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Determination of force in single cable plane prestressed 
concrete polygonal line tower cable-stayed bridge based 

on minimum bending energy 

Y. Li1, T. Guo2, L. Bao3, F. Wang4 

Abstract: The cable force of a cable-stayed bridge plays a vital role in its internal force state. Different cable 
forces on both sides of the main tower make the force characteristics of the polygonal-line tower quite different 
from those of the straight-line tower. Therefore, the determination of the cable force of the polygonal-line tower 
cable-stayed bridge is a crucial aspect of any evaluation of its mechanical characteristics. A single-cable plane 
prestressed concrete broken-line tower cable-stayed bridge is taken as a case study to conduct a model test and 
theoretical cable force determination. The reasonable cable force of the bridge is determined by the minimum 
bending energy method combined with false load and internal force balance methods. analysis includes 
a comparison between cable force calculation results, model test results, and the design value of the actual 
bridge. The distribution law of the dead load cable force of the completed bridge is determined accordingly. 
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1. Introduction 

The cable force of a cable-stayed bridge can be adjusted between the construction stage and 

completion stage. There is a state in each cable-stayed bridge that can be used to optimize the 

mechanical performance of the whole structure, so there is also a set of cable forces that ensure 

a certain target reflecting the optimal mechanical performance [1-3] under a deterministic load 

satisfying the relevant structural requirements. This set of cable forces can be considered the 

optimal cable force under the bridge’s reasonable internal force. 

Domestic and foreign scholars have determined cable force in cable-stayed bridges via theoretical 

analyses, field tests, and indoor model tests [3–7]. Tao et al [8] studied the optimization of cable 

force in a prestressed concrete cable-stayed bridge design; the minimum bending strain energy of 

the tower beam was considered to be the optimization goal and the structural stress and cable force 

were constraint conditions. Zhou et al [9] optimized cable force in a cable-stayed bridge with a thin-

cable steel box girder, with the minimum bridge alignment as the objective function and structural 

stress and deformation as constraints. The Baldomir et al [10] analyzed the optimal cable force 

based on the minimum amount of cable used in the cable-stayed bridge as the optimization 

objective; the cable force, main beam, and bridge tower deformation were considered the 

constraints. Martins et al [11] established a cable force optimization model that includes the cable 

force, main girder and bridge tower deformation, and main girder and bridge tower stress 

constraints. 

The dense cable system cable-stayed bridge has many cables, each with a different design value. 

Hassan et al. [12] and Wu et al. [13] used a genetic algorithm to determine the optimal cable force 

of a long-span cable-stayed bridge. Sung et al [14] attempted to optimize cable force in a long-span 

cable-stayed bridges via particle swarm optimization algorithm. These methods provide reasonable 

cable force optimization results, however, they are tailored to straight-tower bridge designs. The 

force characteristics of the polygonal-line tower markedly differ from straight-tower designs, as 

there are different cable forces on either side of the main tower. Accurate determination of the cable 

force in the polygonal-line tower cable-stayed bridge is key to comprehensively and effectively 

understanding its mechanical characteristics. 

The static balance characteristics of a real-world, prestressed concrete polygonal-line tower cable-

stayed bridge were utilized in this study to establish a theoretical formula of its arrangement and 

local balance. The minimum bending energy method, false load method, and internal force balance 
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3.3. Cable force test system 

The stay cable and box girder were installed before being gradually compensated for dead load in 

the actual construction process of the original bridge. The stay cable was tensioned and the cable 

was adjusted as necessary. The model test system includes a support reaction force test system, 

dead load test system, stress test system, displacement test system, and cable force test system. 

A calibrated strain tester and load sensor were installed at each fulcrum to form a supporting 

reaction force testing system. The dead load test was directly carried out with a calibrated platform 

scale. The stress test system is composed of strain gauges and resistance strain gauges. In the 

experiment, the electrical measurement method was used to test the stress distribution of the live 

load and constant load structure. The displacement test was carried out with a spirit level, dial 

indicator, and theodolite. The cable force test system consists of a calibrated special frequency 

tester and a steel string load cell. 

4. Optimum Dead Load Cable Force Analysis of Cable-stayed Bridge 

4.1. Static Balance Characteristics of Prestressed Concrete Polygonal Line 

Tower Under Dead Load 

4.1.1. Overall balance characteristics of main girder, main tower 

In prestressed concrete polygonal-line tower cable-stayed bridges, in order to offset the overturning 

moment caused by the tilt of the main tower itself and to ensure that the main tower is in the proper 

state of stress, side and mid-span main beams are generated by stay cables on the main tower. The 

anti-overturning moment must be balanced with the gravity moment of the tower body. Only the 

symmetrical position of the stay cables on either side of the main tower were given different cable 

forces in this study, as this balances the force across the polygonal-line tower [20–22]. 

The following assumptions were made to simplify the calculation process. 

(1) The vertical component of the dead cable force of a single stay cable is equal to the dead weight 

of the beam. The sum of the vertical components of all cables is equal to the dead weight of the 

main beam of the cable section. 

(2) The influence of the weight of the main girder of the full bridge without the cable section on the 

balance of the tower girder structure is ignored. 
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The overall balance diagram of the polygonal-line tower cable-stayed bridge was obtained in 

accordance with these assumptions. 

 

 
Fig. 4. Global balanced diagram of cable-stayed bridge with polygonal-line tower 

 
In Figure 4, Wt is the weight of the bridge tower, Lt is the distance from the center of gravity of the 

bridge tower to the consolidation point of the beam tower, W1z is the weight of the main girder in 

the cable area of the main span, and L1z is the center of gravity of the main girder in the main span 

cable area from the consolidation point of the tower distance. W1b is the weight of the main girder in 

the side span cable area; L1b is the distance between the center of gravity of the main girder in the 

side span cable area and the consolidation point of the beam tower. 

According to Figure 4 and the above assumptions, the overturning moment of the main girder of the 

side span cable section to the beam tower consolidation point, the overturning moment of the bridge 

tower’s weight, and the resistance moment of the main beam of the span cable section to the beam 

tower consolidation point can be obtained as follows: 

 

(4.1) lb lb lbM W L=  

 

(4.2) t t tM WL=  

 

(4.3) lz lz lzM W L=  

 

The dead load bending moment of the main tower root can be obtained accordingly: 

 

(4.4) t lb lz t t lb lb lz lzM M M M WL W L W L= + − = + −  
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vertical component value under the dead load state is equal to the load of the main beam section. If 

the cable force and the component force generated by the tower body weight perpendicular to the 

tower body are balanced, the resultant horizontal component force is zero. At this point, the broken 

line tower does not bear the overturning moment; the combined force of the cable force and tower 

weight falls along the downward direction of the axis of the tower column and the lower tower 

column is in a state of axial compression. 

The partial balance relationship of the polygonal-line tower cable-stayed bridge can be modeled by 

the following formulas. The cable force of the stay cable corresponds to the load of the main beam 

section has the following one-to-one relationship: 

 

(4.5) z z sinW T α= ， z z sinT W α=  

 

(4.6) b b sinW T γ= ， b b sinT W γ=  

 

The resultant force is zero perpendicular to the direction of the tower body: 

 

(4.7) z t bsin( ) cos cos( 90)T W Tβ α β β α− = + + −  

 

According to Formulas (4.2)–(4.6): 

 

(4.8) z b
t

sin( ) cos( 90)
cos

T TW β α β γ
β

− − + −=  

 

and further: 

 

(4.9) z b
t

sin( )sin cos( 90)sin
sin sin cos

W WW β α γ β γ α
α γ β

− − + −=  

 

This is the dead load local balance formula of the beam and tower of the polygonal-line tower 

cable-stayed bridge’s lower tower column. The dead load local balance formula of the beams and 

towers of the upper tower column can be obtained similarly according to the upper tower column 

section force (Figure 6). 
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bridge is covered. The internal force of each control section of the central tower and main beam are 

necessary to adjust the bending moment. Here, a virtual load (dummy load) was applied to produce 

the expected value of the internal force on the control section so that the bending moment value of 

each control section in the most unfavorable load combination fell within the allowable range [28]. 

(3) Calculate the least favorable stress envelope diagram of the main beam and pylon. In this step, 

the false load is canceled using the completed state of the prestressed concrete polygonal-line tower 

cable-stayed bridge obtained in the previous step. and the internal force of the bridge generated by 

other load factors (eg, concrete shrinkage and creep, motor vehicle loads) can then be considered to 

determine the worst-case stress envelope diagram of the winning beam and pylon. 

(4) Design the main beam prestress characteristics. According to the internal force balance method, 

the central girder stress envelope diagram (Formula (4.2)) is used to establish the pre-stress design 

of the main girder. The least favorable stress envelope diagram of the main girder can then be 

calculated. The magnitude and eccentricity of the pre-energizing force are adjusted to make the 

primary beam stress meet the requirements [2]. 

(5) Simulate the actual construction process to carry out forward installation calculation of the 

bridge. The prestressed design of the main girder calculated in the previous step was used here to 

simulate the actual construction process, then the bridge was simulated again to determine its final 

state. The cable force is the reasonable dead load cable force of the prestressed concrete polygonal-

line tower cable-stayed bridge. 

5. Dead load cable force analysis 

It is convenient to analyze the cable force distribution of the prestressed concrete polygonal-line 

tower cable-stayed bridge, calculate the cable force and design cable force according to Formula 

(3.1), and convert the cable force distribution into a cable force column as shown in Figures 7–8. 

The measured cable force, calculated cable force, and designed cable force are similar, except for 

individual cables. Significant deviations in cable force can be found the first three pairs of short 

cables. The short cables are rigid, so small construction errors (e.g., tension errors, structural 

rigidity deviations) create substantial deviations in cable force. The short cable’s strength should be 

greater than that of the long cable in the design. 

Additionally, because the dead load of the model test is compensated by the concentrated load, the 

tension cable force was directly used after conversion according to the design cable force of the real 

bridge. This caused a certain deviation between the calculated cable force of the model and the 
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actual value. The average deviation between the cable force calculated by the model and the 

designed cable force is 2% for Pier 4 and 3% for Pier 5. The average deviation between the 

measured cable force and the bridge’s designed cable force is 3% on Pier 4 and 5% on Pier 5. 

 

 
Table 1. Pier 4 cable force histograms 

(a) Comparison of test and calculation bridge cable force values, Pier 4 

Cable C15 C14 C13 C12 C11 C10 C9 C8 

Calculated 
bridge tension 

force 
8540 10810 11100 11260 11490 11250 10660 10860 

Converted 
value 5.34 6.76 6.94 7.04 7.18 7.03 6.66 6.79 

Test tension 
force  5.47 7.05 7.01 7.06 6.99 7.29 6.75 6.87 

Cable  C7 C6 C5 C4 C3 C2 C1 C1’ 

Calculated 
bridge tension 

force 
10050 9630 9580 10140 9870 12220 11260 9680 

Converted 
value 6.28 6.02 5.99 6.34 6.17 7.64 7.04 6.05 

Test tension 
force  6.18 5.86 5.76 6.28 5.91 7.45 5.74 5.81 

Cable  C2’ C3’ C4’ C5’ C6’ C7’ C8’ C9’ 

Calculated 
bridge tension 

force 
9970 6060 6450 6370 6400 6190 6690 6510 

Converted 
value 6.23 3.79 4.03 3.98 4.00 3.87 4.18 4.07 

Test tension 
force  5.86 3.66 4.1 4.15 4.12 3.99 4.4 4.15 

Cable  C10’ C11’ C12’ C13’ C14’ C15’ – – 

Calculated 
bridge tension 

force 
7200 7180 10940 11180 12210 11780 – – 

Converted 
value 

4.5 4.49 6.84 6.99 7.63 7.36 – – 

Test tension 
force  

4.53 4.42 6.93 7.19 8.05 7.63 – – 
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(b) Comparison between test and design cable force values, Pier 4 

Cable  C15 C14 C13 C12 C11 C10 C9 C8 
Design bridge 
tension force 8330 11700 11900 12000 12000 11700 11400 11500 

Converted 
value 5.34 6.76 6.94 7.04 7.18 7.03 6.66 6.79 

Test tension 
force  5.47 7.05 7.01 7.06 6.99 7.29 6.75 6.87 

Cable  C7 C6 C5 C4 C3 C2 C1 C1’ 
Design bridge 
tension force 10600 10200 10100 8780 8430 11800 10500 9970 

Converted 
value 6.28 6.02 5.99 6.34 6.17 7.64 7.04 6.05 

Test tension 
force  6.18 5.86 5.76 6.28 5.91 7.45 5.74 5.81 

Cable  C2’ C3’ C4’ C5’ C6’ C7’ C8’ C9’ 
Design bridge 
tension force 10400 5940 6320 6390 6560 6430 7060 6970 

Converted 
value 6.23 3.79 4.03 3.98 4.00 3.87 4.18 4.07 

Test tension 
force  5.86 3.66 4.1 4.15 4.12 3.99 4.4 4.15 

Cable  C10’ C11’ C12’ C13’ C14’ C15’ – – 

Design bridge 
tension force 7540 7600 11700 12000 13700 12500 – – 

Converted 
value 4.5 4.49 6.84 6.99 7.63 7.36 – – 

Test tension 
force  4.53 4.42 6.93 7.19 8.05 7.63 – – 

 

The two main towers’ boundary conditions are different under the dead load, but the cable force of 

the stay cables is mainly comprised of the dead load. The two main towers’ total cable force should 

be in accordance to balance the bridge and ensure the minimum bending energy across the structure 

with the broken line tower. The bridge’s inclination angle gradually decreases due to the angle of 

the tower column, and the upper tower column is nearly vertical. In order to satisfy the local 

balance of the polygonal-line tower cable-stayed bridge, the cable force is distributed from large to 

small, then from small to large, from near to far away from the central tower. 

The results also show that the polygonal-line tower is inclined to the side span. To balance the 

central tower’s weight, the mid-span cable force should be greater than the side span cable force. 

The two main towers have different boundary conditions, so to ensure their internal forces are in 

accordance at the corresponding positions, the internal force and deformation of the beam should be 

close while the corresponding cable forces at the two main tower positions are different. 
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6. Conclusion 

This paper proposed a novel method for determining the reasonable design and optimal dead load 

cable force in a cable-stayed bridge. The mechanical characteristics of the overall balance and local 

balance of a prestressed concrete polygonal-line tower cable-stayed bridge were determined, then 

the proper reference size of the bridge design was determined. The Fumin Bridge in Shenyang was 

taken as a case study to optimize the cable force of an actual prestressed concrete polygonal-line 

tower cable-stayed bridge. The main conclusions can be summarized as follows. 

(1) The cable arrangement and central tower inclination are important geometric parameters for the 

design of the polygonal-line tower cable-stayed bridge. Adjusting the weight distribution of the 

primary beam side and mid-span can balance the central tower’s weight in the design stage. 

(2) The cable-stayed bridge’s inclination angle gradually decreases due to the angle of the tower 

column; the upper tower column is nearly vertical. To satisfy the local balance of the bridge, the 

cable force is distributed from large to small, and then from small to large, from near to far away 

from the central tower. 

The polygonal-line tower is inclined to the side span, so to balance the central tower’s weight, the 

mid-span cable force should be greater than the side span cable force. The two main towers have 

different boundary conditions, so to ensure that their internal forces are uniform and fall into the 

proper positions, the internal force and deformation of the beam should be close while the 

corresponding cable forces at the main tower positions should be different. 
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