. All
Swarm intelligence-based algorithms use some of the natural behaviour of herds
or group of animals encoded in their algorithms where the heard acts a population
or search agent to reach to a best possible solution in the specified range Similarly,
the moth flame algorithm is inspired by the movement tendency of moths in a full
moon night or around a particular light source [51]. SeyedaliMirjalili andAndrew
first proposed grey wolf optimization in 2013. The fundamental idea behind the
algorithm is based on the hunting technique and social hierarchy of grey wolves
in their pack. GWO gives exceptional results for unimodal functions. They have
been successfully implemented on the real engineering problems such as aligning
multiple molecular sequences, Maximum power point tracking of the PV system,
Design of plug type triggers for composite square tubes etc. Ant system: Opti-
mization by colony of cooperating ants, proposed by Dorigo and Colorni in 1996
is inspired by food searching behaviour of some species of ant. These ants produce
a particular pheromone which helps them to mark some favourite spots on the
ground and on the path, which is followed by all the members of the colony [52].
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Almost all physics-based algorithms are inspired by the physical laws of
the universe, such as GSA, MVO, CSS etc. Gravitational Search Algorithm
(GSA) is based on the law of gravity which states that “Every particle in the
universe attracts every other particle with a force which is directly proportional
to the product of their masses and inversely proportional to the square of their
distance”. Here the search agents are objects (collection of masses), and their
mean of masses are considered as the performance index [19]. Another physics-
based optimization algorithm is Multi-Verse Optimization (MVO). It is based
on the concept of cosmology (white hole, black hole and wormhole). Here it
is believed that Big Bang creates a new universe. Similarly, multiple big bangs
create multiple universes. These universes can intersect, collide and interact with
each other. The concept of white hole and black hole is utilized for exploring
search space, and the concept of wormholes is used exploiting the search space
and solutions are the objects of the universe [37].

Metaheuristics are inspired by simple concepts of nature and hence this
simplicity allows us to hybridize two or more metaheuristics to improve the
computational ability of the existing ones. The modification usually includes
improvements in certain parameters of the algorithm by merging together, two
or more individual algorithm such as HSO-PSO, GWO-PSO etc. Any two or
more algorithms are combined to form a hybrid in a high-level or low-level
or co-evolutionary form as homogeneous or heterogeneous. For instance, PSO-
GSA [53](Particle Swarm Optimization Gravitational Search Algorithm) is a
combination of PSO [9] and GSA [19]. These two algorithms are hybridized to
combine their individual advantages into one. The exploration ability of PSO is
merged with the local search ability (exploration) of GSA to get the best possible
outcome. Another good example of a hybrid algorithm is PSO-GWO [54].

1.3. Contribution

Based on the literature, the main contribution of the paper is to suggest
an integrated HHO-PSO (IHHO-PSO) algorithm to improve the capability of
HHO algorithm in solving the complex optimization problems with the aid of
well-known PSO algorithm. HHO is a population-based gradient-free optimiza-
tion algorithm. It mimics the cooperative behaviour and hunting style of Harris
hawk. HHO is usually implemented in designing problems of industrial goods
such as Three bar truss design, Pressure vessel design, Welded beam design,
Multi-plate disc clutch brake, rolling element bearing design [55], parameter
identification of photovoltaic cells [56] etc. Eberhart and Kennedy proposed
Particle Swarm Optimization in 1995 for the optimization of continuous non-
linear functions. The movement of organisms inspires it in a group or swarms;
however, the algorithm was initially built on the bird flocking tendency or fish
flocking [9]. PSO has a convincing exploitation ability but poor exploration abil-
ity (required for a good starting position), on the other hand HHO algorithm has
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a high exploration ability hence it gives a good starting point. Therefore, these
two unique features of both the algorithm are fused together to obtain a hybrid
HHO-PSO.

1.4. Paper organization

The proposed algorithm has been demonstrated on the benchmarkmathemati-
cal functions using statistical analysis. A real-time electrical power system stabil-
ity enhancement problem has been considered and solved the optimal controller
parameter selection using the proposed algorithm. The whole work is organized
as follows: Section 2 demonstrates the proposed algorithm and is realized on
the benchmark functions in Section 3. Section 4 gives the case study design, and
Section 5 investigates the performance characteristics obtained from the proposed
controller on it. The conclusions, references and other system parameters have
been listed in the end.

2. IHHO-PSO algorithm

2.1. HHO overview

Ali Asghar Heidari, Seyedali Mirijalili and his team proposed Harris hawk’s
optimization in 2018 which is mainly used to solve single objective optimization
problems efficiently. HHO is basically a gradient-free population-based optimiza-
tion algorithm. The central idea of HHO is based on the cooperative hunting be-
haviour of Harris hawk bird, especially their chasing style of prey which is called
surprise pounce or also known as ‘seven kill’ strategy. Their hunting pattern also
dynamic in nature and changes based on the physical scenario and the type of
the prey. This intelligent cooperative behaviour of Harris hawk while hunting is
mimicked mathematically to develop the optimization algorithm. These activities
are mathematically modelled as exploring the prey, exploitation, and transition
from exploration to exploitation as follows.

Exploration phase
The exploration of the prey by Harris’s hawk can be modelled by considering

that the hawks will wait for the prey at different locations to detect the prey as
there is possibility that the prey may not be visible instantly. Here Harris hawk
are the candidate solution and the best solution is the intended prey. The initial
position of an individual hawk depends either arbitrary or based on the other
hawks in their group as given in (1).

X (iter+1) =



Xarb(iter)−r1��Xarb(iter)−2r2X (iter)�� q ­ 0.5,(
Xprey(iter)−Xm(iter)

)
−r3 (LB + r4(UB − LB)) q < 0.5,

(1)
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where X (iter) position vector of a hawk for the iteration ‘iter’ with arbitrary
values of r1, r2, r3, r4 and q within (0, 1). UB and LB are the upper and the lower
bounds of the randomly selected Harris hawk. The average hawk position Xm
obtained for N number of hawks can be expressed as,

Xm(iter) =
1
N

N∑
i=1

Xi (iter). (2)

As the exploration phase of hawks made based on different trails, they will
identify the prey. As the energy of the prey is being lowered in the process
of escaping, hawks will move to the exploitation phase. This transition can be
mathematically modelled as in (3). The escaping energy of the prey with an initial
energy of E0 can be modelled as

E = 2E0

(
1 −

iter
Max_iter

)
. (3)

Exploitation Phase:
Based on this phase, Harris’ hawks execute the surprise attack or seven mur-

ders known as to attack the desired prey perceived at the earlier phase. Therefore,
it often tries to escape as hazardous situations. Assume r is the opportunity for
prey to escape successfully (r < 0.5) or not to escape successfully (r ­ 0.5) prior
to the attack of surprise. This reward, |E | ­ 0.5, a mild siege occurs, as well as
|E | < 0.5, hard besiege happens.

The escaping energy with E ­ 0.5 is defined as soft besiege and E < 0.5 is
defined as hard besiege. The position update for the cases are given as,

X (iter + 1) =



∆X (iter) − E��J Xprey(iter) − X (iter)�� |E | ­ 0.5,

Xprey(iter) − E |∆X (iter) | |E | < 0.5,
(4)

∆X (iter) = Xprey(iter) − X, (5)

where, J = 2(1 − r5) with random value of r5 in (0„ 1).
The exploitation phase is further improved in obtaining the optimal solution

based on the opportunity ‘r’ factor. It further utilizes the levy random walk
function for the soft/hard besiege, which is explained in detail in [57]. Hence,
HHO has a proper balance between the exploratory and exploitative tendencies
on the problem with multiple variables. As it offers a variety of chasing and
escaping pattern, such a dynamic pattern is quite helpful in solving a complex
engineering problem.
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2.2. IHHO-PSO overview

However, there is a possibility of being stuck in local optima that can be
resolved by introducing a swarm-based approach to the HHO algorithm. In this
research, an integrated HHO-PSO strategy is used to stay away from the weakness
that happened by the individual utilization of the strategy. The position update of
the hawks in each iteration can be upgraded by using (6), (7).

Xnew(iter + 1) = X (iter) + Vel(iter + 1), (6)
Vel(iter + 1) = w · Vel(iter) + C1 · r6 · (X (iter) − Xnew(iter)) , (7)

where Vel represents the velocity vector, w is the inertia weight parameter, C1 is
the optimization parameter and r6 is a random value in [0, 1].

3. Realization of IHHO-PSO on benchmark functions

The proposed IHHO-PSO algorithm is tested on the 23-benchmark systems
as considered by many researchers [58]. These functions are given in Table 2,
Table 3, and Table 4. Unimodal functions have unique global optima, so it serves
as a validating mechanism for the exploitation and convergence ability of the

Table 2: Unimodal benchmark functions

Function Formulation Dim, limits

Sphere f2(x) =
n∑
i=1

x2
i 30, [–100, 100]

Schwefel 2.22 f2(x) =
n∑
i=1
|xi | +

n∏
i=1
|xi | 30, [–10, 10]

Schwefel 1.2 f3(x) =
n∑
i=1

*.
,

i∑
j=1

x j
+/
-

2

30, [–100, 100]

Schwefel 2.21 f4(x) = max
i
{|xi |, 1 ¬ i ¬ n} 30, [–100, 100]

Rosenbrock f5(x) =
n−1∑
i=1

[
100 (xi+1 − xi)2 + (xi − 1)2

]
30, [–30, 30]

Step f6(x) =
n∑
i=1

[xi + 0.5]2 30, [–100, 100]

Quartic f7(x) =
n∑
i=1

ix4
i + random (0, 1) 30, [–1.28, 1.28]
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algorithm [59]. Now, the multimodal functions are usually known to have a
number of local optimum values [60]. So, it is expected that the algorithm must
avoid the local optima to give a suitable global optimum value [4]. Hence these
set of benchmark functions serves as a testing mechanism for the exploration
capability of the proposed algorithm. Here ‘Dim’ represents the dimension of the
given function, and ‘limits’ represents the upper and lower boundary of the given
function. In the paper, we have used other well-known novel and nature-inspired
optimization algorithms such as GWO, HHO, BMO and GWOPSO to compare
the computational ability of our proposed integrated HHO-PSO algorithm.

Table 3: Multimodal benchmark functions

Function Formulation Dim, limits

Schwefel f8(x) =
n∑
i=1
−xi sin

(√
|xi |

)
30, [–500, 500]

Rastrigin f9(x) =
n∑
i=1

[
x2
i − 10 cos (2Πxi) + 10

]
30, [–5.12, 5.12]

Ackley
f10(x) = −20 exp *.

,
−0.2

√√
1
n

n∑
i=1

x2
i

+/
-

− exp
(
1
n

∑n

i=1
cos (2Πxi)

)
+ 20 + e

30, [–32, 32]

Griewank f11(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos
(

xi
√

i

)
+ 1 30, [–600, 600]

Penalized

f12(x) =
Π

n

{
101 sin (Πy1)

+

n−1∑
i=1

(yi − 1)2
[
1 + 10 sin2 (Πyi+1) + (yn − 1)2

] 


+

n∑
i=1

u (xi, 10, 100, 4)

where yi = 1 +
xi + 1

4

and u(xi, a, k, m) =



k (xi − a)m xi > a
0 −a < xi < a
k (−xi − a)m xi < −a

30, [–50,50]

Penalize 2
f13(x) = 0.1




sin2 (3Πx1) +
n∑
i=1

(xi−1)2
[
1+ sin2 (3Πxi+1)

]

+ (xn−1)2
[
1+ sin2 (2Πxn)

]



+

n∑
i=1

u (xi, 5, 100, 4)

30, [–50, 50]
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Table 4: Fixed-dimensional multimodal benchmark functions

Function Formulation Dim, limits

Foxholes f14 =

*.......
,

1
500
+

25∑
j=1

1

j +
2∑
i=1

(
xi − ai j

)6

+///////
-

−1

2, [–65.536, 65.536]

Kowalik f15 =

11∑
i=1


ai −

x1
(
b2
i + bi x2

)
b2
i + bi x3 + x4



2

4, [–5, 5]

Six-hump
Camel-Back f16(x) = 4x2

1 − 2.1x4
1 +

1
3

x6
1 + x1x2 + 4x4

2 2, [–5, 5]

Branin f17(x) =
(
x2−

5.1
4π2 x2

1+
5
π

x1−6
)2
+10

(
1−

1
8π

)
cos x1+10 2, [–5, 5]

Goldstein-
Price

f18(x) =
[
1+ (x1+x2+1)2

(
19−14x1+3x2

1−14x2+6x1x2

+3x2
2

)]
×

[
30+ (2x1−3x2)2

(
18−32x1+12x2

1

+48x2−36x1x2+27x2
2

)]
2, [–5, 5]

Hartman 3 f19(x) = −
4∑
i=1

ci exp *.
,
−

3∑
j=1

ai j
(
x j − pi j

)2+/
-

3, [–5, 5]

Hartman 6 f20(x) = −
4∑
i=1

ci exp *.
,
−

6∑
j=1

ai j
(
x j − pi j

)2+/
-

6, [–5, 5]

Shekel5 f21(x) = −
5∑
i=1

[
(X − ai) (X − ai)T + ci

]−1
3, [–5, 5]

Shekel7 f22(x) = −
7∑
i=1

[
(X − ai) (X − ai)T + ci

]−1
3, [–5, 5]

Shekel10 f23(x) = −
10∑
i=1

[
(X − ai) (X − ai)T + ci

]−1
3, [–5, 5]

For the analysis, 500 iterations have been considered. All the commonly used
parametric values such as dimensions and limits are specified in Tables 2– 4.
30 individuals have evaluated each benchmark function runs for all the algo-
rithms which are used for the comparison purpose. The best, worst, average and
standard deviation values are obtained and recorded in Table 5. For the Unimodal
test functions, the obtained values suggest that the proposed IHHO-PSO is com-
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Table 5: Statistical results obtained by the proposed algorithm on the benchmark functions

GWO HHO BMO GWOPSO HHOPSO

F1 Avg 9.38E–28 9.27E–96 0 2175.333885 1.71E–08
SD 1.36E–27 4.31E–95 0 7820.382047 9.23E–08
Best 5.52E–30 7.52E–117 0 2.55E–17 1.45E–115
Worst 6.68E–27 2.36E–94 0 34228.90122 5.06E–07

F2 Avg 9.30E–17 4.79E–52 5.29E–284 60815.92213 6.57E–05
SD 6.67E–17 1.34E–51 0 333085.8782 0.000341101
Best 9.18E–18 1.49E–58 8.88577637208627E–310 2.58E–09 6.53E–59
Worst 3.45E–16 6.10E–51 1.23E–282 1824389.529 0.00186946

F3 Avg 9.73E–06 1.06E–74 0 7416.94505 1.25E–08
SD 2.00E–05 5.77E–74 0 17450.61714 6.84E–08
Best 8.50E–09 1.48E–104 0 7.91E–05 1.87E–96
Worst 9.32E–05 3.16E–73 0 69639.88128 3.74E–07

F4 Avg 6.82E–07 2.59E–49 2.30E–289 16.75227517 2.30E–06
SD 7.21E–07 9.62E–49 0 24.1735725 1.25E–05
Best 4.92E–08 1.12E–54 9.63E–307 0.000116378 2.19E–54
Worst 2.98E–06 5.07E–48 5.21E–288 73.82112816 6.87E–05

F5 Avg 27.27335576 0.02023205 27.69896842 343944.1047 0.469940134
SD 0.832761929 0.03078866 0.305122303 1560701.985 1.734166842
Best 25.8456032 0.000143426 27.07196761 25.84274208 0.000341258
Worst 28.77927397 0.122537827 28.50526373 8545455.147 7.133649141

F6 Avg 0.71632315 0.000144625 0.528164743 1026.450969 0.01146362
SD 0.45463702 0.000163886 0.400459422 3706.041672 0.057157555
Best 5.50E–05 1.21E–06 0.06195173 2.45E–05 2.01E–06
Worst 2.262682171 0.00051295 1.512015995 17549.82006 0.313061157

F7 Avg 0.002388392 8.14E–05 3.79E–05 0.397959654 0.000651567
SD 0.001209963 8.50E–05 3.62E–05 1.289519237 0.002859843
Best 0.000813406 8.04E–06 7.19E–07 0.003197709 3.82E–06
Worst 0.006020867 0.000437832 0.000190649 6.88743368 0.01578097

F8 Avg –5905.414991 –12561.90943 –1636.212471 –6905.629111 –12528.95676
SD 627.8338251 39.70150355 90.61695289 1490.791933 216.2809718
Best –7436.358621 –12569.48662 –1761.298102 –8932.098162 –12569.48639
Worst –4790.938625 –12351.72276 –1415.605532 –2315.740777 –11383.84671

F9 Avg 3.814339421 0 0 88.72394821 7.03E–08
SD 3.812314812 0 0 99.16770416 3.85E–07
Best 5.68E–14 0 0 10.22186414 0
Worst 13.77399361 0 0 339.4267782 2.11E–06
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Table 5 [cont.]

GWO HHO BMO GWOPSO HHOPSO

F10 Avg 1.08E–13 8.88E–16 8.88E–16 5.759560777 1.24E–07
SD 2.28E–14 0 0 6.045699968 6.80E–07
Best 7.55E–14 8.88E–16 8.88E–16 7.23E–10 8.88E–16
Worst 1.86E–13 8.88E–16 8.88E–16 18.6449237 3.72E–06

F11 Avg 0.004164123 0 0 26.54555287 2.89E–16
SD 0.008941517 0 0 80.71234706 1.12E–15
Best 0 0 0 2.55E–15 0
Worst 0.033709471 0 0 308.4160995 5.88E–15

F12 Avg 0.040450313 9.31E–06 0.015325987 8011457.955 1.03E–05
SD 0.018456931 1.22E–05 0.009018127 26100498.22 1.17E–05
Best 0.012018569 2.36E–07 0.002192957 2.00E–05 1.58E–09
Worst 0.092796986 4.81E–05 0.035769846 122729835.9 4.73E–05

F13 Avg 0.616770541 0.000113679 2.96858158 17554896.53 0.000377471
SD 0.251937258 0.00017407 0.001868752 46410306.43 0.000895519
Best 0.121838406 1.92E–06 2.966454983 0.000271301 1.58E–08
Worst 1.138333421 0.000825297 2.974023571 191807228.4 0.004536553

F14 Avg 4.339078011 1.19680925 8.277217133 3.920017549 1.558402718
SD 4.037241048 0.404408084 4.507573558 4.934721128 1.313623181
Best 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838
Worst 12.67050581 1.9920309 12.67050581 17.3744065 5.928845125

F15 Avg 0.005149142 0.000377167 0.00046399 0.003256876 0.00038934
SD 0.008543428 0.000206434 0.000176996 0.006840029 0.00020549
Best 0.000308071 0.00030774 0.000307515 0.000307494 0.000311235
Worst 0.020363344 0.00145345 0.000830685 0.020363407 0.001447517

F16 Avg –1.031628434 –1.031628453 –1.03162747 –1.031208345 –1.031628034
SD 1.51E–08 9.90E–10 5.39E–06 0.001108392 2.07E–06
Best –1.031628453 –1.031628453 –1.031628453 –1.031628453 –1.031628453
Worst –1.031628387 –1.03162845 –1.031598955 –1.027214797 –1.031617124

F17 Avg 0.397893203 0.397899742 0.397887358 0.397983122 0.397891509
SD 1.72E–05 4.75E–05 0 0.000364677 1.15E–05
Best 0.397887487 0.397887358 0.397887358 0.397887358 0.397887358
Worst 0.397982038 0.398141499 0.397887358 0.399848783 0.397943231
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Table 5 [cont.]

GWO HHO BMO GWOPSO HHOPSO
F18 Avg 3.00003988 3.000000289 3 3.000265303 3.000000108

SD 4.64E–05 9.87E–07 6.56E–15 0.00130654 2.24E–07
Best 3.000000001 3 3 3.000000039 3
Worst 3.000205112 3.00000529 3 3.007180979 3.00000093

F19 Avg –3.861321243 –3.859660551 –0.300478907 –3.86041374 –3.859904889
SD 2.46E–03 3.00E–03 2.26E–16 0.003290596 3.89E–03
Best –3.862781778 –3.862762447 –0.300478907 –3.862782145 –3.862782137
Worst –3.854983481 –3.853187491 –0.300478907 –3.854213761 –3.849749026

F20 Avg –3.261080971 –3.057717761 –3.268148994 –3.154517011 –3.197437677
SD 0.073570956 0.116002113 0.1136698 0.155549674 0.107045792
Best –3.321992413 –3.196957383 –3.321995172 –3.321995162 –3.321995165
Worst –3.135607765 –2.75707919 –2.840421628 –2.634700692 –2.932046217

F21 Avg –9.644646076 –5.541379996 –5.055197729 –7.677879724 –5.370760891
SD 1.546066435 1.498314393 9.03E–16 3.343400911 1.211725964
Best –10.15292324 –10.11786015 –5.055197729 –10.15319948 –10.00244381
Worst –5.055154258 –5.03553484 –5.055197729 –0.881395173 –5.036496344

F22 Avg –9.970860477 –5.210087436 –5.26484745 –7.597252372 –5.388475643
SD 1.666883601 0.985343965 0.970430863 3.268174922 1.377470348
Best –10.40244611 –10.25384795 –10.40294057 –10.40293646 –10.40294057
Worst –2.765712451 –3.703687412 –5.087671825 –2.751599985 –3.670041769

F23 Avg –10.53443098 –5.462781772 –5.128480787 –9.047832458 –5.984680012
SD 0.001087681 1.285594938 4.12E–15 3.035439212 1.959464983
Best –10.53588389 –10.32344028 –5.128480787 –10.53640962 –10.53640064
Worst –10.53159227 –5.116340478 –5.128480787 –1.664350542 –5.114448853

parable with the results obtained for the HHO, but the performance is superior as
compared to other algorithms [61]. Similar is the case with the Multimodal test
functions. However, for some functions with multiple global optima, the values
obtained are less significant to that of HHO. The convergence characteristics
in Fig. 1, as observed from the plot suggests a better convergence feature and
also has small convergence time as compared with the other proposed algorithm.
Hence IHHO-PSO offers a promising performance for both unimodal and mul-
timodal function and thus can be positively implemented for the optimization
problems.
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Figure 1: Benchmark functions from F1-F23 (a) 2D Function plot, (b) Search space with
the proposed algorithms, (c) Average fitness value over the iterations, (d) Boxplot with
the proposed algorithms, (e) Convergence characteristics with the proposed algorithms

In the next stage, we have used the IHHO-PSO for the optimization of con-
troller time constants and gains for the FACTS based power system stabilizers.
In recent years we have seen that the production and consumption of energy have
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exponentially increased. We always have a shortage of production as the demand
increases with increase in population and industrialization. This shortage usually
leads to load shedding, heavy loading of transmission lines, unbalance of active
and reactive power. The cumulative effect leads to two significant problems in
the power system, voltage instability and low-frequency oscillation [62] which is
mainly due to unbalanced reactive supply. So, here we have used IHHO-PSO to
study its effectiveness in optimizing the controller parameters for various loading
conditions, i.e. light loading, nominal loading and heavy loading. Also, the eigen-
values, damping ratio and frequency of oscillation are obtained and compared
with the existing algorithm to prove its superiority. However, the proposed ap-
proach adds the flexibility to the heuristic methods available in the literature [63].

4. Implementation of proposed algorithms for power system stability
enhancement

The performance of the proposed algorithms has been applied to the most
predominant engineering problem by considering a case study of a two area elec-
tric power system connected with a STATCOM in the middle of the transmission
line as shown in Fig. 2 [64]. It consists of a two-machine system where two areas
having its own local generation and load connected with an equivalent reactance
value of the transmission lines where a STATCOM is connected in the middle of
the transmission line. The complete system modelling is explained [65]. In the
considered case study, PSS and STATCOM are employed to deal with the damp-
ing of undesirable system oscillations by controlling the excitation and providing
adequate reactive power, respectively. PSS can be represented as a combination of

Figure 2: Schematic of the Mathematically modelled System to coordinate STATCOM
and PSS controllers
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two effects, namely, compensation and reset by which the field excitation can be
controlled for the low-frequency oscillation. Figure 3 shows the block diagram of
PSS, which consists of a compensation block and reset block. The control action
for the field excitation by PSS depends on the speed variation in the synchronous
machine due to the variation in the system operating conditions. PSS will provide
uE1 and uE2 for the generator 1 and 2 respectively based on the parameters of
compensation block of generator 1 and 2 (T11, T21, Kc11 and T12, T22, Kc12).

Figure 3: Block diagram of Power System Stabilizer

The function of the reset block is to terminate the compensation effect in
steady-state and should not affect the compensation block, which can be achieved
by choosing a large value of Tw. The STATCOM provides desired reactive power
generation/absorption by means of Voltage Source Converter (VSC) which is
supported by an energy storage device. The reactive power generation/absorption
can be controlled bymeans ofmodulation ratio (me) of PWMandphase angle (de)
of VSC. The direction of reactive power depends on the direction of STATCOM
current between the utility bus and converter terminal bus, which further depends
on the voltage difference between the converter terminal and utility bus. So it
mainly used for dynamic compensation for providing voltage support, transient
stability enhancement and to increase damping [66].

The state space representation of the considered system can be obtained from
the dynamics of synchronous machine and exciter [67] given as (8)–(11).

∆δ̇ = ωb∆ω, (8)

∆ω̇ =
(−∆Pe − D∆ω)

M
, (9)

∆Ė′q =
(−∆Eq + ∆E f d)

T ′d0
, (10)

∆Ė f d = −
1

TA
∆E f d −

KA

TA
∆Vt , (11)

where ∆ω = (ω − ω0)/ω0.
For the STATCOM installed in two machine power network, without PSS as

supplementary control, the state equations can be written as

Ẋ = AX + BU , (12)
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where A is the state matrix, B is the STATCOM control input matrix. With the
state variables [∆δ̇1 ∆ω̇1 ∆Ė′q1 ∆Ė f d1 ∆V̇dc ∆δ̇2 ∆ω̇2 ∆Ė′q2 ∆Ė f d2]T and the
control variables of [∆me ∆de]T .

For the system with supplementary control uE1 and uE2 the state space repre-
sentation can be given as,

Ẋ = AX + BU + BEuE = Ac X + BcU , (13)

where A is system state matrix, B is STATCOM control input matrix and BE is
supplementary control matrix. The consolidated system matrixes can be repre-
sented as,

Ac =



A11 . . . A113
...

. . .
...

A131 . . . A1313


(14)

and

Bc =
[
0 0; B21 B22; B31 B32; B41 B42; B51 B52; B61 B61; B71 B72; 0 0;

B91 B92; B101 B102; B111 B112; B121 B122; B131 B132
]
. (15)

Form the linear system equations as given in [64], the system constants can
be given as follows:
A12 = w0; A21 = −K11/M1; A22 = −D1/M1; A23 = −K21/M1;
A25 = −Kqe1/M1; A31 = −K41/Td011; A33 = −K31/Td011;
A34 = 1/Td011; A35 = −Kqd1/Td011; A41 = −Ka1 · K51/Ta1;
A43 = −Ka1 · K61/Ta1; A44 = −1/Ta1; A45 = −Ka1 · Kvd1/Ta1;
A47 = Ka1/Ta1; A51 = K71; A53 = K81; A55 = −K9; A58 = K72; A510 = K82;
A61 = −K11/M1; A62 = −D1/M1; A63 = −K21/M1; A65 = −Kqe1/M1;
A66 = −1/Tw; A71 = −K A11 ·K11 ·T11/(M1 ·T21); A72 = −D1 ·K A11 ·T11/(M1 ·T21);
A73 = −K A11 · T11 · K21/(M1 · T21); A75 = −Kqe1 · K A11 · T11/(M1 · T21);
A76 = (K A11/T21) · (1 − (T11/Tw)); A77 = −1/T21; A89 = w0; A95 = −Kqe2/M2;
A98 = −K12/M2; A99 = −D2/M2; A910 = −K22/M2; A105 = −Kqd2/Td012;
A108 = −K42/Td012; A1010 = −K32/Td012; A1011 = 1/Td012;
A115 = −Ka2 · Kvd2/Ta2; A118 = −Ka2 · K52/Ta2; A1110 = −Ka2 · K62/Ta2;
A1111 = −1/Ta2; A1113 = Ka2/Ta2; A125 = −Kqe2/M2; A128 = −K12/M2;
A129 = −D2/M2; A1210 = −K22/M2; A1212 = −1/Tw;
A135 = −Kqe2 · K A12 · T12/(M2 · T22); A138 = −K A12 · K12 · T12/(M2 · T22);
A139 = −D2 · K A12 · T12/(M2 · T22); A1310 = −K A12 · T12 · K22/(M2 · T22);
A1312 = (K A12/T22) · (1 − (T12/Tw)); A1313 = −1/T22;
and zero for the remaining elements.
B21 = −K pe1/M1; B22 = −K pde1/M1; B31 = −Kqe1/Td011;
B32 = −Kqde1/Td011; B41 = −Ka1 · Kve1/Ta1; B42 = −Ka1 · Kvde1/Ta1;
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B51 = KAe; B52 = KAde; B61 = −K pe1/M1; B62 = −K pde1/M1;
B71 = −K A11 · T11 · K pe1/(M1 · T21); B72 = −K A11 · T11 · K pde1/(M1 · T21);
B91 = −K pe2/M2; B92 = −K pde2/M2; B101 = −Kqe2/Td012;
B102 = −Kqde2/Td012; B111 = −Ka2 · Kve2/Ta2; B112 = −Ka2 · Kvde2/Ta2;
B121 = −K pe2/M2; B122 = −K pde2/M2; B131 = −K A12 · T12 · K pe2/(M2 · T22);
B132 = −K A12 · T12 · K pde2/(M2 · T22);
where,

K11 =
(Vt1d − x′d1I1Lq)(xde1 − xdt1)Vt2 sin(δ1 − δ2)

xdee1

+
(Vt1q + xq1I1Ld)(xqt1 − xqe1)Vt2 cos(δ1 − δ2)

xqee1
;

K21 =

(
I1Lq +

Vt1d (x2L + xe)
xdee1

)
;

K31 = 1 +
(x′d1 − xd1)(x2L + xe)

xdee1
;

K41 =
−(x′d1 − xd1)(xde1 − xdt1)Vt2 sin(δ1 − δ2)

xdee1
;

Kpe1 =
(Vt1d − x′d1I1Lq)(xbd1 − xde1)Vdc sin de

2xdee1

+
(Vt1q + xq1I1Ld)(xbq1 − xqe1)Vdc cos de

2xqee1
;

Kpde1 =
(Vt1d − x′d1I1Lq)(xbd1 − xde1)meVdc cos de

2xdee1

+
(Vt1q + xq1I1Ld)(−xbq1 + xqe1)meVdc sin de

2xqee1
;

Kpd1 =
(Vt1d − x′d1I1Lq)(xbd1 − xde1)me sin de

2xdee1

+
(Vt1q + xq1I1Ld)(xbq1 − xqe1)me cos de

2xqee1
;

K51 =
(Vt1d/Vt1)xq1(xqt1 − xqe1)Vt2 cos(δ1 − δ2)

xqee1

−
(Vt1q/Vt1)x′d1(xde1 − xdt1)Vt2 cos(δ1 − δ2)

xdee1
;

K61 =
(Vt1q/Vt1)(xdee1 + x′d1(x2L − xe))

xdee1
;



574 R. DEVARAPALLI, V. KUMAR

K71 =

(
3

4Cdc

) {
meVt2 sin(δ1 − δ2)(cos de)xde1

xdee1

−
meVt2 cos(δ1 − δ2)(sin de)xqe1

xqee1

}
;

K81 =

(
−

3
4Cdc

)
x2Lme cos de

xdee1
;

similarly, constants with respective to generator 2 can also be written as:

K9 =

(
3

4Cdc

) 


me sin de(me cos de)xbd1

2xdee1
+

me cos de(me sin de)xbq1

2xqee1

+
me sin de(me cos de)xbd2

2xdee2
+

me cos de(me sin de)xbq2

2xqee2




;

Kce =

(
3

4Cdc

) 


Vdc sin de(me cos de)xbd1

2xdee1
+

Vdc cos de(me sin de)xbq1

2xqee1

+
Vdc sin de(me cos de)xbd2

2xdee2
+

Vdc cos de(me sin de)xbq2

2xqee2




;

Kcde =

(
3me

4Cdc

) (
IL0q cos de − IL0d sin de

)

+

(
3

4Cdc

) 


meVdc cos de(me cos de)xbd1

2xdee1
−

meVdc sin de(me sin de)xbq1

2xqee1

+
meVdc cos de(me cos de)xbd2

2xdee2
−

meVdc sin de(me sin de)xbq2

2xqee2




.

From Fig. 3, it has been observed that the controlling action by PSS is pro-
duced through a compensation block, based on the generator speed variation.
The magnitude of the control signal is based on the tuning of gain and time
constants in the compensation transfer function. Whereas, STATCOM will offer
damping nature to the system oscillations by providing adequate reactive power
at the utility bus [68] based on the magnitude of STATCOM current. Where the
reactive power is controlled by the tuning modulation index and phase angle of
voltage source converter [64]. For the designed power system, the coordination
among the PSSs and STATCOM can be achieved by simultaneous tuning of the
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controller parameters subjected to the boundary limits as in (16).

T1i,min ¬ T1i ¬ T1i,max
T2i,min ¬ T2i ¬ T2i,max
de,min ¬ de ¬ de,max

me,min ¬ me ¬ me,max
Kc1i,min ¬ Kc1i ¬ Kc1i,max




, (16)

where T1i, T2i, Kc1i are the time constants and gain of PSS respectively of ith

generator and me and de are the PWMmodulation index and phase angle of VSC
based STATCOM. The control parameter limits have been given as follows,

Table 6: Limits of control parameters

PSS 1 PSS 2 STATCOM
T11 T21 Kc11 T12 T22 Kc12 me de

Min. limit 0.01 0.01 0.1 0.01 0.01 0.1 0 0

Max. limit 2 2 50 2 2 50 1 1

The desirable feature of the system for the stable mode of operation is, it
should have better damping nature by bearing higher damping ratio for the system
poles and faster decay to its nominal value from its fluctuating state. To achieve
the system characteristics, the system poles desirably in the location as shown
in Fig. 4. For the considered system, the system poles can be obtained by its
eigenvalues as given as, λi = Re [λi] + jIm [λi], i = 1, 2, 3, . . . , s where s is
the number of system states. And the corresponding damping ratio and natural
frequency of oscillation is given as in (17), (18).

Damping ratio

(ξi) =
−Re [λi]√

(Re [λi])2 + (Im [λi])2
. (17)

Frequency of oscillation

fosc =
|Im [λi] |

2Π
. (18)

The objective can be mathematically expressed in (19).

J = J1 + αJ2 =



s∑
i=1

(σ0 − Re [λi])2 + α

s∑
i=1

(
ξ0 − ξi

)2



(19)

where s = no. of system state variables, decrement ratio (σ0) and damping factor
(ξ0). The factors for the considered test system have been considered from [3].
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Figure 4: Operating region for the corresponding objective function

In (19), the function J1 corresponds to the shifting the poles towards the
left-hand side of s-plane based on the selection of σ0 and J2 corresponds to the
improvement in the damping ratio of the low-frequency oscillations depending
on the preference of ξ0 which are represented as portion A and B respectively
in Fig. 3. Where α value serves as the weightage for the individual objective to
balance between J1 and J2. Here, as the J2 function deals with the lower damping
ratios, its magnitude is relatively low compared to J1.

5. Results and analysis

For the considered case study, the coordination among the controllers has been
achieved by tuning the controller parameters within the inequality constraints
and listed in Table 7 by using the proposed metaheuristic algorithms. The tuned
parameters and the statistical analysis have been presented under different loading
conditions. The statistical analysis consists of the convergence characteristics of
the considered algorithms w.r.t. the iterations and the execution time of the
algorithms under different loading conditions, where, ‘TOE’ represents the time
of execution of the respective algorithm in seconds for the given loading condition
and ‘ObjFun’ represents the minimized value of the objective function.
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Table 7: Tuned parameters of controller parameters with the proposed metaheuristic
optimization algorithms

Nominal Load Condition

GWO HHO BMO GWO-
PSO

HHO-
PSO

Convergence characteristics of the
proposed optimization algorithms

T11 2.0000 1.8683 2.0000 1.9945 1.2437
T21 0.2853 0.3374 0.3316 0.3634 0.3026
K1 6.46 5.09 6.41 8.53 9.43
T12 1.9488 2.0000 2.0000 1.6592 1.9998
T22 0.2055 0.1905 0.2279 0.2507 0.2124
K2 4.25 4.13 3.96 5.03 4.99
me 0.5859 0.7200 0.5925 0.5881 0.7163
de 0.8633 1.0000 0.8633 0.8633 0.9999
TOE
(Sec) 21.96 51.89 44.25 21.59 49.48

Obj
Fun 19457.36 19922.25 19432.89 19464.85 19922.06

Light Load Condition

GWO HHO BMO GWO-
PSO

HHO-
PSO

Convergence characteristics of the
proposed optimization algorithms

T11 2.0000 1.8526 2.0000 1.9773 1.9945
T21 0.6417 0.5741 0.6042 0.6422 0.3784
K1 20.68 32.19 19.31 21.54 17.88
T12 2.0000 1.3458 2.0000 2.0000 0.8700
T22 0.3881 0.3179 0.3938 0.3817 0.2798
K2 8.21 8.11 7.81 7.92 15.51
me 1.0000 0.8360 0.9868 0.9932 0.7868
de 0.5553 0.2251 0.5378 0.5455 0.0735
TOE
(Sec) 19.86 50.01 40.82 20.17 46.84

Obj
Fun 19744.43 19838.75 19745.12 19747.44 19817.26

Heavy Load Condition

GWO HHO BMO GWO-
PSO

HHO-
PSO

Convergence characteristics of the
proposed optimization algorithms

T11 2.0000 0.7029 1.9999 2.0000 1.5917
T21 0.1289 0.2613 0.1265 0.1271 0.1394
K1 3.67 48.81 3.82 3.75 5.37
T12 2.0000 1.9536 2.0000 2.0000 1.3909
T22 0.1428 0.2267 0.1533 0.1471 0.1461
K2 5.00 10.27 5.81 5.10 8.57
me 1.0000 0.9828 0.9364 1.0000 0.9156
de 0.0003 0.1384 0.0540 0.0000 0.0116
TOE
(Sec) 20.49 48.15 42.08 19.49 46.07

Obj
Fun 20387.33 20748.76 20408.97 20387.61 20440.73
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Table 7 [cont.]

TOE

0

10

20

30

40

50

60

Light load Nominal load Heavy load

T ime of E xcecution (in Sec.)

GWO HHO BM O GWO-PSO HHO-PSO

The performance of various optimization methods varies from case to case
and in such a scenario different analysis has to be performed for the proposed algo-
rithms on themodelled systemunder different operating conditions to comment on
the suitability of the optimization algorithm. In this section, an eigenvalue analy-
sis and damping nature of the system states under perturbation has been presented
for the considered system under different loading conditions. Table 8 represents
the system oscillating mode eigenvalues and their corresponding damping ratios
with the proposed techniques under different loading conditions. Corresponding
to the considered objective function, the system eigenvalues had higher negative
real parts and positive damping ratios. The system is in a stable mode of operation
for the various system operating conditions. From the magnitudes presented, it
has been observed that IHHO-PSO has shown better magnitudes in respect of
damping ratios and is expected to be more stable under the different operating
environment in comparison with the other proposed optimization techniques. The
total number of oscillating modes also been reduced with the proposed algorithm.

The system performance is further analyzed by considering the damping
characteristics for the disturbance occurred during the operating condition. For the
purpose of the study, we have assumed 10% perturbation to simulate the natural
oscillating behaviour of the system at t = 0 sec. The damping nature obtained for
the parameters of the two machines with the tuned parameters of the controller
are shown in Figs. 5 to 7. Also, for the purpose of evaluation and analysis, we have
considered torque angle, angular speed, generator internal voltage and generator
field excitation as the system states which are studied. The variation in the states
of these parameters is plotted w.r.t time for both the machines in the two – area
system. The analysis has further been made more specific by considering all these
system states for three different loading condition i.e. light loading, moderate
loading and heavy loading. Figure 5 shows the variation of system states w.r.t
time in the lightly loaded condition. The proposed metaheuristic IHHO-PSO
gives a very satisfactory result for the torque angle deviation. The oscillations
are minimum, and the time required for zero deviation is also less. However, for
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Table 8: System eigen values with and corresponding damping ratios

Light Load Nominal load Heavy load

Eigen Values Freq Damp Eigen Values Freq Damp Eigen Values Freq Damp

G
W
O

–0.4134 ±1.0497i
–0.4249 ±1.1028i
–2.6778 ±5.8845i
–2.6291 ±5.9466i

0.1670
0.1754
0.9362
0.9461

0.3665
0.3595
0.4142
0.4044

–0.0004 – 0.0010i
–0.8650 + 1.6476i
–0.5537 – 2.1144i
–1.1344 – 2.6664i
–1.1452 + 2.6655i
–2.9968 – 6.6161i
–3.3797 + 6.7827i
–3.3753 – 6.7912i
–3.3960 + 7.0935i
–96.0620 – 0.0002i

0.0002
0.2621
0.3364
0.4242
0.4241
1.0526
1.0791
1.0804
1.1285
3.2E–05

0.3435
0.4649
0.2533
0.3915
0.3948
0.4126
0.446
0.4451
0.4318
1

–1.9160 ±2.4776i
–2.0844 ±2.5021i
–3.6409 ±9.2747i
–3.2880 ±10.3224i

0.3942
0.3981
1.4755
1.6422

0.6117
0.6401
0.3654
0.3035

H
H
O

–0.4676 ±0.9109i
–0.7544 ±1.7496i
–2.7123 ±5.0629i
–2.4228 ±7.9459i

0.1449
0.2783
0.8055
1.2641

0.4567
0.3959
0.4722
0.2917

–1.0286 ±2.2477i
–1.1267 ±2.7008i
–2.5994 ±5.1619i
–3.5703 ±7.1139i

0.3576
0.4297
0.8212
1.1318

0.4161
0.385
0.4498
0.4486

–0.0398 ±0.0203i
–1.6036 ±1.1518i
–1.3967 ±1.5778i
–2.4613 ±11.8856i
–1.9370 ±13.7476i

0.0032
0.1832
0.2510
1.8909
2.1871

0.8908
0.8122
0.6628
0.2028
0.1395

B
M
O

–0.4283 ±1.0974i
–0.4375 ±1.1233i
–2.6364 ±5.6049i
–2.6687 ±6.0508i

0.1746
0.1787
0.8917
0.9626

0.3636
0.363
0.4256
0.4035

–0.0002 – 0.0006i
–0.8766 + 1.7049i
–0.7241 – 1.9969i
–1.3170 + 2.7135i
–1.3105 – 2.7168i
–2.7700 – 6.0887i
–2.9962 + 6.2857i
–3.0023 – 6.3257i
–3.0386 + 6.4247i
–95.9795 – 0.0001i

9.5E–05
0.2712
0.3177
0.4317
0.4322
0.9687
1.0000
1.0064
1.0221
1.6E–05

0.2584
0.4573
0.3409
0.4366
0.4345
0.4141
0.4303
0.4288
0.4275
1

–0.0487 ±0.0087i
–1.9748 ±2.4463i
–2.1128 ±2.4498i
–3.7438 ±9.5286i
–3.1470 ±10.9005i

0.0014
0.3892
0.3897
1.5159
1.7342

0.9844
0.6281
0.6531
0.3657
0.2774

G
W
O
-P
SO

–0.3883 ±0.9926i
–0.4659 ±1.1795i
–2.7108 ±5.7405i
–2.5969 ±6.1304i

0.1579
0.1876
0.9133
0.9753

0.3643
0.3674
0.427
0.3901

–0.0003 – 0.0009i
–0.0496 – 0.0001i
–0.8633 + 1.4292i
–0.6642 – 1.7880i
–1.4307 + 2.5895i
–1.4262 – 2.5925i
–2.7013 – 6.1826i
–2.7040 + 6.1851i
–2.5443 – 6.8333i
–2.9610 + 7.1937i
–96.0766 – 0.0002i

0.0001
1.6E–05
0.2274
0.2845
0.4120
0.4124
0.9836
0.9840
1.0871
1.1445
3.2E–05

0.318
1
0.517
0.3482
0.4836
0.482
0.4004
0.4006
0.3489
0.3806
1

–1.9314 ±2.4428i
–2.0189 ±2.4961i
–3.7262 ±9.3983i
–3.1958 ±10.3228i

0.3886
0.3971
1.4952
1.6423

0.6202
0.6289
0.3686
0.2957

IH
H
O
-P
SO

–0.6931 ±1.4456i
–0.6935 ±1.4513i
–2.7201 ±5.9494i
–2.8282 ±7.7012i

0.2300
0.2309
0.9465
1.2252

0.4323
0.4311
0.4158
0.3447

–0.8485 ±1.8968i
–1.0663 ±2.4313i
–2.9179 ±6.1888i
–3.3076 ±7.5223i

0.3018
0.3868
0.9846
1.1967

0.4083
0.4017
0.4265
0.4025

–0.0481 ±0.0101i
–1.8893 ±2.4503i
–2.2097 ±2.2862i
–3.4159 ±9.7660i
–3.2163 ±11.1780i

0.0016
0.3898
0.3637
1.5537
1.7783

0.9784
0.6106
0.695
0.3302
0.2765

angular speed deviation HHO shows smaller deviation, still the time required for
zero deviation is almost comparable with that of IHHO-PSO. For the deviation in
the generator internal voltage and field excitation IHHO-PSO outperforms other
algorithms. The system states with nominal loadings are plotted in Fig. 6. For
the torque angle deviation GWO-PSO shows minimum oscillation but it fails to
reach zero deviation. However, IHHO-PSO gives more satisfactory results with
zero deviation and a small oscillating time. Results for angular speed deviation
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is almost similar for all the algorithms. In the case of generator internal voltage
and field excitation, the superiority of IHHO-PSO is distinctly visible. It gives
minimum fluctuations and produces almost zero deviation. The system states

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 5: Damping behavior of system states for 10% perturbation under light load:
(a) Angular speed of machine 1, (b) Angular speed of machine 2, (c) Generator 1 internal
voltage, (d) Generator 2 internal voltage, (e) torque angle of area 1, (f) torque angle of
area 2, (g) generator 1 field excitation voltage, (h) generator 2 field excitation voltage

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 6: Damping behavior of system states for 10% perturbation under Nominal load:
(a) Angular speed of machine 1, (b) Angular speed of machine 2, (c) Generator 1 internal
voltage, (d) Generator 2 internal voltage, (e) torque angle of area 1, (f) torque angle of
area 2, (g) generator 1 field excitation voltage, (h) generator 2 field excitation voltage

(a) (b)
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(c) (d)

(e) (f)

(g) (h)

Figure 7: Damping behavior of system states for 10% perturbation under heavy load:
(a) Angular speed of machine 1, (b) Angular speed of machine 2, (c) Generator 1 internal
voltage, (d) Generator 2 internal voltage, (e) torque angle of area 1, (f) torque angle of
area 2, (g) generator 1 field excitation voltage, (h) generator 2 field excitation voltage
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for heavy loading condition is shown in Fig. 7. The performance of IHHO-
PSO is next to GWO-PSO in terms of deviation in torque angle, but still its far
better than HHO, which leads to an unstable mode of operation. For angular
speed deviation BMO and proposed IHHO-PSO gives satisfactory results with
minimum oscillation and fast operation. IHHO-PSO again proves its superiority
over other algorithms like BMO,GWO-PSO etc.as it gives the smallest oscillation
and zero deviation in the minimum time. The convergence characteristics suggest
that IHHO-PSO can be efficiently used for tuning the system control parameters
for the coordination of STATCOM with PSS.

6. Conclusion

The application of the proposed Integrated HHO-PSO algorithm in the en-
gineering problem has shown superior performance over the state-of-the-art al-
gorithms. The evaluation of the proposed algorithm on the benchmark functions
justified the enhancements adopted for the HHO algorithm. The convergence of
the IHHOPSO algorithm is better compared to the other trending algorithms
and the considered hybrid algorithms. This paper presents a rigorous analysis
of power system oscillations damping by the coordinated design of STATCOM
and PSSs using meta-heuristic optimization algorithms. A two-area system with
STATCOM connected in the middle of the transmission line has been mod-
elled to perform the analysis on damping characteristics achieved with the pro-
posed methods. For the selection of the appropriate tuning method from the
proposed metaheuristic algorithms, the system study has been performed un-
der different system loading conditions. The various analyses are performed
based on the proposed technique convergence characteristics, the execution time
for the considered system and the tuned parameters within the limits of the
constraints. The system performances are analyzed through system eigenvalue
location, damping ratios and damping nature offered to the system perturba-
tions. By considering all the system analysis, the proposed IHHO-PSO tuned
PSS parameters have been shown satisfactory performance characteristics and
suggested over other proposed techniques for various system operating con-
ditions.
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