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Abstract. Specific emitter identification (SEI) can distinguish single-radio transmitters using the subtle features of the received waveform. 
Therefore, it is used extensively in both military and civilian fields. However, the traditional identification method requires extensive prior 
knowledge and is time-consuming. Furthermore, it imposes various effects associated with identifying the communication radiation source 
signal in complex environments. To solve the problem of the weak robustness of the hand-crafted feature method, many scholars at home and 
abroad have used deep learning for image identification in the field of radiation source identification. However, the classification method based 
on a real-numbered neural network cannot extract In-phase/Quadrature (I/Q)-related information from electromagnetic signals. To address these 
shortcomings, this paper proposes a new SEI framework for deep learning structures. In the proposed framework, a complex-valued residual 
network structure is first used to mine the relevant information between the in-phase and orthogonal components of the radio frequency baseband 
signal. Then, a one-dimensional convolution layer is used to a) directly extract the features of a specific one-dimensional time-domain signal 
sequence, b) use the attention mechanism unit to identify the extracted features, and c) weight them according to their importance. Experiments 
show that the proposed framework having complex-valued residual networks with attention mechanism has the advantages of high accuracy 
and superior performance in identifying communication radiation source signals.

Key words: complex-valued residual network; specific emitter identification; fingerprint characteristic; attention mechanism; one-dimensional 
convolution.
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1.	 INTRODUCTION
Specific emitter identification (SEI) is the process of uniquely 
identifying an individual emitter from the same class of com-
munication radiation sources by its individual properties that 
arise from hardware imperfections [1]. The characteristics of 
electronic circuits and radio frequency (RF) components deter-
mined by the production and manufacturing processes make the 
SEI of communication equipment achievable [2]. Its unique 
characteristics and resistance to fraud also play an important 
role in situational awareness in military communications, elec-
tronic reconnaissance, and battlefield networks [3–5].

The key to SEI is to extract features that represent hard-
ware variability, also known as RF fingerprints. Numerous 
methods have been suggested for RF fingerprints. The tran-
sient-based method extracts features from the on/off transient 
of the signal [6–9], but the signal has a short duration and is 
challenging to extract. The feature-extraction method is based 
on time-frequency analysis and on the time-frequency energy 
distribution characteristics of individual signals of different 
radiation sources; it compares the observed with the ideal sig-
nals [10–13]. The method based on modulation analysis com-
pares the constellation diagram of the received signal with the 
ideal constellation diagram and uses the constellation diagram 

deviation generated in the modulation process as the fingerprint 
feature of the radiator [14–15]. The method based on nonlin-
ear dynamics takes the emitter as a nonlinear dynamic system 
and extracts the RF characteristics [16‒18]. In addition, other 
research studies have extracted RF fingerprints from Symbol 
Synchronization [4], graphical representations [19], or geomet-
rical features [20,21]. Some methods extract features from fin-
gerprint mechanisms [22] or time-varying channel conditions 
[23]. The applications of SEI technology in modern identifica-
tion models continue to evolve, such as radar emitter recogni-
tion systems for electronic intelligence systems [24] and device 
identification methods to increase the security of the Internet of 
Things [25]. Most previous research studies on SEI were based 
on artificial characteristics and depended on prior knowledge of 
signal characteristics and existing signal processing tools [26]. 
In turn, prior knowledge was related to the specific attributes 
of the received signal [27], in which the extracted features were 
relatively single and required high feature effectiveness. With 
the increasing complexity of the actual electromagnetic (EM) 
environment and the tremendous increase in communication 
signals, it is difficult to obtain effective prior information. Cor-
respondingly, this has led to the increase of classification error.

In recent years, deep learning has made significant break-
throughs in computer vision, speech recognition, and face rec-
ognition and has been compared with traditional methods based 
on the manual extraction of features, whereby deep learning 
algorithms learn features from data. Deep learning has demon-
strated superior performance in many fields. Therefore, some 
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researchers have recently begun to explore the application of 
deep learning in SEI. Shieh proposed a three-layer vector neural 
network for emitter identification [5]. Zhang applied convolu-
tional neural networks (CNNs) to radio cognition [28]. West 
input two-way I/Q signals directly to a deep CNN to classify 
radio signals of different modulation classes [29]. Wu used 
a recurrent neural network (RNN) based on long-and short-term 
memory for RF fingerprint identification and achieved high-de-
tection accuracy even in the presence of high-noise-power lev-
els [30]. Ding used a CNN in a bispectrum with higher accu-
racy than those associated with conventional methods [31]. Pan 
constructed a deep residual network based on a Hilbert spec-
trum image, and the simulation results showed that the method 
performed well under various channel conditions [26]. Baldini 
compared various methods for converting signals into images 
as CNN inputs, including recurrence plots, continuous wavelet 
transform (CWT), and short-time Fourier transform (STFT). 
Experiments showed that the wavelet-based method outper-
formed the other methods [32]. Huang proposed a CWT-based 
approach and domain adversarial neural networks (DANN) to 
improve the performance of SEIs at various frequencies [33]. 
Bin combined attention mechanisms and CNNs to improve the 
identification of individuals from radiation sources [34].

O’Shea et al. were the first to propose a two-channel 
real-numbered network for EM signal waveform identifica-
tion in a complex domain [35]. This approach solved the input 
problem of complex waveform signals but could not extract 
the I/Q-related information from EM signals [36]. Hirosc et al. 
demonstrated that complex networks could effectively extract 
I/Q-related information in EM signal waveforms through I/Q 
fusion channels, thus effectively improving the identification 
accuracy of EM signals [37]. Trabelsi et al. proposed the deri-
vation of a systematic formulation of a complex-valued neural 
network composed of basic components and constructed com-
plex residual networks based on the Keras framework [38]. 
Wang applied deep residual networks to RF fingerprint identi-
fication and achieved better identification results [39].

However, in the field of signal identification of communica-
tion radiation sources, most of the sampled communication sig-
nals are one-dimensional (1D), time-domain sequences. If the 
original, two-dimensional network model is used directly, addi-
tional computation time and storage space will be required to 
convert the 1D to a two-dimensional (2D) sequence. In addition, 
the dimensional transformation of a 1D time-domain sequence 
to a 2D sequence in practical applications leads to poor real-
time performance. Although the complex-valued residual net-
work model can extract fingerprint features of radiation sources 
using the in-phase and orthogonal components of the signal, 
the weights of the features are not the same. This means that 
redundant and useless features will suppress the identification 
accuracy. This paper proposes novel, 1D, complex-valued resid-
ual networks with attention mechanism (CVResNet-1D-AM), 
which input the collected time-domain data of the I and Q 
channels into the network, extracts features from the original 
communication signal sequence directly, and uses the attention 
mechanism to identify the key information of the extracted fea-
tures for communication radiation source signal identification.

In summary, our contributions are the following:
●	 Based on the PyTorch framework, we constructed a com-

plex-valued residual network to improve the generalization 
of the network model. Compared with the real-numbered 
residual neural network, the number of model parameters 
of the complex-valued residual network is smaller, and the 
operation time is shorter.

●	 The 1D convolutional layer can extract features directly 
from the time-domain sequence of communication signals 
and save dimensional change time, which leads to better 
real-time performance.

●	 We have added a unit that uses the attention mechanism that 
can automatically weigh the feature maps generated by the 
1D convolutional layers such that important features gain 
more weight while suppressing features that negatively 
impact identification. The experimental results show that 
the CVResNet-1D-AM proposed in this study has higher 
accuracy and better identification performance in the iden-
tification of communication radiation source signals.

The remainder of this paper is structured as follows: in Sec-
tion 2, the complex-valued residual network model under the 
PyTorch framework is introduced, and Section 3 details the pro-
posed CVResNet-1D-AM using 1D convolution and attention 
mechanism. Section 4 presents the identification results and 
discusses them using two real sample sets. The conclusions are 
presented in Section 5.

2.	 COMPLEX-VALUED RESIDUAL NETWORK
To implement the traditional two-dimensional real-valued con-
volution on the complex domain, we used the complex vector 
z = x + iy to convolve the complex filter matrix W = a + iB, 
where a and B are real-numbered matrices, and x and y are 
real-numbered vectors.

	 W ¤ z = (A ¤ x ¡ B ¤ y) + i(B ¤ x ¡ A ¤ y).� (1)

Using the matrix form for the expression, the real and imagi-
nary parts of the operation can be expressed as
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tor neural network for emitter identification [5]. Zhang applied
convolutional neural networks (CNNs) to radio cognition [28].
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signal, the weights of the features are not the same. This means
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tion accuracy. This paper proposes novel, 1D, complex-valued
residual networks with attention mechanism (CVResNet-1D-
AM), which input the collected time-domain data of the I and
Q channels into the network, extracts features from the original
communication signal sequence directly, and uses the attention

mechanism to identify the key information of the extracted fea-
tures for communication radiation source signal identification.

In summary, our contributions are the following:
• Based on the PyTorch framework, we constructed a complex-

valued residual network to improve the generalization of
the network model. Compared with the real-numbered resid-
ual neural network, the number of model parameters of the
complex-valued residual network is smaller, and the opera-
tion time is shorter.

• The 1D convolutional layer can extract features directly from
the time-domain sequence of communication signals and
save dimensional change time, which leads to better real-time
performance.

• We have added a unit that uses the attention mechanism that
can automatically weigh the feature maps generated by the
1D convolutional layers such that important features gain
more weight while suppressing features that negatively im-
pact identification. The experimental results show that the
CVResNet-1D-AM proposed in this study has higher accu-
racy and better identification performance in the identifica-
tion of communication radiation source signals.

The remainder of this paper is structured as follows: in Sec-
tion 2, the complex-valued residual network model under the
PyTorch framework is introduced, and Section 3 details the pro-
posed CVResNet-1D-AM using 1D convolution and attention
mechanism. Section 4 presents the identification results and dis-
cusses them using two real sample sets. The conclusions are
presented in Section 5.

2. COMPLEX-VALUED RESIDUAL NETWORK
To implement the traditional two-dimensional real-valued con-
volution on the complex domain, we used the complex vector
z = x+ iy to convolve the complex filter matrix W = a+ iB,
where a and B are real-numbered matrices, and x and y are real-
numbered vectors.

W ∗ z = (A∗x−B∗ y)+ i(B∗x−A∗ y) . (1)

Using the matrix form for the expression, the real and imaginary
parts of the operation can be expressed as

[
R(W ∗ z)
V (W ∗ z)

]
=

[
A −B
B A

]
∗

[
x
y

]
. (2)

The major advantage of the complex-valued network compared
with the real number network is that the correlation informa-
tion between the in-phase and orthogonal components of the
RF baseband signal can be fully extracted; in other words, the
nonlinear characteristics of the transmitter RF fingerprint can be
fully extracted. However, it was found that the gradual increase
in the number of network layers in the complex-valued network
also caused additional error increases and led to the gradient
dispersion problem that yielded poor identification and classi-
fication results. To solve this problem, we replaced the real-
numbered network structures, such as the real-numbered convo-
lutional layer, real-numbered batch normalization and pooling
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The major advantage of the complex-valued network compared 
with the real number network is that the correlation information 
between the in-phase and orthogonal components of the RF 
baseband signal can be fully extracted; in other words, the non-
linear characteristics of the transmitter RF fingerprint can be 
fully extracted. However, it was found that the gradual increase 
in the number of network layers in the complex-valued network 
also caused additional error increases and led to the gradient 
dispersion problem that yielded poor identification and classifi-
cation results. To solve this problem, we replaced the real-num-
bered network structures, such as the real-numbered convolu-
tional layer, real-numbered batch normalization and pooling 
layer with the complex-valued network structures, such as the 
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complex-valued convolutional layer, batch normalization, and 
pooling layer, and we constructed the complex-valued residual 
stack based on the PyTorch framework.

	 H(xr, xi) = xr, xr + F(xr, xi),� (3)

where xr, xi are the inputs of the residual unit, F(xr, xi) is the 
output of the data after the convolution layer, and H(xr, xi) is 
the output of the residual unit.

For complex-valued convolution, we considered a typical 
real-valued 2D convolution layer with N feature mappings, 

where N is divisible by the number two. We assigned the 
first N/2 feature mappings to represent the real components 
to express these feature mappings as complex numbers. The 
remaining N/2 feature mappings were used to represent the 
imaginary components. Therefore, for a four-dimensional 
weight tensor W that connects Nin input feature mappings to 
Nout output feature mappings with a convolution kernel with 
a size of m£m, we obtained a weight tensor with a complex 
weight with a size of (Nout£Nin£m£m)/2. In contrast to the 
common 2D residual networks, and because the communication 
radiation source signal is a 1D time series similar to a residual 
neural network, the framework of the 1D complex-valued resid-
ual network we constructed is as follows.

Table 1
Network framework

Layer 
name

ResNet-1D 
18-layer

ResNet-1D 
34-layer

CVResNet-1D

Conv1
7£7, 64, stride2 7£7, 64, stride2 7£7, 32, stride2

3£3 max pool, stride2

conv2_x 3£3  64
3£3  64

£2
3£3  64
3£3  64

£3
3£3  32
3£3  32

£3

conv3_x 3£3  128
3£3  128

£2
3£3  128
3£3  128

£4
3£3  64
3£3  64

£4

conv4_x 3£3  256
3£3  256

£2
3£3  256
3£3  256

£6
3£3  128
3£3  128

£6

conv5_x 3£3  512
3£3  512

£2
3£3  512
3£3  512

£3
3£3  256
3£3  256

£3

Average pool, fully connected layer, SoftMax

Fig. 1. Complex-valued convolution process

=

Real feature maps

Imaginary feature maps

Real kernels

Imaginary kernels

Imaginary feature mapsReal feature maps

Real feature maps Imaginary feature maps

Real kernels

Real kernels

Imaginary kernels

Imaginary kernels
Real feature maps

Imaginary feature maps
MRKR MIKI

MRKI MIKR

Convolution operator
MRKR -MIKI
MRKI +MIKR

Fig. 2. Complex-valued residual structure
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3.	 ONE-DIMENSIONAL CONVOLUTIONAL NEURAL 
NETWORK WITH AM

3.1. One-dimensional convolution
Convolutional layers are typically used to process 2D data. 
Because the communication radiation source signal is mainly 
stored in 1D, and the dimensional transformation is time-con-
suming, this paper proposes using a 1D convolutional layer for 
feature extraction. Compared with the traditional 2D convolu-
tional layer, the 1D convolutional layers reduces the number of 
parameters. Moreover, the 1D signal in the time domain is no 
longer converted into a 2D feature map, which saves computa-
tion time and storage space. The details of the process for the 
1D convolution are shown in Fig. 3.

In equations (4) and (5), the superscript l = 1, 2, …, N represents 
the lth layer of convolution, xq

l is the activation value output 
by the q channel of the convolutional layer l, f (⋅) is the acti-
vation function of the network, uq

l is the net activation of the q 
channel output of the convolutional layer l, xp

l ¡ 1 is the output 
of the convolutional layer l ¡ 1, k l

pq is the convolutional kernel 
function of the pth input feature vector corresponding to the 
qth channel of the convolutional layer l, and bq

l is the offset of 
the q channel of the convolutional layer l.

3.2. Convolutional block attention module
The convolutional block attention module (CBAM) [40] focuses 
on capturing key information from the data by simulating the 
visual perception of the human eye and by selectively focusing 
on salient features. CBAM studies have demonstrated that the 
sequence of the channel attention module followed by the spa-
tial attention module performs better. In this study, we propose 
a 1D attention mechanism (AM) similar to the original CBAM. 
AM is added between the last pooling layer and the first fully 
connected layer; it helps capture features and suppresses less 
important information. The proposed AM structure is shown 
in Fig. 4.

From one viewpoint, Fig. 5 shows that the channel attention 
module can focus on features’ key channel location informa-
tion and achieve optimized feature classification by extracting 
the importance of different channel features. Channel attention 
can tap the dependency relationship between channel maps to 
determine the importance of each feature channel and assign 
different weights. There is an intrinsic connection between 
two-way IQ signals for radio signals, and the feature maps of 
different channels can reflect parts of the subtle features of 
radio data. Correspondingly, channel attention can be used to 
suppress useless features and improve the classification and 
identification effect.

Fig. 4. Attention mechanism

Input Feature

Channel
Attention
Module

X X

Spatial 
Attention
Module

Refined Feature

+

Max Pool

Avg Pool

MLP
Input Feature F Channel AttentionMc

Sigmoid

Max Pool

Avg Pool

Input Feature F Spatial Attention Ms

SigmoidConv(7x7)

Fig. 3. One-dimensional convolution operation

The mathematical expression of 1D convolution operation 
is as follows:

	 xq
l =  f (uq

l),� (4)

	 uq
l = 

p 2 Mq

∑ xp
l ¡ 1 ¤ k l

pq + bq
l .� (5)
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For 1D radio data in the channel attention module, let the 
input feature set F 2 RH£C; after the average pooling layer and 
the maximum pooling layer, we can obtain Favg 2 R1£C and 
Fmax 2 R1£C.

	 Favg = Averagepool(F) =  1
W i

W
∑ F(i, C),� (6)

	 Fmax = Maxpool(F) = max (F(1 ∙ i ∙ W )C ).� (7)

With the use of a multilayer perceptron (MLP), the parameters 
in the MLP are shared, the number of neurons in the hidden 
layer is C/r, and the number of neurons in the output layer 
is C. We sum up the two feature maps corresponding to the 
output, then use the sigmoid function to activate the feature 
maps obtained by the summation to obtain the channel atten-
tion weight coefficient Mc(F) 2 R1£C, and finally multiply the 
weight coefficient Mc and F to obtain the channel attention 
refinement output feature F 0.
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In equations (4) and (5), the superscript l = 1,2, . . . ,N repre-
sents the lth layer of convolution, xl

q is the activation value out-
put by the q channel of the convolutional layer l, f (·) is the
activation function of the network, ul

q is the net activation of
the q channel output of the convolutional layer l, xl−1

p is the
output of the convolutional layer l −1, kl

pq is the convolutional
kernel function of the pth input feature vector corresponding to
the qth channel of the convolutional layer l, and bl

q is the offset
of the q channel of the convolutional layer l.

3.2. Convolutional block attention module
The convolutional block attention module (CBAM) [40] fo-
cuses on capturing key information from the data by simulat-
ing the visual perception of the human eye and by selectively
focusing on salient features. CBAM studies have demonstrated
that the sequence of the channel attention module followed by
the spatial attention module performs better. In this study, we
propose a 1D attention mechanism (AM) similar to the orig-
inal CBAM. AM is added between the last pooling layer and
the first fully connected layer; it helps capture features and sup-
presses less important information. The proposed AM structure
is shown in Fig. 4.

Input Feature

Channel
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X X
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Attention
Module

Refined Feature

Max Pool

Avg Pool

Input Feature F Spatial Attention Ms

SigmoidConv(7x7)

+

Max Pool

Avg Pool
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Input Feature F Channel Attention Mc
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Fig. 4. Attention mechanism

From one viewpoint, Fig. 5 shows that the channel attention
module can focus on features’ key channel location informa-
tion and achieve optimized feature classification by extracting
the importance of different channel features. Channel attention
can tap the dependency relationship between channel maps to
determine the importance of each feature channel and assign
different weights. There is an intrinsic connection between two-
way IQ signals for radio signals, and the feature maps of differ-
ent channels can reflect parts of the subtle features of radio data.
Correspondingly, channel attention can be used to suppress use-
less features and improve the classification and identification
effect.

+

Max Pool

Avg Pool

MLP
Input Feature F Channel Attention Mc

Sigmoid

Fig. 5. Channel attention module

For 1D radio data in the channel attention module, let the
input feature set F ∈ RH×C; after the average pooling layer and
the maximum pooling layer, we can obtain Favg ∈ R1×C and
Fmax ∈ R1×C.

Favg = Averagepool(F) =
1

W

W

∑
i

F(i,C), (6)

Fmax = Maxpool(F) = max(F(1 ≤ i ≤W )C) . (7)

With the use of a multilayer perceptron (MLP), the parameters
in the MLP are shared, the number of neurons in the hidden
layer is C/r, and the number of neurons in the output layer is C.
We sum up the two feature maps corresponding to the output,
then use the sigmoid function to activate the feature maps ob-
tained by the summation to obtain the channel attention weight
coefficient Mc(F)∈R1×C, and finally multiply the weight coef-
ficient Mcand F to obtain the channel attention refinement out-
put feature F ′.

Mc(F) = σ (MLP(Avgpool(F))+MLP(Maxpool(F)))

= σ
(
W1

(
W0(Favg)

)
+W1 (W0 (Fmax))

)
, (8)

F ′ = Mc(F)⊗F

= σ
(
W1

(
W0

(
Favg

))
+W1 (W0 (Fmax))

)
⊗F, (9)

where σ represents the sigmoidal function, and W0 ∈ RC/r×C

and W1 ∈ RC/r×C represent the multilayer perceptron hidden
layer and output layer weights, respectively.

The channel attention weight coefficients can be regarded as
feature detectors for the feature vectors of different channels.
Each channel in the feature map is assigned a weight value us-
ing the channel attention weight coefficients. As the informa-
tion introduced by the channel becomes more useful, the corre-
sponding weight is obtained.

Figure 6 shows the spatial attention module. This module fo-
cuses attention on the key spatial location information of the
features. It enables the network to learn the feature location in-
formation that is useful for the classification task by assigning
different weights to the location information of the features. In
radio signals, contextual information plays an important role
in feature classification because it contains associative infor-
mation. The spatial attention module enriches the contextual
relationships by modeling local features and enhances the rep-
resentation of radio fingerprint features.

Max Pool

Avg Pool

Input Feature F Spatial Attention Ms

SigmoidConv(7x7)

Fig. 6. Spatial attention module

In the spatial attention module, suppose that the input fea-
ture F ′ ∈ RW×C is compressed by the average pooling layer
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In equations (4) and (5), the superscript l = 1,2, . . . ,N repre-
sents the lth layer of convolution, xl

q is the activation value out-
put by the q channel of the convolutional layer l, f (·) is the
activation function of the network, ul

q is the net activation of
the q channel output of the convolutional layer l, xl−1

p is the
output of the convolutional layer l −1, kl

pq is the convolutional
kernel function of the pth input feature vector corresponding to
the qth channel of the convolutional layer l, and bl

q is the offset
of the q channel of the convolutional layer l.

3.2. Convolutional block attention module
The convolutional block attention module (CBAM) [40] fo-
cuses on capturing key information from the data by simulat-
ing the visual perception of the human eye and by selectively
focusing on salient features. CBAM studies have demonstrated
that the sequence of the channel attention module followed by
the spatial attention module performs better. In this study, we
propose a 1D attention mechanism (AM) similar to the orig-
inal CBAM. AM is added between the last pooling layer and
the first fully connected layer; it helps capture features and sup-
presses less important information. The proposed AM structure
is shown in Fig. 4.
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Fig. 4. Attention mechanism

From one viewpoint, Fig. 5 shows that the channel attention
module can focus on features’ key channel location informa-
tion and achieve optimized feature classification by extracting
the importance of different channel features. Channel attention
can tap the dependency relationship between channel maps to
determine the importance of each feature channel and assign
different weights. There is an intrinsic connection between two-
way IQ signals for radio signals, and the feature maps of differ-
ent channels can reflect parts of the subtle features of radio data.
Correspondingly, channel attention can be used to suppress use-
less features and improve the classification and identification
effect.
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Fig. 5. Channel attention module

For 1D radio data in the channel attention module, let the
input feature set F ∈ RH×C; after the average pooling layer and
the maximum pooling layer, we can obtain Favg ∈ R1×C and
Fmax ∈ R1×C.

Favg = Averagepool(F) =
1

W

W

∑
i

F(i,C), (6)

Fmax = Maxpool(F) = max(F(1 ≤ i ≤W )C) . (7)

With the use of a multilayer perceptron (MLP), the parameters
in the MLP are shared, the number of neurons in the hidden
layer is C/r, and the number of neurons in the output layer is C.
We sum up the two feature maps corresponding to the output,
then use the sigmoid function to activate the feature maps ob-
tained by the summation to obtain the channel attention weight
coefficient Mc(F)∈R1×C, and finally multiply the weight coef-
ficient Mcand F to obtain the channel attention refinement out-
put feature F ′.

Mc(F) = σ (MLP(Avgpool(F))+MLP(Maxpool(F)))

= σ
(
W1

(
W0(Favg)

)
+W1 (W0 (Fmax))

)
, (8)

F ′ = Mc(F)⊗F

= σ
(
W1

(
W0

(
Favg

))
+W1 (W0 (Fmax))

)
⊗F, (9)

where σ represents the sigmoidal function, and W0 ∈ RC/r×C

and W1 ∈ RC/r×C represent the multilayer perceptron hidden
layer and output layer weights, respectively.

The channel attention weight coefficients can be regarded as
feature detectors for the feature vectors of different channels.
Each channel in the feature map is assigned a weight value us-
ing the channel attention weight coefficients. As the informa-
tion introduced by the channel becomes more useful, the corre-
sponding weight is obtained.

Figure 6 shows the spatial attention module. This module fo-
cuses attention on the key spatial location information of the
features. It enables the network to learn the feature location in-
formation that is useful for the classification task by assigning
different weights to the location information of the features. In
radio signals, contextual information plays an important role
in feature classification because it contains associative infor-
mation. The spatial attention module enriches the contextual
relationships by modeling local features and enhances the rep-
resentation of radio fingerprint features.

Max Pool

Avg Pool

Input Feature F Spatial Attention Ms

SigmoidConv(7x7)

Fig. 6. Spatial attention module

In the spatial attention module, suppose that the input fea-
ture F ′ ∈ RW×C is compressed by the average pooling layer
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where σ  represents the sigmoidal function, and W0 2 RC/r£C 
and W1 2 RC/r£C represent the multilayer perceptron hidden 
layer and output layer weights, respectively.

The channel attention weight coefficients can be regarded as 
feature detectors for the feature vectors of different channels. 
Each channel in the feature map is assigned a weight value 

using the channel attention weight coefficients. As the infor-
mation introduced by the channel becomes more useful, the 
corresponding weight is obtained.

Figure 6 shows the spatial attention module. This module 
focuses attention on the key spatial location information of the 
features. It enables the network to learn the feature location 
information that is useful for the classification task by assigning 
different weights to the location information of the features. 
In radio signals, contextual information plays an important role 
in feature classification because it contains associative infor-
mation. The spatial attention module enriches the contextual 
relationships by modeling local features and enhances the rep-
resentation of radio fingerprint features.

In the spatial attention module, suppose that the input feature 
F 0 2 RW£C is compressed by the average pooling layer and the 
maximum pooling layer to obtain F 0

avg 2 RW£1 and F 0
max 2 RW£1

	 F 0
avg = Averagepool(F 0) =  1

C j

C
∑ F 0(W, j),� (10)

	 F 0
max = Maxpool(F 0) = max (F 0(W, 1 ∙ j ∙ C )),� (11)

The two 1D channel feature maps are then spliced together, and 
the spliced feature maps are compressed with the use of a 7£7 
size convolutional kernel to obtain a feature map with the size 
of W£1. Subsequently, the sigmoidal function activates the 
feature map to obtain the channel attention weight coefficient 
Ms(F 0) 2 RW£1. Correspondingly, we multiply the weight coef-
ficient, Ms and F 0 to obtain the output feature F 00
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and the maximum pooling layer to obtain F ′
avg ∈ RW×1 and

F ′
max ∈ RW×1

F ′
avg = Averagepool

(
F ′)= 1

C

C

∑
j

F ′(W, j), (10)

F ′
max = Maxpool

(
F ′)= max

(
F ′ (W,1 ≤ j ≤C)

)
. (11)

The two 1D channel feature maps are then spliced together, and
the spliced feature maps are compressed with the use of a 7×7
size convolutional kernel to obtain a feature map with the size
of W × 1. Subsequently, the sigmoidal function activates the
feature map to obtain the channel attention weight coefficient
Ms(F ′) ∈ RW×1. Correspondingly, we multiply the weight co-
efficient, Ms and F ′ to obtain the output feature F ′′

Ms(F ′) = σ
(

f 7×7 ([Avgpool(F ′); Maxpool(F ′)
]))

= σ
(

f 7×7 ([F ′
avg;F ′

max
]))

, (12)

where σ represents the sigmoidal function, and f 7×7 represents
a convolutional kernel with a size of 7.

The spatial attention weight coefficient reflects the impor-
tance of the different regional features. Not all areas are equally
important for the identification task in the feature map. The ar-
eas related to the identification task are more worthy of atten-
tion, and this part of the area should have a greater weight.

The overall attention unit used in this study can be summa-
rized as an input feature F ∈RH×C. First, we obtain the channel
weight coefficient Mc through the channel AM, and then mul-
tiply it by the input feature to obtain a feature map F ′ that ac-
curately reflects the crucial channel information of the features.
Second, we use the input F ′ as the spatial attention module to
obtain the spatial weight coefficient Ms. Finally, we multiply it
by F ′ to obtain a feature map F ′′ containing channel and spatial
position information.

We use the following formula to express the overall flow of
the AM module:

F ′′ = Ms(F ′)⊗F ′

= Ms(Mc(F)⊗F)⊗ (Mc(F)⊗F). (13)

3.3. CVResNet-1D-AM
Based on the 1D convolution and attention unit analysis, we
propose a 1D CVResNet-1D-AM with an AM, as shown in
Fig. 7.
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Fig. 7. CVResNet-1D-AM

As shown in Fig. 7, the input layer is a one-dimensional time-
domain sequence that uses communication signals, and the out-
put layer refers to a layer with a certain number of neurons, that
is, the number of signal types. The layout of the CVResNet-1D-
AM network is such that each of the four 1D residual stacks
contain three, four, six, and three identical residual units, re-
spectively (Table 2).

Table 2
CVResNet-1D-AM Network Layout

Network structure
Output dimension

Xr Xi

Input layer 1×8192 1×8192

Complex convolutional layer 32×4096 32×4096

Plural maximum pooling layer 32×2048 32×2048

One-dimensional residual stack 1 32×2048 32×2048

One-dimensional residual stack 2 64×1024 64×1024

One-dimensional residual stack 3 128×512 128×512

One-dimensional residual stack 4 256×256 256×256

Attention unit 256×256

Complex average pooling layer 256×1

Flat layer 256

Fully connected layer 8

Normalized layer 8

We extract the envelope x of the two signal components after
complex residual stack processing. The signal envelope con-
tains important information that reflects the characteristics of
the radiation source, and we then input x in the attention mech-
anism to obtain important features while suppressing a fewer
number of important information to improve the identification
effect.

x =
√
(xr)2 +(xi)2 . (14)

4. PERSONAL IDENTIFICATION OF COMMUNICATION
RADIATOR SOURCE BASED ON COMPLEX-VALUED
RESIDUAL NETWORK

4.1. Experimental data
The experimental data were generated by the same type of ra-
dio communication, passed through the channel simulator, and
finally collected by the same receiving device. The signal was
divided in the I and Q channels. Dataset I was the collected
frequency-hopping dataset, and dataset II was the collected
fixed-frequency dataset. Datasets I and II used different types
of radiation source radio stations. However, the source radio
stations in the same dataset were of the same type. The receiver
model was RSA6120A. In the sample dataset, the signals trans-
mitted by all radio stations were random. Therefore, the base-
band signals transmitted by different radiation source stations
of the same model differed. The baseband signals include in-
phase signals and quadrature signals.
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Fig. 6. Spatial attention module

Fig. 5. Channel attention module
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where σ  represents the sigmoidal function, and f 7£7 represents 
a convolutional kernel with a size of 7.

The spatial attention weight coefficient reflects the impor-
tance of the different regional features. Not all areas are equally 
important for the identification task in the feature map. The 
areas related to the identification task are more worthy of atten-
tion, and this part of the area should have a greater weight.

The overall attention unit used in this study can be sum-
marized as an input feature F 2 RH£C. First, we obtain the 
channel weight coefficient Mc through the channel AM, and 
then multiply it by the input feature to obtain a feature map F 0 
that accurately reflects the crucial channel information of the 
features. Second, we use the input F 0 as the spatial attention 
module to obtain the spatial weight coefficient Ms. Finally, we 
multiply it by F 0 to obtain a feature map F 00 containing channel 
and spatial position information.

We use the following formula to express the overall flow 
of the AM module:
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and the maximum pooling layer to obtain F ′
avg ∈ RW×1 and

F ′
max ∈ RW×1

F ′
avg = Averagepool

(
F ′)= 1

C

C

∑
j

F ′(W, j), (10)

F ′
max = Maxpool

(
F ′)= max

(
F ′ (W,1 ≤ j ≤C)

)
. (11)

The two 1D channel feature maps are then spliced together, and
the spliced feature maps are compressed with the use of a 7×7
size convolutional kernel to obtain a feature map with the size
of W × 1. Subsequently, the sigmoidal function activates the
feature map to obtain the channel attention weight coefficient
Ms(F ′) ∈ RW×1. Correspondingly, we multiply the weight co-
efficient, Ms and F ′ to obtain the output feature F ′′

Ms(F ′) = σ
(

f 7×7 ([Avgpool(F ′); Maxpool(F ′)
]))

= σ
(

f 7×7 ([F ′
avg;F ′

max
]))

, (12)

where σ represents the sigmoidal function, and f 7×7 represents
a convolutional kernel with a size of 7.

The spatial attention weight coefficient reflects the impor-
tance of the different regional features. Not all areas are equally
important for the identification task in the feature map. The ar-
eas related to the identification task are more worthy of atten-
tion, and this part of the area should have a greater weight.

The overall attention unit used in this study can be summa-
rized as an input feature F ∈RH×C. First, we obtain the channel
weight coefficient Mc through the channel AM, and then mul-
tiply it by the input feature to obtain a feature map F ′ that ac-
curately reflects the crucial channel information of the features.
Second, we use the input F ′ as the spatial attention module to
obtain the spatial weight coefficient Ms. Finally, we multiply it
by F ′ to obtain a feature map F ′′ containing channel and spatial
position information.

We use the following formula to express the overall flow of
the AM module:

F ′′ = Ms(F ′)⊗F ′

= Ms(Mc(F)⊗F)⊗ (Mc(F)⊗F). (13)

3.3. CVResNet-1D-AM
Based on the 1D convolution and attention unit analysis, we
propose a 1D CVResNet-1D-AM with an AM, as shown in
Fig. 7.
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Fig. 7. CVResNet-1D-AM

As shown in Fig. 7, the input layer is a one-dimensional time-
domain sequence that uses communication signals, and the out-
put layer refers to a layer with a certain number of neurons, that
is, the number of signal types. The layout of the CVResNet-1D-
AM network is such that each of the four 1D residual stacks
contain three, four, six, and three identical residual units, re-
spectively (Table 2).

Table 2
CVResNet-1D-AM Network Layout

Network structure
Output dimension

Xr Xi

Input layer 1×8192 1×8192

Complex convolutional layer 32×4096 32×4096

Plural maximum pooling layer 32×2048 32×2048

One-dimensional residual stack 1 32×2048 32×2048

One-dimensional residual stack 2 64×1024 64×1024

One-dimensional residual stack 3 128×512 128×512

One-dimensional residual stack 4 256×256 256×256

Attention unit 256×256

Complex average pooling layer 256×1

Flat layer 256

Fully connected layer 8

Normalized layer 8

We extract the envelope x of the two signal components after
complex residual stack processing. The signal envelope con-
tains important information that reflects the characteristics of
the radiation source, and we then input x in the attention mech-
anism to obtain important features while suppressing a fewer
number of important information to improve the identification
effect.

x =
√
(xr)2 +(xi)2 . (14)

4. PERSONAL IDENTIFICATION OF COMMUNICATION
RADIATOR SOURCE BASED ON COMPLEX-VALUED
RESIDUAL NETWORK

4.1. Experimental data
The experimental data were generated by the same type of ra-
dio communication, passed through the channel simulator, and
finally collected by the same receiving device. The signal was
divided in the I and Q channels. Dataset I was the collected
frequency-hopping dataset, and dataset II was the collected
fixed-frequency dataset. Datasets I and II used different types
of radiation source radio stations. However, the source radio
stations in the same dataset were of the same type. The receiver
model was RSA6120A. In the sample dataset, the signals trans-
mitted by all radio stations were random. Therefore, the base-
band signals transmitted by different radiation source stations
of the same model differed. The baseband signals include in-
phase signals and quadrature signals.
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3.3. CVResNet-1D-AM
Based on the 1D convolution and attention unit analysis, we pro-
pose a 1D CVResNet-1D-AM with an AM, as shown in Fig. 7.

As shown in Fig. 7, the input layer is a one-dimensional 
time-domain sequence that uses communication signals, and the 
output layer refers to a layer with a certain number of neurons, 
that is, the number of signal types. The layout of the CVRes-
Net-1D-AM network is such that each of the four 1D residual 
stacks contain three, four, six, and three identical residual units, 
respectively (Table 2).

We extract the envelope x of the two signal components after 
complex residual stack processing. The signal envelope con-
tains important information that reflects the characteristics of 
the radiation source, and we then input x in the attention mech-
anism to obtain important features while suppressing a fewer 
number of important information to improve the identification 
effect.
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and the maximum pooling layer to obtain F ′
avg ∈ RW×1 and

F ′
max ∈ RW×1

F ′
avg = Averagepool

(
F ′)= 1

C

C

∑
j

F ′(W, j), (10)

F ′
max = Maxpool

(
F ′)= max

(
F ′ (W,1 ≤ j ≤C)

)
. (11)

The two 1D channel feature maps are then spliced together, and
the spliced feature maps are compressed with the use of a 7×7
size convolutional kernel to obtain a feature map with the size
of W × 1. Subsequently, the sigmoidal function activates the
feature map to obtain the channel attention weight coefficient
Ms(F ′) ∈ RW×1. Correspondingly, we multiply the weight co-
efficient, Ms and F ′ to obtain the output feature F ′′

Ms(F ′) = σ
(

f 7×7 ([Avgpool(F ′); Maxpool(F ′)
]))

= σ
(

f 7×7 ([F ′
avg;F ′

max
]))

, (12)

where σ represents the sigmoidal function, and f 7×7 represents
a convolutional kernel with a size of 7.

The spatial attention weight coefficient reflects the impor-
tance of the different regional features. Not all areas are equally
important for the identification task in the feature map. The ar-
eas related to the identification task are more worthy of atten-
tion, and this part of the area should have a greater weight.

The overall attention unit used in this study can be summa-
rized as an input feature F ∈RH×C. First, we obtain the channel
weight coefficient Mc through the channel AM, and then mul-
tiply it by the input feature to obtain a feature map F ′ that ac-
curately reflects the crucial channel information of the features.
Second, we use the input F ′ as the spatial attention module to
obtain the spatial weight coefficient Ms. Finally, we multiply it
by F ′ to obtain a feature map F ′′ containing channel and spatial
position information.

We use the following formula to express the overall flow of
the AM module:

F ′′ = Ms(F ′)⊗F ′

= Ms(Mc(F)⊗F)⊗ (Mc(F)⊗F). (13)

3.3. CVResNet-1D-AM
Based on the 1D convolution and attention unit analysis, we
propose a 1D CVResNet-1D-AM with an AM, as shown in
Fig. 7.
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Fig. 7. CVResNet-1D-AM

As shown in Fig. 7, the input layer is a one-dimensional time-
domain sequence that uses communication signals, and the out-
put layer refers to a layer with a certain number of neurons, that
is, the number of signal types. The layout of the CVResNet-1D-
AM network is such that each of the four 1D residual stacks
contain three, four, six, and three identical residual units, re-
spectively (Table 2).

Table 2
CVResNet-1D-AM Network Layout

Network structure
Output dimension

Xr Xi

Input layer 1×8192 1×8192

Complex convolutional layer 32×4096 32×4096

Plural maximum pooling layer 32×2048 32×2048

One-dimensional residual stack 1 32×2048 32×2048

One-dimensional residual stack 2 64×1024 64×1024

One-dimensional residual stack 3 128×512 128×512

One-dimensional residual stack 4 256×256 256×256

Attention unit 256×256

Complex average pooling layer 256×1

Flat layer 256

Fully connected layer 8

Normalized layer 8

We extract the envelope x of the two signal components after
complex residual stack processing. The signal envelope con-
tains important information that reflects the characteristics of
the radiation source, and we then input x in the attention mech-
anism to obtain important features while suppressing a fewer
number of important information to improve the identification
effect.

x =
√
(xr)2 +(xi)2 . (14)

4. PERSONAL IDENTIFICATION OF COMMUNICATION
RADIATOR SOURCE BASED ON COMPLEX-VALUED
RESIDUAL NETWORK

4.1. Experimental data
The experimental data were generated by the same type of ra-
dio communication, passed through the channel simulator, and
finally collected by the same receiving device. The signal was
divided in the I and Q channels. Dataset I was the collected
frequency-hopping dataset, and dataset II was the collected
fixed-frequency dataset. Datasets I and II used different types
of radiation source radio stations. However, the source radio
stations in the same dataset were of the same type. The receiver
model was RSA6120A. In the sample dataset, the signals trans-
mitted by all radio stations were random. Therefore, the base-
band signals transmitted by different radiation source stations
of the same model differed. The baseband signals include in-
phase signals and quadrature signals.
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Fig. 7. CVResNet-1D-AM
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Table 2
CVResNet-1D-AM Network Layout

Network structure
Output dimension

Xr Xi

Input layer 1£8192 1£8192

Complex convolutional layer 32£4096 32£4096

Plural maximum pooling layer 32£2048 32£2048

One-dimensional residual stack 1 32£2048 32£2048

One-dimensional residual stack 2 64£1024 64£1024

One-dimensional residual stack 3 128£512 128£512

One-dimensional residual stack 4 256£256 256£256

Attention unit 256£256

Complex average pooling layer 256£1

Flat layer 256

Fully connected layer 8

Normalized layer 8
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4.	 PERSONAL IDENTIFICATION OF COMMUNICATION 
RADIATOR SOURCE BASED ON COMPLEX-VALUED 
RESIDUAL NETWORK

4.1. Experimental data
The experimental data were generated by the same type of 
radio communication, passed through the channel simulator, 
and finally collected by the same receiving device. The signal 
was divided in the I and Q channels. Dataset I was the collected 
frequency-hopping dataset, and dataset II was the collected 
fixed-frequency dataset. Datasets I and II used different types 
of radiation source radio stations. However, the source radio 
stations in the same dataset were of the same type. The receiver 
model was RSA6120A. In the sample dataset, the signals trans-
mitted by all radio stations were random. Therefore, the base-
band signals transmitted by different radiation source stations of 
the same model differed. The baseband signals include in-phase 
signals and quadrature signals.

Dataset I: Signals were collected from eight emitters that 
transmit signals with quadrature phase shift keying modulation. 
The hopping frequency range was 450–460 MHz, and data were 
acquired every 1 MHz. The specific parameters are listed in 
Table 3.

Table 3
Dataset I signal parameters

Signal parameter Parameter value

Signal carrier frequency 450–460 MHz

Modulation QPSK

Operating mode Voice

Code rate 256 Kbps

Sampling rate 50 MHz

Radio power 0.125 W

Dataset II: Signals were collected from nine emitters with 
carrier frequencies of 450 MHz and 512 MHz, respectively. 
A signal and spectrum analyzer connected to an antenna 
received the signals, converting the RF signals to the baseband. 
The specific parameters are presented in Table 4.

Table 4
Dataset II signal parameters

Signal parameter Parameter value

Signal fixed frequency 450/512 MHz

Modulation 8 PSK

Code rate 512 Kbps

Sampling rate 3.84 MHz

Signal-to-noise ratio >15 dB

Sampling time ¼2 s

Data preprocessing consists of three parts: data segmenta-
tion, signal filtering, and standardization.

●	 Because the original signal has transmission silence time 
and the sample data of the silence time cannot reflect the 
personal characteristics of the radiation source, a reason-
able threshold was set. When the variance of the sample 
signal value over a period of time was less than the specified 
threshold value, the signal sample was considered to be silent 
during this period and was discarded.

●	 The processed dataset was sliced according to a fixed length, 
and datasets I and II were divided into several samples with 
a length of 8192 sampling points.

●	 To avoid the impact of signal power difference on the identi-
fication effect, it is necessary to standardize the sample data 
because there is a certain difference in the transmitting signal 
power of different stations collected by the receiving equip-
ment. In addition, the data of each sample in the sequence 
were subtracted from the mean value and divided by the 
standard deviation so that the mean value of all sample data 
was zero and the variance was one.

4.2. �Network parameters and comparative experimental 
settings

We set the main parameters of the network model as presented 
in Table 5.

Table 5
Model main parameter setting

Signal parameter Parameter value

epoch 200

Batch size 64

Optimizer Adam

Loss function Cross Entropy

The learning rate was initially 10−3, and it was reduced to 
one-tenth for every 100 epochs. We used the ResNet18 and 
ResNet34 algorithms as comparison algorithms; they were both 
converted from a 2D form, and the main parameter settings of 
the network parameters were the same. In addition, to study the 
influence of the AM, this study also used the CVResNet-1D 
model (with the attention unit removed) for comparison pur-
poses (Table 6).

Table 6
Number of parameters and training time per epoch

Model ResNet18 ResNet34 CVResNet 
-1D

CVResNet 
-1D-AM

Number of 
parameters 3848456 7222792 3619912 3628118

Time per 
epoch 37 s 58 s 55 s 56 s

4.3. Frequency-hopping dataset identification results
Dataset I: We randomly selected 2000 samples as the training 
sample set and 200 samples as the test sample set from the 
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preprocessed segmented frequency-hopping data sample set of 
each radio station; we independently conducted five experi-
ments, in which a new set of random data was selected in each 
experiment, and the random data used in each experiment 
were different. Through the five independent experiments, the 
contingency and specificity of the experimental results were 
avoided. The identification effect was compared as shown in 
Table 7.

Table 7
Identification accuracy on Dataset I

Identification algorithm Identification accuracy

ResNet18 87.56%

ResNet34 89.18%

CVResNet-1D 89.52%

CVResNet-1D- AM 92.12%

The results of the confusion matrix for the four algorithms 
are shown in Fig. 8. From the confusion matrix, it can be 
observed that stations 1 and 2 yielded the best identification 
effects for the eight stations in dataset I, and the error proba-
bilities of stations 5 and 8 were higher. Subject to the condition 
of the same number of network parameters, the identification 
accuracy of the CVResNet-1D identification algorithm was 
higher than that of the ResNet18 algorithm, and the identifica-
tion effect of the eight stations was better. For the same number 

of network layers, the identification accuracies of the ResNet34 
and CVResNet-1D algorithms were similar, but the network 
parameters of the ResNet34 algorithm were much larger than 
those of the CVResNet-1D algorithm. In addition, from the 
experimental results, we found that the CVResNet-1D-AM 
algorithm, which combined the CVResNet-1D algorithm and 
the AM, can significantly improve the identification accuracy 
of the algorithm with the use of a small number of network 
parameters.

To further compare the effects of several identification 
algorithms, we added Gaussian white noise to dataset II and 
changed the signal-to-noise ratio condition of the sample set to 
obtain fixed-frequency datasets with different signal-to-noise 
ratio conditions.

4.4. �Influence of different signal-to-noise ratios on 
identification accuracy

Dataset II: We randomly selected 500 samples from the pre-
processed segmented data sample set of each station as the 
training sample set, and 100 samples as the test sample set to 
change the signal-to-noise ratio condition by adding Gaussian 
white noise (–10 dB, –9 dB, ..., –1 dB), and we independently 
conducted five experiments, in which a new set of random data 
was selected in each experiment, and the random data used 
in each experiment were different. Finally, the identification 
results’ average accuracy was compared, as shown in Table 8 
and Table 9.

We found that adding Gaussian white noise to simulate 
different communication channel environments increased 

Fig. 8. Confusion matrix results. a) ResNet18 obfuscation matrix, b) ResNet34 obfuscation matrix, c) complex-valued residual networks 
one-dimensional (CVResNet-1D) obfuscation matrix, and d) CVResNet-1D-attention mechanism (AM) obfuscation matrix

Table 8
Identification accuracy on Dataset II at 450 MHz

Algorithm –10 –9 –8 –7 –6 –5 –4 –3 –2 –1

ResNet18 54.04 57.65 68.61 75.18 80.42 84.57 89.68 92.34 95.10 96.06

ResNet34 50.54 58.93 65.53 71.06 78.61 84.32 88.19 93.40 94.14 97.44

CVResNet-1D 57.23 62.76 68.82 74.57 80.21 85.53 89.78 94.46 96.48 97.65

CVResNet-1D-AM 57.65 64.57 69.36 77.44 84.46 87.76 92.76 95.64 97.44 98.82

(a)
Confusion matrix

Predicted label
0 1

1

2

3

4

5

6

7

0

2 3 4 5 6 7

(b)
Confusion matrix

Predicted label
0 1

1

2

3

4

5

6

7

0

2 3 4 5 6 7

(c)
Confusion matrix

Predicted label
0 1

1

2

3

4

5

6

7

0

2 3 4 5 6 7

(d)
Confusion matrix

Predicted label
0 1

1

2

3

4

5

6

7

0

2 3 4 5 6 7

Tr
ue

 la
be

l

0.8

1.0

0.6

0.4

0.2

0.0



9

Specific emitter identification based on one-dimensional complex-valued residual networks with an attention mechanism

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e138814

the probability of misclassif ication of several identif ication 
algorithms and the identif ication accuracy decreased in a low 
signal-to-noise ratio environment. The experimental results 
showed that compared with the real residual network, we found 
that the complex residual network is more robust because it 
can extract the relevant information between the in-phase and 
quadrature components of the radio frequency baseband signal. 
If the AM is added between the complex residual stack and 
the fully connected layer, it can suppress the invalid features 
caused by noise; thus, the weight of the network parameters can 
focus on the part that ref lects the f ingerprint characteristics 
of the radio station to improve the effect of classif ication and 
identif ication.

5.	 CONCLUSIONS
In this paper, we proposed a new CVResNet-1D-AM algorithm 
for the signal identification of communication radiation sources. 
In particular, the designed 1D, complex-valued residual con-
volutional layer can directly extract features from the time-do-
main sequence of the communication radiation source signal. 
The AM unit was integrated into the CVResNet-1D model to 
improve the identification accuracy of the neural network. The 
experimental results show that, compared with the real-num-
bered domain deep learning method, the CVResNet-1D-AM 
algorithm was associated with a smaller number of classifica-
tion errors and was able to perform and yield better identifica-
tion outcomes for the same network parameter conditions. In 
future work, we will optimize the CVResNet-1D-AM model for 
the communication radiation source signal to further improve 
identification accuracy.
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