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Abstract: This paper discusses the use of mechanical cone penetration test CPTM for estimating the soil unit
weight of selected organic soils in Rzeszow site, Poland. A search was made for direct relationships between the
empirically determined the soil unit weight value and cone penetration test leading parameters (cone resistance
q., sleeve friction f. The selected, existing models were also analysed in terms of suitability for estimating the
soil unit weight and tests were performed to predict the value soil unit weight of local, different organic soils.
Based on own the-regression analysis, the relationships between empirically determined values of soil unit
weight and leading parameters cone penetration test were determined. The results of research and analysis have
shown that both existing models and new, determined regression analysis methods are poorly matched to the unit
weight values determined in laboratory, the main reason may be the fact that organic soils are characterized by
an extremely complicated, diverse and heterogeneous structure. This often results in a large divergence and lack
of repeatability of results in a satisfactorily range. Therefore, in addition, to improve the predictive performances
of the relationships, analysis using the artificial neural networks (ANN) was carried out.
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1. Introduction

The Podkarpackie Voivodeship is an area with an exceptionally varied and complex geological
structure, where, especially in the geological profiles of river terraces, interlacing variety of organic
soils is very common. Unfortunately, organic soils belong to soft soils characterized by low shear
strength and extremely high compressibility, moreover, these layers may have varying thicknesses,
from several centimeters to several meters, and very often these occur below the groundwater table,
which causes the local conditions for foundation of building objects and engineering constructions
are difficult or very difficult. The fact is that the areas they cover are often the only places available
for construction in large urban agglomerations, which means that they are increasingly becoming
the object of interest and investment of developers. The decision to set up facilities in low-bearing
capacity areas brings incomparably higher costs than in the case of foundations on typical mineral
soils, but often for logistical or strategic reasons it is necessary. The foundation of building
construction in such adverse conditions is of course possible, but requires extremely sensitive and
detailed subsoil identification, preferably using different types of penetrometers in situ. No less
important are the methods of interpreting the results obtained directly from the research and,
consequently, the values of the parameters derived later used at the design stage.

Currently, the assessment of geotechnical parameters and coefficients in the European Union and
related countries is mainly based on the EN 1997-1:2004 [1] and EN 1997-2:2007 [2] standards,
and among the many methods of subsoil recognition, the Cone Penetration Test is becoming more
and more popular. In parallel with the technological modernization of this penetrometer, work is
constantly underway on methods of interpreting results obtained directly from research for design
purposes. In parallel with the technological modernization of this penetrometer, work is constantly
underway on methods of interpretation of results obtained directly from research for the purpose of
foundation design and subsoil improvement. The methods of interpreting the results of these
soundings generally work very well in the case of substrates with typical mineral soils, but for
organic soils considered to be one of the weakest, the results are not conclusive. That is why new
methods are constantly being sought and more and more perfect and safe computational models are
being developed.

This paper attempts to verify the suitability of existing models for estimating the soil unit weight of
organic soils from a selected area of Podkarpacie (Poland). The direct correlations between values

measured parameters during the mechanical cone penetration test (CPTM) and desired geotechnical
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parameters were sought [3]. Were also proposed, and a new tool in the form of artificial neural
networks, which is increasingly used to solve geotechnical problems, was used to improve fit
quality on a global scale [4-10]. The Polish geotechnics are increasingly using this tool to solve
local cases, and their effect is published in the papers [11-18], although at the moment it doesn’t
concern much organic soils [19, 20]. In the recent past, the authors used the ANN to predict the
value of soil unit weight of local organic soils based on their leading parameters: the contents of
organic matter and water content [21]. The obtained test results were so promising that it was
decided to continue the research using the ANN to determine the soil weight of the soil, but this

time based on the results of CPTM tests.

2. Methods and materials

2.1. Characteristics of the study area at the Rzeszow site

The Podkarpackie Voivodeship is located in the south-eastern part of Poland. From the south is
borders with Slovakia and from the east with Ukraine. The region covers three separate
physiographic lands, wery varied significantly in terms of geological structure and topography. In
the northern part of the Sandomierz Basin is located in the middle of the Carpathian Foothills,
Beskidy Mountains in the south, dividing the Bieszczady and Beskid Niski. In the north-eastern part
there is a fragment of Roztocze [22]. The study area and data used in this paper come from the site,
geologically speaking, is located in the south part of the Carpathian Foredeep, geographically
located at the Foothills of Rzeszow, within the macro-region of the Sandomierz Basin and exactly
on the area campus of the Theological and Pastoral University in Rzeszow. The site where the
recognition was conducted, in terms of morphology, is located in the valley of the Miyndwka River

and reaches around 206.0 m above sea level [23].

2.2. The evaluation of the soil unit weight based on laboratory test

The bulk density of the soil is the mass of soil per unit volume of the material, including any water
or gas it contains. The term unit weight, %, is often used and is calculated by multiplying the bulk

density by the acceleration due to gravity [24].
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2.3. The Cone Penetration Test procedure

The first tests of the cone penetrometer were carried out in 1932. A gas pipe with an external diameter
of 35 mm on an internal steel pusher of 15 mm and a cone tip with 10 cm” projected area and 60°
apex angle was applied. Over time, the design of the probe and equipment changed, which also
increased its research capabilities. The Delf Soil Mechanics Laboratory used first cone penetration
push machine in 1935. A few years later, in 1948, geometry of the original mechanical cone was
improved the purpose to prevent soil from entering the gap between the casing and inner rods. The
part of basic Dutch mechanical penetrometers with this conical mantle are still in use in some parts of
the words. In 1953 Bergmann developed new type cone (CPTM) to include measurement of local
sleeve friction and first-time friction ratio was used to classify of kind of soils. The first electric cone
was developed by Furgo in 1965. In 1974 were introduced the most modern type of penetrometers
that could measure pore pressure (piezocones) especially useful for soft clays. The most commonly
used today is the standard cone, where the cross-sectional area of standard cones shall be 1 000 mm®
which corresponds to a diameter of 35,7 mm, but depending on ground conditions, cones with an
outer diameter between 25 mm (4. = 500 mm?) and 80 mm (4. = 5 027 mm?) are permitted [25].

The mechanical cone penetration test (CPTM), which was used in this study, consists of pushing
a cone penetrometer, by means of a series of push rods, into the soil at a constant rate of penetration.
During penetration, measurements of cone penetration resistance, total penetration resistance and/or
sleeve friction can be recorded [25]. The test results can be used for interpretation of stratification,
classification of soil type and evaluation a wide spectrum of geotechnical parameters for example: soil
unit weight (%), liquidity index (/), relative density (Dr), undrained shear strength (S,), effective
friction angle (¢°), effective cohesion (c’), constrained modulus (M), deformation modulus (E),

overconsolidation ratio (OCR), coefficient of earth pressure at rest (K,) and many others [26].

2.4. Evaluation of the soil unit weight for existing models from CPT

The source materials on the determination of the soil unit weight of organic soils based on Cone
Penetration Test (CPTM) are rare. Therefore, at the initial stage of the work, after analyzing the
thematic materials available, an attempt was made to determine the suitability of selected, universally
recognized and new calculation models for estimating the soil unit weight of local organic soils.
These models were developed for various types of soils, most often for mineral ones, coming from
different parts of the world, which gives the study a verification character. The concise characteristics

of the models selected for analysis are presented later in the following part of the elaboration.
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2.4.1. Mayne at al. relationships

Mayne (2006) for saturated soils, based on large data of soils, including soft to stiff clays and silts,
loose to dense sands and gravels and as well as mixed geomaterials, proposed correlation depends
on both parameters: shear wave velocity and depth (2.1) (coefficient of determination, R> = 0.808)

as follows [27, 28]:

(2.1) y: =8.321logV; —1.61log z

where:

% — soil unit weight, ¥ — shear wave velocity, z — depth.

e Mayne (2007) used database contained date for cohesionless soils (loose to dense sands and
gravels) and cohesion soils (soft to stiff clays and silts) and proposed relationship between the
total unit weight and the sleeve friction from cone penetration test. The relationship was
indirectly derived from correlations between the soil unit weight and the shear wave velocity,

and between the shear wave velocity with the sleeve friction (2.2) [29]:

(2.2) Ve = 2.6log(f;) + 15G; — 26.5

where:

f; — sleeve friction, G, — specific gravity of soil solids.

e Mayne et al. (2010) by the multivariable regression analysis were found correlation for the
various type of soils (e.g. soft clay, clay till, calcareous clay, natural sand, boulder clay, mine
tailing sand, fissured clay, mudstone, stratified soils, etc.) from different, global location such
as USA, Japan, UK, Canada, Norway, Ireland, Sweden, Italy, Brazil and North Sea which was
described by the formula (2.3) [30]:

(2.3) v: = 11.46 + 0.33 log(z) + 3.110g(f;) + 0.7 log(q.)

where:

g — cone resistance.
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Mayne (2016) for variety of soil types, mainly clays and sands, found relationship to the sleeve
friction (R* = 0.633). The peats and diatomaceous mudstone were also researched, but these results

were not included in the regression analysis formula (2.4) [31]:

(2.4) Ve = [1.22 +0.15 In (100£—Z + 0.01)] Voo

where:

%» — unit weight of water, P, — atmospheric pressure.

2.4.2. Robertson & Cabal (2010) relationship

Robertson & Cabal (2010) proposed a general relationship for soil unit weight based on parameter
from cone penetration tests for clays and silts to sands and gravels based on DMT tests and shear

wave velocity in the following form (2.5) [32]:

2.5) Ve = l[0.27 log Ry + 0.36 log (Z_a) +1.236) 2'6655] Yoo

where:

Ry— friction ratio.

2.4.3. Ozer et al. (2012) relationships

Ozer et al. (2012) [33] proposed few models that were performed the method multiple linear
regression generally for Lake Bonneville clays (USA). Two relationships with the highest degree of
fit were selected by analysis, having: the cone resistance and the friction ratio R* = 0.80 (2.6), and
the sleeve friction and the friction ratio R* = 0.790 (2.7). Additionally, included the atmospheric

pressure and unit weight of water:

(2.6) Ve = 1_27(2_:)0-148(Rf)0,0144yw

(2.7) Ve = 2.4-95(;—2)0'147(Rf)‘°-132yw
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2.4.4. Ghanekar (2014) relationship

Ghanekar (2014) [34] used data taken for 16 offshore platform locations from the coast of Mumbai
region. Generally, the subsoil was represented calcareous fine-grained soils, often by very soft and
soft clays. The single and multi-variable regression analyses were performed on the data using basic

parameters. The best, selected results of regression analysis described formula (2.8) (R* = 0.698):

(2.8) Y: = 4.08 — 0.5210g(f;) + 5.38log(q.) — 2.59 log(2)

2.4.5. Kovacevic et al. (2018) relationship

Kovacevic et al. (2018) [35] for highly overconsolidated soil come from five different sites in in
Northern Croatia based on Mayne et al. [30] model presents new relationship (R* = 0.850), claiming
that effectively reduces the magnitude of the original relationship to more closely approximate

reality (2.9):

(2.9) ¥: = 11.85+ 0.11 log(z) + 2,59109(f;) + 0.56 log(q.)

2.4.6. Straz (2016) relationship

Straz (2016) [36] for local polish organic soils (Rzeszow city) proposed dependencies based on
measured values sleeve friction fs from CPTM, compared with measured values from laboratory
tests. The correlations were developed for full spectrum organic soils: from low- to high-organic,
according to the actual occurrence in the subsoil. The selected, obtained formula (2.10) (R* = 0.726)

had the following form:

(2.10) y, =4.812f"%

2.5. Artificial Neural Network

One of the most widely used tools for describing dependencies in geotechnics is standard
regression. Presently, non-standard methods, including an artificial neural network and a fuzzy

logic regression, have also been increasingly used as approximation tools. Moreover, the most
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common neural networks [37] used for approximation (nonlinear regression) are multi-layer
perceptron (MLP), radial basis function (RBF) networks and support vector machines (SVM). The
feedforward networks consist of a series of layers (Figure 1). The first layer has a connection from
the network input. Each subsequent hidden layer has a connection from the previous layer. The final

output layer generates the output from the network.

Hidden Layer Output Layer

wl l

Input Output

Fig. 1. Scheme of the artificial neural network: w — weights of connections between neurons, b — biases

The training network process requires a set of examples of proper network adjust (relations of
parameter inputs and target outputs). The process of training a neural network involves changing the
values of the weights and biases of the network to optimize network performance, as defined by the
network error function. The default error function for feedforward networks is mean square error.

For training multilayer feedforward networks, any standard numerical optimization algorithm can be
used to optimize the error function. Few of them have shown excellent performance for neural
network training. These optimization methods use the gradient of the network performance with
respect to the network weights or the Jacobian of the network errors with respect to the weights [38].
The Levenberg—Marquardt [39, 40] method generally is the fastest training method. The Broyden—
Fletcher—Goldfarb—Shanno (BFGS) quasi-Newton [41] backpropagation method is also quite fast.
This algorithm requires more computation in each iteration and more storage than the conjugate
gradient methods, although it generally converges in fewer iterations. Both methods tend to be less
efficient for large networks (with thousands of weights), since they require more memory and more
computation time. The Bayesian regularization [42] algorithm requires more time, but it can result
in good generalization for difficult, small or noisy data sets. The architecture of the networks used
can be described as I-H-O, where I is the number of inputs, H is the number of neurons in the
hidden layer and O is the number of neurons in the output layer. Mostly, the definition of the ANN
uses several types of transfer (activation) functions: log-sigmoid, tangent sigmoid, hyperbolic radial

basis and some linear.
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In our numerical research all neural network computation was performed using the Neural Network
Toolbox for Matlab [43]. In all the considered examples, a multilayer feedforward network with one
hidden layer was applied. In inputs of nets, we consider two parameters, or one of them: the cone
resistance g and/or the sleeve friction f;. The output of nets was soil unit weight of organic soils ¥.
In the calculations, five to eight neurons were used in the hidden layers. The Levenberg—Marquardt
method was used in the training process. A log-sigmoid transfer function in the hidden layer and

a linear function in the output layer were used.

3. Results

Based on the analysis of the exploratory research carried out in study area, research program was
adopted, which assumed the search for relationships between the basic values measured from the
CPTM test (cone resistance, sleeve friction) and the soil unit weight values of organic soils. The
values of soil unit weight were verified by testing on undisturbed samples and predicted with
existed models. Own solutions based on the results of multi regression and predictions using
artificial intelligence were also proposed.

The diagram in Figure 2 presents the interpretation of cone penetration test for selected local soil

conditions. The GEOS5 program was used to interpret the construction of the subsoil [44].
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Fig. 2. The examples of results of organic and mineral soils probing with use of cone penetration test CPTM

carried out in the selected subsoil of the Rzeszow site
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The basic values of parameters for local organic soils at the study at the Rzeszow site were

determined and summarized in Table 1.

Table 1. Index properties of organic soils at the Rzeszow site

Material Organic Content Water Content Bulk Density Soil Unit Weight
(%) (%) (t/m’) (kN/m”*)
Various organic soils 5.02-84.93 23.52-417.91 1.046-2.025 10.27-19.86

3.1. Results evaluation of the soil unit weight based on empirical relationships

The comparisons of the results of the soil unit weight from the regression models are presented in
Figures 3-7. Unfortunately, predictive performance of published correlations presented modest
relationship to the results of laboratory researches. Also, a kind of surprise was the fact that the
results of previously pre-prepared model (Straz, 2016; (2.10)) [36] for selected Polish organic soils
were also unsatisfactory (Figure 7b) in this case. The exception is only Robertson and Cabal (2010)

model (2.5) presented on Figure 5a, because it fits into the error cone +25%.
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Fig. 3. Comparison between measured values of soil unit weight and the values expected based on:

a) Mayne, 2006 (2.1) and b) Mayne 2007 (2.2) models
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Fig. 7. Comparison between measured values of soil unit weight and the values expected based on:

a) Kovacevic et al. 2018 (2.9) and b) Straz, 2016 (2.10) models

The Figures 3—7 shows the values of the determination coefficient R* for correlation between
measured values of soil unit weight and the values expected based on Formulas 2.1-2.10. The best
fit, R* = 0.832, was obtained for Formula 2.2, developed by Mayne (2007) and for Formula 2.5,
R*=0.769, described by Robertson and Caball (2010). The remaining values of the determination
coefficient were very low, ranging from 1.84E-05 to 8.5E-02, which proves the extreme lack of fit
for these models used (Formula 2.1, 2.3-2.4, 2.6-2.10) and eliminates them from consideration for

the analysis of organic soils.
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Comparison of the value of soil unit weight of local various, organic soils determined lab method
and calculated with using 10 source formulas is shown in Figure 8. The diagram shows the median
values, box with 50% all values (25-75%) and range of results from min to max values the soil unit
weight determined by different methods are not similar to each other. The calculation results
according to the Formulas 2.1, 2.3-2.4, 2.6-2.9 are in the narrowest range, the ranges according to
the Formula 2.5, 2.10 and laboratory tests are also comparable. Extremely large discrepancy

obtained calculation results were characterized by Formula 2.2.

Box & Whisker Plot

; H %%ﬂ%%

o Median
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T Min-Max
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Form. 2.1
Form. 2.2
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Form. 2.4
Form. 2.5
Form. 2.6
Form. 2.7
Form. 2.8
Form. 2.9
Form. 2.10 +

Fig. 8. The values of the median of soil unit weight of soil depending on the determination method by

(Statistica 13.3) [45]

3.2. Own regression models

The following step after performing laboratory tests was to search for the relationships between the
dependent (the soil unit weight %) from laboratory tests and independent measured variables from
cone penetration test (the cone resistance ¢., the sleeve friction f;). Aim of our analyses is to
compare the results of standard regression to the neural network regression approach in the problem
of soil unit mass identification. This combination allows us to compare both regression methods and
their approximation error. For this reason, a division of the entire set of 135 measurements into two
groups (base — 70%, test — 30%) was assumed. Ninety-four of them were used as basic data to
calculate the parameters of the regression fit function. The remaining 41 were used to test the
predictions of the soil unit mass from the regression model with measured values. To determine the
statistical evaluation during the analysis, the basic data set was randomly selected 250 times. Eight

types of standard regression were used to approximate the experimental data. Firstly, four
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regression models of one variable were used: the two-parameter linear model (3.1), three-parameter

polynomial model (3.2), two-parameter power model (3.3) and four-parameter power model (3.4):

3.1) F1(x) = py + pox
(3.2) F2(x) = p; + pyx + p3x?
(3.3) F3(x) = p,eP?*
3.4) F4(x) = p eP2* + pyeP+*
where:

F(x) = ypand x = g or f;

Additionally, the next four regression models of the two variables were used: the three-parameter
surface model (3.5), five-parameter surface model (3.6, 3.7) and eight-parameter surface model

(3.8):

(3.5) F5(x,y) = p1 + p2x + p3y

(3.6) F6(x,y) = p1 + p2x + p3y + pax? + psx®y

(3.7) F7(x,y) = p1 + p2x + D3y + pay? + psxy?

(3.8) F8(x,y) = p1 + p2X + 3y + pax? + psy® + pex®y + p7xy? + pgx?y?
where:

F(x)=yand x=g¢g.andy =f..

A total of 3000 models were included in the calculations. The goodness of fit was checked using the

coefficient of determination (3.9), mean relative error (3.10) and mean squared error (3.11):

—\2
_ Zg=1(dp_yp)2 — ernl=1(yp_dp)

(3.9) R?=1 —7 —

Spoi(dp=ay)°  Xhoq(dp-ap)
(3.10) MRE =1y, dpd;y” 100%
(.11) MSE =237 (y, — dp)°
where:

n — number of cases, d, — measured values, y, — fitted values (predicted), Jp — mean of the measured values

andp=1,_2,..,n.
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The comparison of the median of the goodness of fit obtained for the regression of the one variable
model is presented in Table 2. The median is most important for reliable statistics because it is an
outlier-resistant statistic. In our analyses, we do not use minimum error values because outliers may
be caused by over-fitting of tested models. The best model obtained in the analyses was the
polynomial model F2, using cone resistance. It has 13.75% of the median of mean relative error for
testing the models. However, it has been shown that there is a very weak relationship between the
variables included, as evidenced by the low value of the coefficient of determination (R®). The
relationship between the soil unit weight and cone resistance describes the coefficient value 0.167
and for dependence between the soil unit weight and sleeve friction the coefficient is similar an

equal to 0.127.

Table 2. The median of the goodness of fit for regression of the one variable models

Soil parameter Fl F2 k3 Fa
base test base test base test base test

R? 0.001 0.009 0.182 0.167 0.002 0.009 0.181 0.161

%(qe) MRE [%] 15.57 15.90 13.43 13.75 15.57 15.90 13.51 13.87
MSE 6.673 6.816 5.441 5.737 6.672 6.843 5.447 5.764

R? 0.096 0.133 0.098 0.121 0.095 0.132 0.119 0.127

% () MRE [%] 15.63 15.53 15.64 15.64 15.63 15.50 15.32 15.39
MSE 6.054 5.946 6.046 6.034 6.056 5.963 5.868 5.958

The comparison of the MRE models, included in Table 2 for laboratory data, is presented using
box-and-whisker diagrams in Figure 9. On each box, the central mark is the median, the edges of

the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points,

which are not considered outliers, and outliers are plotted individually.
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Generally, better results using cone resistance were obtained. Table 3 presents a comparison of the
median of the goodness of fit obtained for the two variables regression models (F5—F8). The best
result was obtained for the F'7 regression model. The multiple regression analysis developed in this
study has proven that the models (F1-F4) and model (F5-F8) gave very similar value but didn’t
provide sufficiently accurate predictions of the soil unit weight value in relation to the results of

laboratory tests for organic soils.

Table 3. The median of the goodness of fit for the regression of the two variables models

F5 F6 F7 F8
base test base test base test base test
R’ 0.263 0.254 0.353 0.302 0.395 0.351 0.400 0.337
% (qes 15) MRE [%] | 13.28 13.56 12.25 12.99 11.97 12.53 11.91 12.60
MSE 4908 | 5.223 4.334 4.807 4.047 4.393 4.017 4514

Soil parameter

The comparison of the test results from the MRE of models are included in Table 3 for two
laboratory parameters (q., f;) are presented in Figure 10. The Figure 10a compares the results for the
base data used to compute the regression fit parameters. Obtained medians of mean relative errors
of base data were in the range of 11.91-13.28%. Respectively, the medians of MRE of test data
were in the range of 12.53-13.56%. The Figure 10b shows the comparison statistical results of

predictions of the soil unit weight. The model F6 had the least outliers.
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Figure 11 shows detailed results from the /7 model with two variables (q., f;). The left-hand plot
(Figure 11a), with the blue line, is related to the base data, and the right-hand plot (Figure 11b),
with the green line, is related to the test data. The best prediction of standard regression had

coefficients of determination equal 0.696.
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Fig. 11. Regression of the F6 model of soil unit weight (g., f;): a) base data and b) test data

The evoked results excluded direct relationship between the measured and expected values and
can’t be used to estimate the desired of geotechnical parameter for foundation buildings or
structures. Other alternative estimation methods should be tested to improve the match and

reliability of results.

3.3. Artificial Neural Networks analysis

Next, a neural regression model was applied. In all the examples, standard multi-layer perception
with one hidden layer was applied. In this case, the nets have only one element in the output vector
(soil unit weight). The number of hidden neurons is obtained from a cross-correlation procedure. In
the calculations, five to eight neurons were used in the hidden layers. The same pattern divided as
that for the standard regression was used to learn and test the networks. The comparison of the

median of the goodness of fit, obtained for a few architectures, is presented in Table 4.
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Table 4. The median of the goodness of fit of the ANN models with one input

) [1-5-1] [1-6-1] [1-7-1] [1-8-1]
Soil parameter
learn test learn test learn test learn test

R’ 0.343 0.232 0.360 0.227 0.368 0.203 0.375 0.188

%(qe) MRE [%] | 10.82 12.11 10.65 12.21 10.52 12.39 10.42 12.61
MSE 2.092 2.319 2.066 2.344 2.053 2.372 2.038 2.413

R? 0.262 0.140 0.283 0.120 0.299 0.121 0.311 0.104

% () MRE [%] | 13.38 14.92 12.92 15.15 12.73 15.11 12.51 15.42
MSE 2.214 2.441 2.177 2.495 2.156 2.518 2.138 2.565

The presented results include the median obtained parameters for one element in the input vector.
During the calculation of the values, 20 repetitions of the network training were considered for each
of the 250 pattern divisions. In this way, 1000 nets learning results were performed for each ANN
model. Better prediction was obtained, like that in the standard regression for cone resistance, in the

input vector. A comparison of the MRE of the tested nets, included in Table 4, is presented in

Figure 12.
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Fig. 12. Comparison of the MRE of the tested nets with one element in the input vector: a) g. and b) £

In this case, the network architecture does not affect the accuracy of approximation. Obtained
medians of mean relative errors of testing using cone resistance were in the range of 12.11-12.61%.
Respectively, the medians of MRE of testing using natural sleeve friction were in the range of
14.92—-15.42% and had more outliers. In Table 5, the comparison of the median result, obtained for
the nets with two elements in the input vector, is presented. In that approach, a better result was also
obtained, like that in the standard regression with two independent variables. The medians of mean

relative errors of testing using two parameters were in the range of 8.84-9.01%.
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Table 5. The median of the goodness of fit of the ANN models with two input

] [2-5-1] [2-6-1] [2-7-1] [2-8-1]
Soil parameter
learn test learn test learn test learn test
R? 0.705 0.564 0.739 0.550 0.767 0.541 0.783 0.532
% (qer 13) MRE [%] 6.92 8.97 6.37 8.84 6.04 8.94 5.70 9.01
MSE 1.409 1.756 1.314 1.776 1.250 1.795 1.195 1.834

The comparison test results from the MRE of models, included in Table 5 for two laboratory

parameters ¥; (qc, fs), are presented in Figure 13. The left one (Figure 13a) compares the results for

the learning nets. There is a visible improvement in the quality of learning for bigger networks in

the range of 6.92-5.70%. The right one (Figure 13b) shows the results for the testing. There is no

clear difference in the results. The obtained results for the two inputs are a little better, which is the

opposite case for the nets with one input. The smallest median of mean relative error test of the

ANN was equal to 8.84%.
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Fig. 13. Comparison of the MRE of the nets with two elements in the input vector: a) learned % (¢., f;) and
b) tested ¥ (gc, f5)

Figure 14 shows detailed results for the ANN’s prediction of the soil unit weight using two

variables (¢, f;) in the input vector for one of the best predictions. Figure 14a shows learning data

and Figure 14b shows the testing data. The coefficients of determination of testing was quite high

0.824 and the mean relative error of testing was 5.90% in this case.
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Fig. 14. Regression of the ANN prediction of soil unit weight % (q., f;): a) learn data and b) test data

Generally, the use of neural networks has allowed the soil unit weight values to be predicted based
on laboratory tests with poor accuracy. The ANN regression models are better than in the
considered regression models. There were no clear difference results in respect the architecture of
nets used. The best prediction neural networks were determined based on the lowest medians of

mean relative error.

4. Conclusions

The results of prediction of values of the soil unit weight based on basic parameters of the
mechanical cone penetration test (CPTM) carried out on existing models in the literature and
standard regression models developed for the purposes of this study for Polish, local organic soils
from the vicinity of Rzeszow were unsatisfactory and showed their low usefulness. Therefore, the
use of standard neural networks was verified. Comparison of standard regression and neural
networks to predict soil unit weight from the results of the cone penetration test indicates the neural
networks are more accurate. The maximum median values of the coefficient of determination
obtained were equal, respectively, to 0.353 and 0.564. The result of using neural networks is not
satisfactory but very promising. The levels of predictive errors in geotechnics obtained in the

analyses ware not such big, especially for very different organic soils. However, all methods of
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studying the geotechnical parameters of organic soils are burdened with large measurement

uncertainties.
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Wyznacznie ci¢zaru objetosciowego gruntu organicznego na podstawie badan CPTM
z zastosowaniem sztucznych sieci neuronowych

Stowa kluczowe: cigzar objetosciowy gruntu, sztuczne sieci neuronowe, grunty organiczne, sonda stozkowa statyczna
CPTM

Streszczenie:

W artykule zaprezentowano mozliwosci zastosowania wynikow badan terenowych uzyskanych za pomocg stozkowej
sondy statycznej CPTM (ze stozkiem mechanicznym) do wyznaczania ci¢zaru objetosciowego wybranych gruntow
organicznych zlokalizowanych na terenie Rzeszowa. Glownym celem prowadzonych badan bylo poszukiwanie
bezposrednich zalezno$ci pomiedzy miedzy wyznaczonymi w warunkach laboratoryjnych warto$ciami cigzaru
objetosciowego gruntu ¥ a parametrami wiodacymi dla badania sonda statyczna CPTM, ktorymi sa: opor gruntu
podczas zaglebiania stozka ¢, oraz opdr tarcia na tulei ciernej f;. Testy laboratoryjne wykonano na probkach
o nienaruszonej strukturze, pobranych z otworéw kontrolnych umiejscowionych w bezposrednim sgsiedztwie punktow
sondowania, co pozwolito na pozyskanie reprezentatywnych probek gruntoéw o szerokim spectrum zawartosci czgsci
organicznych od 5,02 do 84,93%.

Wykorzystujac metode standardowej analizy regresji okre§lono zaleznosci migdzy empirycznie wyznaczonymi
warto$ciami ci¢zaru objetosciowego badanych gruntéw organicznych, a parametrami wyznaczonymi za pomocg sondy
statycznej w warunkach in situ. Wykorzystano rowniez szereg modeli literaturowych, opracowanych przez
prezentujacych je badaczy dla réznych osrodkéw gruntowych i parametrow wiodacych. Niestety, analiza regres;ji
wykazata, Zze zarowno istniejagce modele, jak i nowe sg stabo dopasowane do wartosci cigzaru objetosciowego
wyznaczonych w laboratorium. Gléwnym powodem moze by¢ fakt, ze grunty organiczne charakteryzujg si¢ niezwykle
skomplikowana budowa, réznorodng i niejednorodng struktura, a przede wszystkim bardzo zréznicowang zawarto$cia
czesci organicznych, ktore moga lokalnie r6zni¢ si¢ geneza czy skladem chemicznym. Czynniki te maja wplyw na
wyjatkowo duzg rozbiezno$¢ i brak powtarzalno$ci uzyskiwanych wynikéw w zadowalajacym zakresie. Dlatego,
dodatkowo, aby poprawi¢ predykcyjne dziatanie zaleznoS$ci, przeprowadzono analiz¢ z wykorzystaniem sztucznych
sieci neuronowych (SSN).

Poréwnanie wynikow zastosowania standardowej regresji i sieci neuronowych w celu prognozowania cig¢zaru
objetosciowego wybranych gruntéw organicznych na podstawie wynikéw sondowania statycznego wykazato, ze sieci
neuronowe sa dokladniejsze. Maksymalne wartosci median uzyskanych w analizach statystycznych wspotczynnikow
determinacji (R?) testowanych modeli wynosity odpowiednio 0,353 i 0,564. Wynik wykorzystania sieci neuronowych
nie jest zadowalajacy, ale bardzo obiecujacy. W zwiazku z tym, planowana jest kontynuacja prac z wykorzystaniem
analizy za pomocg sztucznych sieci neuronowych, lecz z zastosowaniem réznych kryteriow kategoryzowania lokalnych
gruntéw organicznych.
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