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1. INTRODUCTION
In the design of a rotor-bearing system, the critical speeds of the
system play a major role, since they have to lie outside the oper-
ating speed range [1]. Therefore, the calculation of the critical
speeds is mandatory for a reliable and safe rotor-bearing design.
Valuable additional information can be found by calculating the
unbalance response of the system, e.g. the vibration amplitudes
at a certain critical speed, the optimal locations for balancing
planes and the effectiveness of damping treatments [1].

The two most common techniques for the analysis of rotor-
bearing systems are the Finite Element Method (FEM) [2] and
the Transfer Matrix Method (TMM) [3]. Especially in TMM,
most works in the literature apply a lumped parameter model,
which is not effective and accurate when the shaft unbalance is
arbitrarily distributed [4]. Therefore, Lee et al. [4] extended the
classical TMM approach to include distributed unbalance in the
shaft by a Fourier series representation. To fit the synchronous
elliptical orbits of the rotor system, sixteen state variables are
applied. In [5], the Finite Element Method (FEM) and a poly-
nomial distribution of the unbalance is used in the unbalance
response computation.

A method similar to TMM called Numerical Assembly Tech-
nique (NAT) is proposed in [6], which is used to simulate
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the harmonic vibrations of one-dimensional structures. Wu et
al. [7] applied NAT to calculate the whirling speed and mode
shapes of rotor models neglecting shear deformation and iner-
tia effects. An extension of NAT to include distributed loading
is given in [8], where the distributed load is approximated by
a Fourier extension method. This extension is used in [9], to
compute the unbalance response of a rotating multiple-stepped
Rayleigh beam with attached discs running in anisotropic bear-
ings. The influence of a generally distributed unbalance on the
rotor vibrations is examined and the computational advantages
compared to FEM are shown.

In the following, an extension of the authors’ previous paper
[9] is proposed by including the effects of axial loading (con-
stant force and torque) on the lateral rotor vibrations and con-
sidering a general bearing model with cross-coupling. There-
fore, simplified models of journal bearings can be introduced.

2. PROBLEM DESCRIPTION
In this section, a general rotor vibration problem with a mul-
tiple-stepped shaft running in anisotropic bearings is outlined.
The shaft is modelled by the Rayleigh beam theory including
the effects of constant axial loading and the bearings are rep-
resented by linear springs and dampers. Although, the Timo-
shenko beam theory, which also includes shear deformation, is
more accurate, especially for beams with low slenderness, it
leads to cumbersome mathematical expressions and a higher
computational load. Therefore, the Rayleigh beam theory is
preferred in this paper.
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2.1. General rotor problem with constant axial loading
In Fig. 1, a multiple-stepped shaft supported by anisotropic
bearings is shown. Translational and rotational springs and
dampers including cross-coupling terms between the x- and y-
direction are used to model the bearing characteristics. For clar-
ity, only the translation springs in x- and y-direction are sym-
bolized in Fig. 1. The shaft is running at constant spin speed
Ω about the z-axis and several circular discs with mass m(i),
mass moment of inertia about the x- and y-axis Θ(i)

t , and mass
moment of inertia about the z-axis Θ(i)

p are attached to the rotor.
A generally distributed unbalance with the eccentricity ε(z) and
the angular position β (z) between the positions z� = ZAu and
z� = ZBu is present in the shaft. Furthermore, the discs might
also have mass unbalance given by the eccentricity ε(i) and an-
gular position β (i).

A constant axial force P and axial twisting moment T are ap-
plied to the rotor boundaries. It is assumed that the axial loads
remain parallel to the z-axis after deformation and that the ax-
ial force P follows the deformed rotor (no additional bending
moment). Several other possibilities concerning the orientation
of the axial loads after deformation are discussed in the litera-
ture [10–12], e.g. tangential (follower) forces and twisting mo-
ments.

The shaft (total length L) is divided by (N) stations into
M = (N −1) segments having a length L� = (Zi+1 −Zi)(i = �).
The rotor boundaries are located at the first (1) and last sta-
tion (N) (z = 0 and z = L) and additional stations (i) have to
be introduced if a discontinuity arises within the rotor. A local

coordinate system (O�, x�, y�, z�) for each segment � is defined,
which is centered at the location of the intermediate station (i)
(z = Zi). The rotor has homogeneous material parameters and
constant circular cross-sections within each rotor segment �.

2.2. Rayleigh beam theory including axial effects
Each rotor segment � is modelled by the well known Rayleigh
beam theory, which includes inertia effects while neglecting
shear deformation. As pointed out in [9], assuming a time
dependency of the displacements ux�(z, t) (x-direction) and
uy�(z, t) (y-direction) in the form

ux�(z, t) = ũ+x�(z)ejΩ t + ũ−x�(z)e−jΩ t , (1)

uy�(z, t) = ũ+y�(z)ejΩ t + ũ−y�(z)e−jΩ t , (2)

leads to a complete decoupling of the governing equations in
terms of ũ+•�(z) and ũ−•�(z). Since the solutions of ũ+•�(z) and
ũ−•�(z) have to be complex conjugated to yield real solutions for
u•�(z, t), only one has to be investigated. The governing equa-
tions for the steady-state harmonic unbalance response of a ro-
tating Rayleigh beam with constant axial loading are given by

d4ũ+x�(z)
dz4 +

(
Ω̄2

� − P̄�
) d2ũ+x�(z)

dz2 −
Ω̄2

�

r2
G�

ũ+x�(z)

+ T̄�
d3ũ+y�(z)

dz3 −2jΩ̄2
�

d2ũ+y�(z)

dz2 =
Ω̄2

�

2r2
G�

ε̃+(z), (3)

Fig. 1. General rotor problem with constant axial loading
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d4ũ+y�(z)

dz4 +
(
Ω̄2

� − P̄�
) d2ũ+y�(z)

dz2 −
Ω̄2

�

r2
G�

ũ+y�(z)

− T̄�
d3ũ+x�(z)

dz3 +2jΩ̄2
�

d2ũ+x�(z)
dz2 =−

jΩ̄2
�

2r2
G�

ε̃+(z), (4)

with

Ω̄2
� =

ρ� Ω2

E�
, r2

G� =
I�
A�

,

T̄� =
T

E� I�
, P̄� =

P
E� I�

(5)

and E� Young’s modulus, ρ� the material density, A� the cross-
section area, Ω the rotor spin speed about the z-axis, P the
constant normal force, T the constant axial torque, I� the pla-
nar second moments of area with respect to the x- and y-axis
and ε̃+(z) = ε(z)ejβ (z) the complex unbalance. The governing
equations of the rotating Rayleigh beam (equations (3) and (4))
are coupled through the gyroscopic effects and the constant ax-
ial torque and are consistent with the results shown in [4]. It
is assumed that the displacements and eccentricities are small
and therefore, only linear terms are considered in the unbalance
force.

Apart from the displacements, additional field variables are
required to fully describe the state of the rotor, which are
given by

ϕ̃+
x�(z) =−

dũ+y�(z)

dz
, ϕ̃+

y�(z) =
dũ+x�(z)

dz
,

M̃+
x�(z) =−E� I�

d2ũ+y�(z)

dz2 , M̃+
y�(z) = E� I�

d2ũ+x�(z)
dz2 ,

Q̃+
x�(z) =−E� I�

(
d3ũ+x�(z)

dz3 + Ω̄2
�

dũ+x�(z)
dz

+T̄�
d2ũ+y�(z)

dz2 −2jΩ̄2
�

dũ+y�(z)

dz

)
,

Q̃+
y�(z) =−E� I�

(
d3ũ+y�(z)

dz3 + Ω̄2
�

dũ+y�(z)

dz

−T̄�
d2ũ+x�(z)

dz2 +2jΩ̄2
�

dũ+x�(z)
dz

)
,

(6)

where ϕ̃+
x�(z) and ϕ̃+

y�(z) are the rotations about the x- and y-
axis, M̃+

x�(z) and M̃+
y�(z) are the bending moments about the x-

and y-axis and Q̃+
x�(z) and Q̃+

y�(z) are the shear forces in x- and
y-direction.

The governing equations in equations (3) and (4) require cer-
tain boundary and interface conditions to yield a unique so-
lution. Applying an equilibrium of forces and moments at the
boundaries and taking into account that the constant axial loads
remain parallel to the z-axis after deformation, lead to

a(1)txx ũ+x1(0)+
(

jΩd(1)
txy + k(1)txy

)
ũ+y1(0)

− Q̃+
x1(0)−P ϕ̃+

y1(0) =
m(1) ε̃(1)+ Ω2

2
,

a(1)tyy ũ+y1(0)+
(

jΩd(1)
tyx + k(1)tyx

)
ũ+x1(0)

− Q̃+
y1(0)+P ϕ̃+

x1(0) =−
jm(1) ε̃(1)+ Ω2

2
,

a(1)ryy ϕ̃+
y1(0)− M̃+

y1(0)

+
(
−jΩ2 Θ(1)

p + jΩd(1)
ryx + k(1)ryx +T

)
ϕ̃+

x1(0) = 0,

a(1)rxx ϕ̃+
x1(0)− M̃+

x1(0)

+
(

jΩ2 Θ(1)
p + jΩd(1)

rxy + k(1)rxy −T
)

ϕ̃+
y1(0) = 0,

(7)

for the left boundary and to

a(N)
txx ũ+xM(L)+

(
jΩd(N)

txy + k(N)
txy

)
ũ+yM(L)

+ Q̃+
xM(L)+P ϕ̃+

yM(L) =
m(N) ε̃(N)

+ Ω2

2
,

a(N)
tyy ũ+yM(L)+

(
jΩd(N)

tyx + k(N)
tyx

)
ũ+xM(L)

+ Q̃+
yM(L)−P ϕ̃+

xM(L) =
−jm(N) ε̃(N)

+ Ω2

2
,

a(N)
ryy ϕ̃+

yM(L)+ M̃+
yM(L)

+
(
−jΩ2 Θ(N)

p + jΩd(N)
ryx + k(N)

ryx −T
)

ϕ̃+
xM(L) = 0,

a(N)
rxx ϕ̃+

xM(L)+ M̃+
xM(L)

+
(

jΩ2 Θ(N)
p + jΩd(N)

rxy + k(N)
rxy +T

)
ϕ̃+

yM(L) = 0,

(8)

for the right boundary. Additionally, the continuity of the dis-
placements and rotations results in

ũ+x�(Z
+
i )− ũ+x�−1(Z

−
i ) = 0, ϕ̃+

y�(Z
+
i )− ϕ̃+

y�−1(Z
−
i ) = 0,

a(i)ryy ϕ̃+
y�(Z

+
i )− M̃+

y�(Z
+
i )+ M̃+

y�−1(Z
−
i )

+
(
−jΩ2 Θ(i)

p + jΩd(i)
ryx + k(i)ryx

)
ϕ̃+

x�(Z
+
i ) = 0,

a(i)txx ũ+x�(Z
+
i )+

(
jΩd(i)

txy + k(i)txy

)
ũ+y�(Z

+
i )

− Q̃+
x�(Z

+
i )+ Q̃+

x�−1(Z
−
i ) =

m(i) ε̃(i)+ Ω2

2
,

ũ+y�(Z
+
i )− ũ+y�−1(Z

−
i ) = 0, ϕ̃+

x�(Z
+
i )− ϕ̃+

x�−1(Z
−
i ) = 0,

a(i)rxx ϕ̃+
x�(Z

+
i )− M̃+

x�(Z
+
i )+ M̃+

x�−1(Z
−
i )

+
(

jΩ2 Θ(i)
p + jΩd(i)

rxy + k(i)rxy

)
ϕ̃+

y�(Z
+
i ) = 0,

a(i)tyy ũ+y�(Z
+
i )+

(
jΩd(i)

tyx + k(i)tyx

)
ũ+x�(Z

+
i )

− Q̃+
y�(Z

+
i )+ Q̃+

y�−1(Z
−
i ) =−

jm(i) ε̃(i)+ Ω2

2
,

(9)
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ũ+y�(z)

− T̄�
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d2ũ+x�(z)
dz2 =−

jΩ̄2
�

2r2
G�

ε̃+(z), (4)

with

Ω̄2
� =

ρ� Ω2

E�
, r2

G� =
I�
A�

,

T̄� =
T

E� I�
, P̄� =

P
E� I�

(5)

and E� Young’s modulus, ρ� the material density, A� the cross-
section area, Ω the rotor spin speed about the z-axis, P the
constant normal force, T the constant axial torque, I� the pla-
nar second moments of area with respect to the x- and y-axis
and ε̃+(z) = ε(z)ejβ (z) the complex unbalance. The governing
equations of the rotating Rayleigh beam (equations (3) and (4))
are coupled through the gyroscopic effects and the constant ax-
ial torque and are consistent with the results shown in [4]. It
is assumed that the displacements and eccentricities are small
and therefore, only linear terms are considered in the unbalance
force.

Apart from the displacements, additional field variables are
required to fully describe the state of the rotor, which are
given by

ϕ̃+
x�(z) =−
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+ Q̃+
yM(L)−P ϕ̃+

xM(L) =
−jm(N) ε̃(N)

+ Ω2

2
,

a(N)
ryy ϕ̃+

yM(L)+ M̃+
yM(L)

+
(
−jΩ2 Θ(N)

p + jΩd(N)
ryx + k(N)

ryx −T
)

ϕ̃+
xM(L) = 0,

a(N)
rxx ϕ̃+

xM(L)+ M̃+
xM(L)

+
(

jΩ2 Θ(N)
p + jΩd(N)

rxy + k(N)
rxy +T

)
ϕ̃+

yM(L) = 0,

(8)

for the right boundary. Additionally, the continuity of the dis-
placements and rotations results in

ũ+x�(Z
+
i )− ũ+x�−1(Z

−
i ) = 0, ϕ̃+

y�(Z
+
i )− ϕ̃+

y�−1(Z
−
i ) = 0,

a(i)ryy ϕ̃+
y�(Z

+
i )− M̃+

y�(Z
+
i )+ M̃+

y�−1(Z
−
i )

+
(
−jΩ2 Θ(i)

p + jΩd(i)
ryx + k(i)ryx

)
ϕ̃+

x�(Z
+
i ) = 0,

a(i)txx ũ+x�(Z
+
i )+

(
jΩd(i)

txy + k(i)txy

)
ũ+y�(Z

+
i )

− Q̃+
x�(Z

+
i )+ Q̃+

x�−1(Z
−
i ) =

m(i) ε̃(i)+ Ω2

2
,

ũ+y�(Z
+
i )− ũ+y�−1(Z

−
i ) = 0, ϕ̃+

x�(Z
+
i )− ϕ̃+

x�−1(Z
−
i ) = 0,

a(i)rxx ϕ̃+
x�(Z

+
i )− M̃+

x�(Z
+
i )+ M̃+

x�−1(Z
−
i )

+
(

jΩ2 Θ(i)
p + jΩd(i)

rxy + k(i)rxy

)
ϕ̃+

y�(Z
+
i ) = 0,

a(i)tyy ũ+y�(Z
+
i )+

(
jΩd(i)

tyx + k(i)tyx

)
ũ+x�(Z

+
i )

− Q̃+
y�(Z

+
i )+ Q̃+

y�−1(Z
−
i ) =−

jm(i) ε̃(i)+ Ω2

2
,

(9)
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for an interface. In equations (7)–(9), the locations Z−
i and Z+

i

are infinitesimal to the left and right of the station (i), k(�)•

and d(�)
• are the spring and damping coefficients at station �

and a(�)t• = −Ω2 m(�) + jΩd(�)
t• + k(�)t• and a(�)r• = −Ω2 Θ(�)

t +

jΩd(�)
r• +k(�)r• . The governing equations of the rotating Rayleigh

beam given in equations (3) and (4), the boundary conditions
in equations (7) and (8) and the interface conditions in equa-
tion (9) form a well-posed problem, which can be uniquely
solved by analytical or numerical methods.

3. NUMERICAL ASSEMBLY TECHNIQUE
The Numerical Assembly Technique (NAT) is a semi-analytical
method, which applies the analytical solutions of the govern-
ing equations to fit the boundary and interface conditions. This
leads to a system of linear equations, which can be solved for
the unknown contribution factors. The general analytical solu-
tion of the governing equations ũ+•�(z�) is given by the superpo-
sition of the homogeneous solution ũ+h•�(z�) (ε̃+(z) = 0) and the
particular solution ũ+p•�(z�), which are derived in the following
sections.

3.1. Analytical solution of the homogeneous equation
Setting the complex unbalance ε̃+(z) = 0 and plugging the as-
sumed solutions

ũ+hx�(z�) = cux� ejk z� , (10)

ũ+hy�(z�) = cuy� ejk z� , (11)

into equations (3) and (4) leads to the system of linear equations

A

[
cux�

cuy�

]
=

[
0
0

]
, (12)

with

A =




k4−
(
Ω̄2

�−P̄�
)

k2−
Ω̄2

�

r2
G�

−j T̄� k3 +2jΩ̄2
� k2

j T̄� k3 −2jΩ̄2
� k2 k4−

(
Ω̄2

�−P̄�
)

k2−
Ω̄2

�

r2
G�


 (13)

which only has a non-trivial solution if

(
k4 −

(
Ω̄2

� − P̄�
)

k2 −
Ω̄2

�

r2
G�

)2

−
(
−T̄� k3 +2Ω̄2

� k2)2
= 0. (14)

Equation (14) can be split into two separate characteristic equa-
tions

k4 − T̄� k3 +
(
P̄�+ Ω̄2

�

)
k2 −

Ω̄2
�

r2
G�

= 0,

k4 + T̄� k3 +
(
P̄�−3Ω̄2

�

)
k2 −

Ω̄2
�

r2
G�

= 0,

(15)

which have the solutions k1� –k4� (first characteristic equation)
and k5� –k8� (second characteristic equation). Even though, an-
alytical expressions of the roots of the characteristic polyno-
mial exist, they are impractical in a numerical implementation
and additionally might become unstable due to rounding errors.
Therefore, stable numerical algorithms are preferred for their
computation.

The constants cux� and cuy� are not independent. For the first
four solutions (k1� –k4�), the relation is cuy� = −jcux� and for
the last four solutions (k5� –k8�) the relation is cuy� = jcux�. The
general homogeneous solution is therefore given by

ũ+hx�(z�) =
8

∑
i=1

ci� ejki�(z�−H(−Im{ki�})L�), (16)

ũ+hy�(z�) =−j

(
4

∑
i=1

ci� ejki�(z�−H(−Im{ki�})L�)

−
8

∑
i=5

ci� ejki�(z�−H(−Im{ki�})L�)

)
(17)

with c1� –c8� arbitrary constants, Im{•} the imaginary part and
the Heaviside step function

H(x) =

{
0, x ≤ 0

1, x > 0
. (18)

The lower index •h indicates the homogeneous solution of
the differential equations. In equations (16) and (17) a scaling
of the parts with growing exponentials has been applied, which
guaranties that the amplitude of each function term remains
smaller or equal to 1 within the segment span (0 ≤ z� ≤ L�).
This has certain advantages in the numerical implementation.

A complete description of the state within the rotor segment
� is given, if not only the displacements, but also the rotations,
bending moments and shear forces are known. If the state vari-
ables and arbitrary constants are gathered in the column vectors

x̃+h�(z�) =
[
ũ+hx�(z�), ũ+hy�(z�), ϕ̃+

hy�(z�), ϕ̃+
hx�(z�),

M̃+
hy�(z�), M̃+

hx�(z�), Q̃+
hx�(z�), Q̃+

hy�(z�)
]T

and

c� = [c1�, c2�, c3�, c4�, c5�, c6�, c7�, c8�]
T,

the state within a rotor segment � can be defined by a compact
matrix equation as

x̃+h�(z�) = B�(z�)c� , (19)

where the upper index •T denotes the transpose of a vector or
matrix. The state variable matrix is given by
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B�=




E1 E2 E3 E4

−jE1 −jE2 −jE3 −jE4

kϕ1 E1 kϕ2 E2 kϕ3 E3 kϕ4 E4

jkϕ1 E1 jkϕ2 E2 jkϕ3 E3 jkϕ4 E4

−kM1 E1 −kM2 E2 −kM3 E3 −kM4 E4

−jkM1 E1 −jkM2 E2 −jkM3 E3 −jkM4 E4

kQ1 E1 kQ2 E2 kQ3 E3 kQ4 E4

−jkQ1 E1 −jkQ2 E2 −jkQ3 E3 −jkQ4 E4

E5 E6 E7 E8

jE5 jE6 jE7 jE8

kϕ5 E5 kϕ6 E6 kϕ7 E7 kϕ8 E8

−jkϕ5 E5 −jkϕ6 E6 −jkϕ7 E7 −jkϕ8 E8

−kM5 E5 −kM6 E6 −kM7 E7 −kM8 E8

jkM5 E5 jkM6 E6 jkM7 E7 jkM8 E8

kQ5 E5 kQ6 E6 kQ7 E7 kQ8 E8

jkQ5 E5 jkQ6 E6 jkQ7 E7 jkQ8 E8




(20)

with kϕ• = jk•�, kM• = E� I� k2
•�, kQi = jE� I� ki�

(
k2

i� − T̄� ki� +

Ω̄2
�

)
(i = 1, . . . ,4), kQi = jE� I� ki�

(
k2

i� + T̄� ki� − 3Ω̄2
�

)
(i =

5, . . . ,8) and E• = ejk•�(z�−H(−Im{k•�})L�). The relations in equa-
tion (6) have been used to derive equations (19) and (20).

3.2. Particular solutions for an arbitrarily distributed
unbalance

The particular solutions ũ+px�(z�) and ũ+py�(z�) fulfil the right
hand side of the harmonic governing equations (equations (3)
and (4)). The Fourier transform [13], the residue theorem and
Jordan’s lemma [14] and the Green’s function method [15] are
used to derive the particular solutions for an arbitrarily dis-
tributed mass unbalance.

First, the solutions for a concentrated unbalance located at a
certain position z� = Zε , which is given by

ε̃+(z) = ε̃P+ δ (z�−Zε) (21)

with δ (•) the Dirac delta function and ε̃P+ the complex ampli-
tude of the unbalance (eccentricity times a fictitious length), is
computed. If a concentrated unbalance is added in this form, no
additional mass is included at the position Zε . The magnitude
of the unbalance force is defined by the density ρ� and area
A� of the rotor segment �, the complex amplitude ε̃P+ and the
square of the spin speed Ω. Applying the Fourier transform [13]
with respect to the spatial coordinate z� to equations (3) and (4),
leads to the system of linear equations

A


 û+px�(k)

û+py�(k)


=




Ω̄2
�

2r2
G�

ε̂+(k)

− jΩ̄2
�

2r2
G�

ε̂+(k)


 , (22)

with •̂(k) the Fourier transform of •(z�). Using the Fourier
transform of the concentrated unbalance

ε̂+(k) = ε̃P+ e−jk Zε (23)

and solving the system of linear equations for the unknown dis-
placements lead to

û+px�(k) =
Ω̄2

�

2r2
G�

ε̃P+ e−jk Zε

k4 − T̄� k3 +
(
P̄�+ Ω̄2

�

)
k2 − Ω̄2

�

r2
G�

=
Ω̄2

�

2r2
G�

ε̃P+ e−jk Zε

(k− k1�)(k− k2�)(k− k3�)(k− k4�)
, (24)

and û+py�(k) = −j û+px�(k). The inverse Fourier transform [13]
results in the integral

ũ+px�(z�) =
∞∫

−∞

Ω̄2
� ε̃P+ ejk (z�−Zε ) dk

4π r2
G�(k− k1�)(k− k2�)(k− k3�)(k− k4�)

, (25)

which can be evaluated with the residue theorem [14]. In all
practical cases, two of the four roots k1�–k4� are non-real and
complex conjugated and two are distinct real. The final results
for the displacement in x-direction due to a concentrated unbal-
ance are given by

ũ+px�(z�, Zε) =

(
2ejα1� (z�−Zε )

(α1�−α2�)(α1�−α3�)(α1�−α4�)

+
ejα3� (z�−Zε )

(α3�−α1�)(α3�−α2�)(α3�−α4�)
for z� > Zε

+
ejα4� (z�−Zε )

(α4�−α1�)(α4�−α2�)(α4�−α3�)

)
jΩ̄2

� ε̃P+

4r2
G�

,

(26)

ũ+px�(z�, Zε) =

(
−2ejα2� (z�−Zε )

(α2�−α1�)(α2�−α3�)(α2�−α4�)

− ejα3� (z�−Zε )

(α3�−α1�)(α3�−α2�)(α3�−α4�)
for z� < Zε

− ejα4� (z�−Zε )

(α4�−α1�)(α4�−α2�)(α4�−α3�)

)
jΩ̄2

� ε̃P+

4r2
G�

,

(27)

where α1� is the complex root with positive imaginary part
(Im{k•�}> 0), α2� is the complex root with negative imaginary
part (Im{k•�} < 0) and α3� and α4� are the distinct real roots
(Im{k•�}= 0). The displacement in y-direction is simply found
by ũ+py�(z�, Zε) =−j ũ+px�(z�, Zε).

The rotations, bending moments and the shear forces can be
computed by equation (6) and all field variables can be gath-
ered in the column vector x̃+p�(z�, Zε) with the ordering equiva-
lent to the homogeneous solutions x̃+h�(z�). The particular solu-
tion functions for distributed unbalances are derived using the
Green’s function method, which uses the response due to a unit
concentrated unbalance (Green’s function) and an integration
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B�=




E1 E2 E3 E4

−jE1 −jE2 −jE3 −jE4

kϕ1 E1 kϕ2 E2 kϕ3 E3 kϕ4 E4

jkϕ1 E1 jkϕ2 E2 jkϕ3 E3 jkϕ4 E4

−kM1 E1 −kM2 E2 −kM3 E3 −kM4 E4

−jkM1 E1 −jkM2 E2 −jkM3 E3 −jkM4 E4

kQ1 E1 kQ2 E2 kQ3 E3 kQ4 E4

−jkQ1 E1 −jkQ2 E2 −jkQ3 E3 −jkQ4 E4

E5 E6 E7 E8

jE5 jE6 jE7 jE8

kϕ5 E5 kϕ6 E6 kϕ7 E7 kϕ8 E8

−jkϕ5 E5 −jkϕ6 E6 −jkϕ7 E7 −jkϕ8 E8

−kM5 E5 −kM6 E6 −kM7 E7 −kM8 E8

jkM5 E5 jkM6 E6 jkM7 E7 jkM8 E8

kQ5 E5 kQ6 E6 kQ7 E7 kQ8 E8

jkQ5 E5 jkQ6 E6 jkQ7 E7 jkQ8 E8




(20)

with kϕ• = jk•�, kM• = E� I� k2
•�, kQi = jE� I� ki�

(
k2

i� − T̄� ki� +

Ω̄2
�

)
(i = 1, . . . ,4), kQi = jE� I� ki�

(
k2

i� + T̄� ki� − 3Ω̄2
�

)
(i =

5, . . . ,8) and E• = ejk•�(z�−H(−Im{k•�})L�). The relations in equa-
tion (6) have been used to derive equations (19) and (20).

3.2. Particular solutions for an arbitrarily distributed
unbalance

The particular solutions ũ+px�(z�) and ũ+py�(z�) fulfil the right
hand side of the harmonic governing equations (equations (3)
and (4)). The Fourier transform [13], the residue theorem and
Jordan’s lemma [14] and the Green’s function method [15] are
used to derive the particular solutions for an arbitrarily dis-
tributed mass unbalance.

First, the solutions for a concentrated unbalance located at a
certain position z� = Zε , which is given by

ε̃+(z) = ε̃P+ δ (z�−Zε) (21)

with δ (•) the Dirac delta function and ε̃P+ the complex ampli-
tude of the unbalance (eccentricity times a fictitious length), is
computed. If a concentrated unbalance is added in this form, no
additional mass is included at the position Zε . The magnitude
of the unbalance force is defined by the density ρ� and area
A� of the rotor segment �, the complex amplitude ε̃P+ and the
square of the spin speed Ω. Applying the Fourier transform [13]
with respect to the spatial coordinate z� to equations (3) and (4),
leads to the system of linear equations

A


 û+px�(k)

û+py�(k)


=




Ω̄2
�

2r2
G�

ε̂+(k)

− jΩ̄2
�

2r2
G�

ε̂+(k)


 , (22)

with •̂(k) the Fourier transform of •(z�). Using the Fourier
transform of the concentrated unbalance

ε̂+(k) = ε̃P+ e−jk Zε (23)

and solving the system of linear equations for the unknown dis-
placements lead to

û+px�(k) =
Ω̄2

�

2r2
G�

ε̃P+ e−jk Zε

k4 − T̄� k3 +
(
P̄�+ Ω̄2

�

)
k2 − Ω̄2

�

r2
G�

=
Ω̄2

�

2r2
G�

ε̃P+ e−jk Zε

(k− k1�)(k− k2�)(k− k3�)(k− k4�)
, (24)

and û+py�(k) = −j û+px�(k). The inverse Fourier transform [13]
results in the integral

ũ+px�(z�) =
∞∫

−∞

Ω̄2
� ε̃P+ ejk (z�−Zε ) dk

4π r2
G�(k− k1�)(k− k2�)(k− k3�)(k− k4�)

, (25)

which can be evaluated with the residue theorem [14]. In all
practical cases, two of the four roots k1�–k4� are non-real and
complex conjugated and two are distinct real. The final results
for the displacement in x-direction due to a concentrated unbal-
ance are given by

ũ+px�(z�, Zε) =

(
2ejα1� (z�−Zε )

(α1�−α2�)(α1�−α3�)(α1�−α4�)

+
ejα3� (z�−Zε )

(α3�−α1�)(α3�−α2�)(α3�−α4�)
for z� > Zε

+
ejα4� (z�−Zε )

(α4�−α1�)(α4�−α2�)(α4�−α3�)

)
jΩ̄2

� ε̃P+

4r2
G�

,

(26)

ũ+px�(z�, Zε) =

(
−2ejα2� (z�−Zε )

(α2�−α1�)(α2�−α3�)(α2�−α4�)

− ejα3� (z�−Zε )

(α3�−α1�)(α3�−α2�)(α3�−α4�)
for z� < Zε

− ejα4� (z�−Zε )

(α4�−α1�)(α4�−α2�)(α4�−α3�)

)
jΩ̄2

� ε̃P+

4r2
G�

,

(27)

where α1� is the complex root with positive imaginary part
(Im{k•�}> 0), α2� is the complex root with negative imaginary
part (Im{k•�} < 0) and α3� and α4� are the distinct real roots
(Im{k•�}= 0). The displacement in y-direction is simply found
by ũ+py�(z�, Zε) =−j ũ+px�(z�, Zε).

The rotations, bending moments and the shear forces can be
computed by equation (6) and all field variables can be gath-
ered in the column vector x̃+p�(z�, Zε) with the ordering equiva-
lent to the homogeneous solutions x̃+h�(z�). The particular solu-
tion functions for distributed unbalances are derived using the
Green’s function method, which uses the response due to a unit
concentrated unbalance (Green’s function) and an integration
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over the distributed unbalance region [15]. Multiplying equa-
tions (26) and (27) with ε̃+(zu) = ε(zu)ejβ (zu), setting ε̃P+ = 1
and integrating over the unbalance region from zu = ZAu to
zu = ZBu lead to the general particular solutions for distributed
unbalances in integral form

ũ+px�(z̄�) =
ZBu −ZAu

2

1∫

−1

ε̃+(z̄u) ũ+px�(z̄�, z̄u)dz̄u, (28)

where the change of variables

z̄u =
2zu −ZBu −ZAu

ZBu −ZAu
, z̄� =

2z�−ZBu −ZAu

ZBu −ZAu
(29)

has been applied. The Fourier extension (continuation) method
[16, 17] is used to approximate the generally distributed unbal-
ance, which leads to

ε̃+ (z̄u)≈
1√
2T

n

∑
k=−n

duk ej k π
T z̄u with −1 ≤ z̄u ≤ 1 (30)

with T > 1 and n corresponding to the order of the approxima-
tion. The numerical discrete Fourier extension with equispaced
sampling points, presented in [16], allows an efficient compu-
tation of the factors duk. Plugging equations (26) and (27) and
equation (30) into equation (28) results in

ũ+px�(z̄�) =
jΩ̄2

� (ZBu −ZAu)
4

√
2T 64r2

G�

n

∑
k=−n

1∫

−1

duk ej k π
T z̄u




2ej ᾱ1� (z̄�−z̄u)

(ᾱ1�− ᾱ2�)(ᾱ1�− ᾱ3�)(ᾱ1�− ᾱ4�)

+
ej ᾱ3� (z̄�−z̄u)

(ᾱ3�− ᾱ1�)(ᾱ3�− ᾱ2�)(ᾱ3�− ᾱ4�)

+
ej ᾱ4� (z̄�−z̄u)

(ᾱ4�− ᾱ1�)(ᾱ4�− ᾱ2�)(ᾱ4�− ᾱ3�)
,

z̄� ≥ z̄u

− 2ej ᾱ2� (z̄�−z̄u)

(ᾱ2�− ᾱ1�)(ᾱ2�− ᾱ3�)(ᾱ2�− ᾱ4�)

− ej ᾱ3� (z̄�−z̄u)

(ᾱ3�− ᾱ1�)(ᾱ3�− ᾱ2�)(ᾱ3�− ᾱ4�)

− ej ᾱ4� (z̄�−z̄u)

(ᾱ4�− ᾱ1�)(ᾱ4�− ᾱ2�)(ᾱ4�− ᾱ3�)
,

z̄� ≤ z̄u

dz̄u,

(31)

where ᾱ•� = α•�
ZBu −ZAu

2
are the normalized wave numbers.

The integrals in equation (31) can be analytically evaluated in
closed-form, which requires a distinction of three cases de-
pending on the coordinate z̄�. Similar to the concentrated un-
balance, the displacement in y-direction can be calculated by
ũ+py�(z̄�) = −j ũ+px�(z̄�) and all other field variables are given
through equation (6).

3.3. Fitting the boundary and interface conditions
Plugging the total solution x̃+� (z�) = x̃+h�(z�)+ x̃+p�(z�) of each
rotor segment � into the boundary and interface conditions
(equations (7)–(9)) leads to a system of linear equations Ac= b
with c = [c1, · · · ,c�, · · · ,cM]T the arbitrary constants of the ho-
mogenous solutions. The system matrix A (size 8M ×8M) de-
pends only on the concentrated elements at the stations, while
the right-hand side vector b (size 8M × 1) is additionally af-
fected by the rotor unbalance. The unknown constants c are
the solution of the system of linear equations Ac = b, which
uniquely define the state variables for the whole rotor. The sys-
tem matrix A has a banded structure since it is an assembly of
the local system matrices A� of each rotor segment �.

4. NUMERICAL EXAMPLES
In this section, NAT is used to calculate the steady-state har-
monic response of two different rotor-bearing systems. The first
system is rather simple to illustrate the effects of the axial load-
ings and the distributed unbalance, while the second system is
more realistic and is used to show the efficiency and accuracy
of NAT.

The first example is a four-stepped rotor, which is shown in
Fig. 2. Three rigid discs are mounted to the rotor, which is
supported by isotropic and symmetrical bearings. The disc at
station (3) has a mass unbalance ε(3) = 0.03 mm at the an-
gular position β (3) = 30◦ and a distribute unbalance ε(z) =
−0.2+ 0.02cos(−1.05+ 8z)e0.5z (mm) with the angular po-
sition β (z) =−15+385z(◦) is present in the rotor segments 4
and 5.

The rotor is made of aluminium (E = 7 · 1010 N/m2, ρ =
2700 kg/m3) and the circular cross-sections in segment 1, 2
and 5 have a radius of 0.020 m, in segment 3 of 0.025 m and in
segment 4 of 0.030 m, leading to a total mass of 4.76 kg. The
total length of the rotor is 1.04 m, which leads to a ratio of the
rotor length to the maximum diameter of 17.33 allowing the
use of the Rayleigh beam theory. The parameters of the con-
centrated elements at the stations are listed in Table 1, where
the coefficients of the isotropic and symmetrical bearings are
taken from [18].

The proposed NAT is implemented in MATLAB® R2020a. To
verify the calculated results and to assess the computational ef-
ficiency of NAT, the FEM Matlab code presented by Friswell

Table 1
Parameters of the bearings and discs for the first example

(i) Zi m Θt Θp kx ky kxy = kyx dx = dy

(m) (kg) (kgm2) (kgm2) (N/m) (N/m) (N/m) (Ns/m)

1 0.00 0 0 0 0 0 0 0

2 0.15 0 0 0 1e7 1e7 5e6 2000

3 0.31 15 0.01 0.015 0 0 0 0

4 0.51 25 0.015 0.025 0 0 0 0

5 0.71 20 0.015 0.012 0 0 0 0

6 1.04 0 0 0 1e7 1e7 5e6 2000
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Whirling motion of rotors in anisotropic bearings

Fig. 2. Configuration of the first example rotor with distributed unbalance and axial loading

et al. [19] is used for comparison. A FEM element size of
0.01m is applied to guarantee accurate reference results.

In Fig. 3, the unbalance response of the rotor-bearing system
for different spin speeds and axial loads is shown. The parame-
ter a represents the major axis of the elliptical whirling orbit at
the arbitrary rotor location z = 0.46 m. The high values of the
axial loadings P and T , used in Fig. 3, may result in a buck-
ling or fatigue of real shafts (see e.g. [20]) and are only applied
to clearly illustrate their effects on the unbalance response. Es-

pecially, the values of the constant axial torque would lead to
very high tangential stresses and cracking of the shaft. Realistic
values of the torque have only a minor impact on the unbal-
ance response. It is apparent from Figs. 3a and 3b that a com-
pression force leads to a decrease of the critical speeds of the
rotor. This is consistent with the results given in the literature,
e.g. [20]. Similarly, a constant axial torque also leads to a de-
crease of the critical speeds, which is clearly shown in Figs. 3c
and 3d. This effect has also been verified by e.g. Eshleman and

(a) Axial force (first critical speeds) (b) Axial force (second critical speeds)

(c) Axial torque (first critical speeds) (d) Axial torque (second critical speeds)

Fig. 3. Effect of axial loading on the unbalance response
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Eubanks [21]. Additionally, the axial torque leads to a reduced
vibration level for the first critical speeds and for high values of
T > 30 kNm, the splitting of the first critical speed is not visible
(see Fig. 3c).

In Fig. 4, a comparison of NAT and FEM for three different
load cases is shown. It is apparent that the results for the semi-
major axis (a) and semi-minor axis (b) of the elliptical orbit
at z = 0.46 m are in excellent agreement for all load cases (no
axial loads, P = −50 kN, T = 50 kNm). An Intel® CoreTM i7
system (6× 3.7 GHz, 32 GB RAM) with a Windows 10 oper-
ating system is used to carry out the computations. The com-
putational time of NAT is approximately three times shorter
compared to FEM, which shows the computational efficiency
of NAT.

In the second numerical example, a more realistic rotor-
bearing system is chosen to show the efficiency and accuracy of
NAT. The example is similar to the previous one, but has nine
rotor segments with different cross-sections and is supported by
anisotropic bearings. The system is illustrated in Fig. 5. The pa-
rameters of the discs at station (3), (5) and (7) are the same as
in Table 1. Each disc has a mass unbalance, which is given by
ε(3) = 0.03 mm, ε(5) = 0.025 mm and ε(7) = 0.04 mm and the
angular position β (3) = 30◦, β (5) = 90◦ and β (7) = 120◦. A dis-
tributed unbalance is omitted in this example. The diameters of
the cross-sections are d1 = 0.03 m, d2 = 0.04 m, d3 = 0.05 m,
d4 = 0.06 m, d5 = 0.07 m, d6 = 0.08 m, d7 = 0.06 m, d8 =
0.04 m and d9 = 0.03 m. The bearings at the stations (2) and

Table 2
Parameters of the anisotropic bearings

Type kx ky kxy kyx dx dy dxy = dyx

(kN/m) (Ns/m)

1 11600 54400 −3970 −32800 2416 16810 −4005

2 12400 34300 −860 −28000 1487 6292 −1817

(10) are equal and two different types are examined. To get real-
istic bearing parameters, the hydrodynamic short width bearing
theory presented in [19] is applied. Although, the theory shown
in [19] leads to spin speed dependent bearing parameters, con-
stant values are assumed in this paper. The parameter sets listed
in Table 2 are calculated with a bearing eccentricity of 0.793
and 0.692 and an assumed constant spin speed of 3000 rpm
and 7000 rpm. Due to the minor effects of axial loadings on
the rotor-bearing system, as shown in the previous example, the
constant axial force and torque are set to zero.

In Figs. 6 and 7, the semi-major and semi-minor axis of the
elliptical orbits for the first two critical speeds at z = 0.46m are
shown. The FEM model used to compute the reference solu-
tions has an element size of 0.01 m (104 elements). The results
of NAT and FEM match perfectly for the first critical speed
(Figs. 6a and 6b). At the second critical speed some deviations
between NAT and FEM are noticeable, which is apparent from
Figs. 7a and 7b. Due to the higher spin speed at the second crit-

(a) Semi-major axis (b)Semi-minor axis

Fig. 4. Comparison of NAT and FEM for different load cases

Fig. 5. Configuration of the second example rotor with anisotropic bearings and nine sections

8 Bull. Pol. Acad. Sci. Tech. Sci. 69(6) 2021, e138999

Whirling motion of rotors in anisotropic bearings
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Fig. 6. Comparison of NAT and FEM for the two bearing types (first critical speed)

(a) Semi-major axis (b)Semi-minor axis

Fig. 7. Comparison of NAT and FEM for the two bearing types (second critical speed)

ical speed, the element size of the FEM reference model is not
small enough to accurately represent the deformation. It can be
shown that the FEM solution converges towards the results of
NAT with decreasing element size. Even though, the number
of segments in the second example is much higher compared
to the first one, the computation time of NAT is still approxi-
mately 2.5 times lower compared to FEM. NAT requires 31 s to
calculate 10 000 points of the unbalance response curve, while
the computation time of FEM is 78 s. This clearly shows the ef-
ficiency of NAT compared to FEM. Furthermore, the solutions
of NAT are quasi-analytical, since errors are only introduced
in the approximation of the unbalance distribution, while the
governing equations are fulfilled exactly. This has considerable
advantages for the calculation of derived quantities, e.g. bend-
ing moments or shear forces, since high accuracy is achieved,
while FEM loses accuracy due to a lower order approximation
of these quantities.

5. CONCLUSION
In this paper, an extension of NAT to rotating Rayleigh beams
under constant axial loading running in general anisotropic
bearings with cross-coupling effects has been developed. The
numerical examples have shown that the numerical efficiency

and accuracy of NAT is not influenced by the additional effects.
The calculated unbalance response illustrates the effects of a
constant axial compression force and axial torque on the crit-
ical speeds of a rotor-bearing system. The critical speeds are
lower by both loadings, which is in agreement with previous
results in the literature.
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mately 2.5 times lower compared to FEM. NAT requires 31 s to
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in the approximation of the unbalance distribution, while the
governing equations are fulfilled exactly. This has considerable
advantages for the calculation of derived quantities, e.g. bend-
ing moments or shear forces, since high accuracy is achieved,
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to the first one, the computation time of NAT is still approxi-
mately 2.5 times lower compared to FEM. NAT requires 31 s to
calculate 10 000 points of the unbalance response curve, while
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ficiency of NAT compared to FEM. Furthermore, the solutions
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governing equations are fulfilled exactly. This has considerable
advantages for the calculation of derived quantities, e.g. bend-
ing moments or shear forces, since high accuracy is achieved,
while FEM loses accuracy due to a lower order approximation
of these quantities.
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