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Trajectory tracking control of a mobile manipulator
with an external force compensation
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Abstract. This paper considers the problem of the accurate task space finite-time control susceptible to both undesirable disturbance forces
exerted on the end-effector and unknown friction forces coming from joints directly driven by the actuators as well as unstructured forces
resulting from the kinematic singularities appearing on the mechanism trajectory. We obtain a class of estimated extended transposed Jacobian
controllers which seem to successfully counteract the external disturbance forces on the basis of a suitably defined task-space non-singular
terminal sliding manifold (TSM) and the Lyapunov stability theory. Moreover, in order to overcome (or to minimise) the undesirable chattering
effects, the proposed robust control law involves the second-order sliding technique. The numerical simulations (closely related to an experiment)
ran for a mobile manipulator consisting of a non-holononic platform of (2; 0) type and a holonomic manipulator of two revolute kinematic pairs
show the performance of the proposed controllers and make a comparison with other well-known control schemes.
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1. INTRODUCTION

Mobile manipulators are mechanical systems consisted of a
holonomic manipulator (a mechanism with integrable differen-
tial kinematic constraints) rigidly mounted on a non-holonomic
mobile platform. The working area of the platform is, in
fact, not bounded. The holonomic manipulator allows the end-
effector to perform the various high-tolerance assembly tasks
such as precise welding or cutting, peg-in-hole assembly, mate-
rial handling, etc. Nevertheless, accomplishing the tasks, which
require extremely high accuracy, still represents a great chal-
lenge to mobile manipulators due to various uncertainties of
payloads (e.g. parts to be assembled, end-effector tools, etc.),
which are held and transferred by the end-effector along a de-
sired trajectory mostly expressed in task (Cartesian) coordi-
nates. In practice, for example, either known or unknown pay-
loads (by their geometry and mass) cause structural and/or para-
metric uncertainties in both kinematic and dynamic equations
of the mobile manipulator. Thus, transferred payloads generate
undesirable external forces exerted on the end-effector, which
may result in serious tracking errors. Similarly, the obstacles
coming from the unstructured environment and generating arti-
ficial repulsive forces, which affect the end-effector, may lead
to significant degradation of the trajectory tracking. Moreover,
a movement of the end-effector on a surface of an obstacle
produces undesirable friction caused by a force contact. An-
other important source of uncertainty is related to undesirable
forces resulting from the kinematic singularities appearing on
the mechanism trajectory. As is known, in neighbourhoods of
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singular configurations, both a platform posture and manipu-
lator joint velocities tend to approach high values. As a re-
sult, the mobile manipulator has to generate appropriate con-
trols to pass through singular configurations. Consequently, in
order to extend the potential applications of the mobile ma-
nipulators to tasks requiring the high precision of accomplish-
ment, it becomes necessary to control the end-effector position
properly by taking into account all the aforementioned inter-
action forces coming from the environment. Although in most
situations seen in practice, the end-effector tracking tasks are
expressed in Cartesian coordinates, a vast majority of com-
mercially available controllers are designed in the generalized
(joint) coordinates. Hence, inverse or pseudo-inverse kinemat-
ics algorithms are first required to apply the aforementioned
controllers. The process of kinematic inversion turns out to be
time-consuming and highly complicated as the Cartesian trajec-
tory produces kinematic and/or algorithmic singularities [1].

In the context of the motion control problem subject to exter-
nal forces coming from the environment, a few approaches may
be distinguished, among which two seem to be the most rep-
resentative: trajectory tracking and force regulation as well as
trajectory tracking and external forces compensation. The vast
majority of the motion/force control algorithms is designed in
the generalized (joint) coordinates of the mechanisms (see e.g.
[2-8]). Unfortunately, controllers from [2—8] are not suitable
to track desired trajectories specified in task (Cartesian) co-
ordinates. Several papers have dealt with solving the problem
of both trajectory tracking and force compensation in the task
space. In studies [9-11], a dynamically consistent and decou-
pled partitioning of the mobile manipulator dynamics has been
constructed within the space ranging from the external (task)
one to internal (null). Nevertheless, the control laws proposed
in [9-11] require both the complete knowledge of the kinematic

© 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:mgalicki@cbk.waw.pl
http://creativecommons.org/licenses/by/4.0/

www.czasopisma.pan.pl P N www.journals.pan.pl
Y

M. Galicki

and dynamic equations of the mechanisms. Moreover, con-
trollers from [9—11] necessitate the generalized pseudo-inverse
of the Jacobian matrix as well as external force measurements.
In the work [12], a robust acceleration control scheme founded
on the disturbance observer designed in joint space has been
proposed. However, the approach from [12] needs both force
measurement and the complete knowledge of the kinematic
equations of the mechanism, and also a pseudo-inverse of the
Jacobian matrix. Unfortunately, as is known [13], cyclic kine-
matic tasks may not be mostly fulfilled by means of the (gen-
eralized) pseudo-inverse based approaches. The recent works
[14—17] propose adaptive control schemes in order to approxi-
mately calculate and counteract an unknown external force that
makes an impact on the end-effector tracking a desired trajec-
tory in conditions of uncertain parameters of dynamic equa-
tions. The approaches from [14—16] provide both dynamic pa-
rameter and adaptive force estimation with no demands for ex-
ternal force measurements. Applying the formulation of the ex-
tended task space and the inverse of the corresponding extended
Jacobian matrix in [14] as well as the (generalized) pseudo-
inverse Jacobian matrix of the stationary robotic manipulator
in [15], the problem of mechanism redundancy has been solved
in the mentioned works. However, the control laws in [14—17]
involve all the adaptive elements multiplied by the regression
matrix which appears to be laborious and also very complicated
to put into practice. Moreover, control algorithms from [14-17]
are not able to tackle singular configurations. Furthermore, the
controllers proposed in [14—17] need the complete knowledge
of the kinematic equations and work [17] requires additionally
a force sensor.

This paper introduces a new class of controllers for mobile
manipulators subject to undesirable unknown forces exerted on
the end-effector. Due to an unstructured nature of the external
disturbance forces, the kinematics and dynamics of the mech-
anism is assumed herein to be uncertain. A new non-singular
terminal sliding manifold (TSM) is brought in to tackle the tra-
jectory tracking control problem subject to the aforementioned
unstructured forces. As is known [18,19], a sliding mode is pre-
cise and resistant to disturbances and (parametric, structural)
uncertainties of mechanism dynamics. Nevertheless, the major
disadvantage of the standard first order sliding modes is mainly
connected with the undesirable chattering effect [20]. The pre-
sented TSM manifold allows the first order sliding mode tech-
nique, which is capable of the finite-time control, to join si-
multaneously with the second order sliding mode approach that
generates the (absolutely) continuous controls. Based on the
TSM proposed and partly stimulated by dynamically calculated
torque techniques (see recent works [21,22]), we present a new
robust controller (containing a transposed extended estimated
Jacobian matrix), which seems to be efficient at counteract-
ing unknown external forces. Satisfying an appropriate assump-
tion which concerns the Jacobian matrix, the proposed control
scheme is proved to be finite-time stable. Due to involving the
second order TSM, our control algorithm appears to be more
energy-saving than other well-known controllers as computer
simulations have shown. It is also worth pointing out that a tra-
jectory tracking controller, which was analysed in our recent

work [21], applies a transpose Jacobian matrix. However, it dif-
fers significantly from that proposed in this paper. Namely, the
controller from [21] requires a complete knowledge of the kine-
matic equations and fractional knowledge of the mechanism dy-
namics (e.g. an actuator matrix). Furthermore, the work [21]
does not tackle the problem of unknown external forces. The
rest of the paper is structured as follows. In Section 2 kine-
matic and dynamic equations are introduced, and a problem of
the finite-time trajectory tracking control for a mobile manip-
ulator susceptible to external disturbance forces is formulated.
A class of robust controllers that fulfil the trajectory tracking
task is analysed in Section 3. In Section 4 we present the com-
puter examples (closely related to an experiment) of trajectory
tracking by a mobile manipulator which is external disturbance
forces-prone. The numerical comparison of our controller with
other renowned control algorithms is also made in this section.
Eventually, some conclusions are reached in Section 5.

2. PROBLEM STATEMENT
2.1. Kinematic and dynamic equations of the mobile
manipulator
Let us take a mobile manipulator built from a non-holonomic
platform of (2, 0) type. It is expressed by the vector of general-
ized coordinates x € R! , where [ > 2. The vector of joint (gen-
eralized) coordinates y = (y,...,y,)! € R" defines the config-
uration of holonomic manipulator; » is the number of kinematic
pairs. An example of a mobile manipulator is shown in Fig. 1
defining vectors x and y. Particularly, the coordinates of the vec-
tor x define the platform posture given by variables xq ¢, x2 ¢, 6
and angles of driving wheels ¢, ¢, — see Fig. 1, where 0 is the
orientation angle of the platform with respect to the global co-
ordinate system OX;X>X3; x1 . and x, . signify the coordinates
of the mass centre of the platform; 2W denotes the distance be-
tween the platform wheels and 2L is its length; symbols y{, y»
stand for joint angles of the holonomic manipulator; d means
the amount of space between the mass centre and the common
drive wheel axis; a stands for the distance between the mass
centre and the point where the holonomic manipulator is rigidly
attached to the platform; R is the radius of the wheel; F' stands
for an external force that affects the end-effector.

X3 [m]

X5 [m]

Fig. 1. A kinematic scheme of the mobile manipulator and external
disturbance force F exerted on the end-effector
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The movement of the mobile platform being susceptible to

1 <k < [ non-holonomic constraints takes frequently a Pfaffian
form

A(x)x=0, ey

where A(x) denotes the (k x /) full rank matrix (that is
rank(A(x)) = k). Non-holonomic constraints for the platform
of (2, 0) type from Fig. 1 may be described as

sin(f) —cos(@) d 0 O
A(x)x= | cos(6) sin() W —-R 0 [x=0, (2)
cos(f) sin(@) -W O -—R

where x = (xlve,xz7c,97¢1,¢2)T; | = 5; k= 3. We assume
that Ker(A(x)) is the null space obtained by vector fields
aj(x),...,a;_(x), respectively. Thus, the differential constraint
(1) may be equivalently expressed as a drift-less dynamic sys-
tem of the form

i=Nx)a, 3)

where N(x) = [a; (x),...,a;_(x)]; rank(N(x)) = —k and o =
(ou,...,04_x)" signifies the vector of quasi-velocities (pre-
sented in work [23]). Let us note that

A(X)N(x)=0. 4)

For the mobile platform shown in Fig. 1, equation (3) takes the
following form:

Y (Wcos(0)—dsin(0)) Y (Wcos(6)+dsin(6))
Y (Wsin(0)+dcos(0)) Y (Wsin(6)—dcos(0))

X= Y -Y o, (5)
1 0
0 1
here Y R tivel
reY = —, r ively.
where oy Tespectively

The location and orientation of the end-effector with respect
to the global coordinate system OX; X, X3 is expressed by a kine-
matic equation

Pe:fe(Q)a (6)

where p, € R™ denotes the coordinates of the end-effector;

q= (?) is the configuration of the mobile manipulator;

fo: REX R — R™ represents m-dimensional mapping (in

general, non-linear with respect to ¢) and m is the dimension
of the task (Cartesian) space. Joining ¢, ¢ and (3), one obtains

G=Cz, §=Ci+Cx, )

Nix) 0

0 I

velocity of a mobile manipulator; I, signifies the (n x n) iden-
tity matrix. Note that for N(x) given by eqn (5), z is equal to

where C =

yZ2= < ;‘ > € Rk s the reduced

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e137943

7= ( g ) . As is known, mobile manipulators become, mostly

in practice, redundant mechanisms with respect to tasks to be
accomplished, and therefore the following inequality holds true
I 4+n > m+ k. Consequently, there is a possibility for augment-
ing a vector of the end-effector coordinates, describing clas-
sic (conventional) trajectory tracking, by additional auxiliary
task coordinates (specified by the user) of the following general
form [24]:

Pa = fa(q), (®)

where f,: RIT" — RIF"=m=k gignifies no less than triple-
continuously differentiable mapping with respect to ¢. In practi-
cal terms, redundant degrees of freedom of the mechanism may
either satisfy additional task requirements (constraints) [24,
25] or optimize performance criteria reflecting the kinematic
characteristics of the mobile manipulator [26]. Concatenating
fe(q) with f,(g), one attains generalized kinematic-differential
mappings which relate g with augmented task coordinates

_ [ Pe
p_
Pa
p=f(a), p=Jz, ©))
where f = Je and J = ﬁCis the ({+n—k)x (I+n—k)

f a d q
extended Jacobian matrix. The dynamics of a mobile manipula-
tor characterised by generalized coordinates g has the form [6]:

M'(q)§+P'(q, ¢)4+G'(q)

+IAR) Opn] A =BV+E(t,q,¢),  (10)

where M’(q) represents the (n+1) x (n+1) positive definite
inertia matrix; P'(q, ¢)q denotes the (n+1)-dimensional vector
that signifies centrifugal and Coriolis forces; ¢ stands for the ve-
locity of a mobile manipulator; G’'(g) is the (n+!)-dimensional
vector of generalized gravity forces; E'(t, q, ) = D'(q)F —
H'(g); D' represents the (I +n) x m matrix which transforms
external forces F expressed in task coordinates and exerted on
the end-effector into corresponding generalized forces acting in
mechanism joints; H'(g) is the (I 4 n)-dimensional vector of
friction forces; Oy, signifies the k X n zero matrix; A is the
k-dimensional vector of Lagrange multipliers (reaction forces
acting on the platform) that are related to non-holonomic con-
B" 0
0 I,
showing those posture variables of the platform that are directly
controlled by the actuators (their elements equal 1 for variables
which are directly driven by the actuators, and apart from that
0); I, stands for the n x n identity matrix and Rk €y de-
notes the vector of controls (torques/forces). It is worth noting
that matrix B’ takes a particularly simple form for a vector x rep-
resenting the generalized coordinates of the platform subjected
to non-holonomic constraints (2). Thus,

B — Ok (I—k+n)
T kvn ’

straints (1); B’ = ; B” denotes the [ X (I — k) matrix

Y
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where Opy(;_g4n) I8 the k X (I — k+n) null matrix. The aim of
introducing auxiliary velocities ¢, and consequently the vector
of the reduced velocity z is both to eliminate reaction forces
A from dynamic equations (10) and to reduce their dimen-
sionality. Replacing ¢ and ¢ from (10) by the reduced veloc-
ity z and acceleration z (see expressions (7)), we significantly
simplify our control problem. Premultiplying left-sided the dy-
namic equations (10) by C7, taking into account (11) and then
using equality CT [A(x) ka,,}T = 0 (see expression (4)), we ob-
tain dynamic equations of the mobile manipulator in such a re-
duced statement that is convenient for our control purposes:

M(q)z+P(q, 2)z+G(q) =v+E(t (12)

, 4> 2);
where M = CTM'C e RUA—k)x(+n=k) stands for the inertia
matrix which is positive definite; P = CT (M'C + P'C); G =
C'G' and E = CT (D'F — H'), respectively.

2.2. The problem of trajectory tracking control to be solved
The task completed by the mobile manipulator is to track
the desired end-effector trajectory p§ () € R™, t € [0, o) as
well as an auxiliary (indicated by an user) trajectory p(r) €
RIFn=m=kVector functions p4(-) and p%(-) are assumed to
be at least triple-continuously differentiable with respect to

jZ ) = flq)—

(4
pd(t), where p; = ( ﬁg );Ee = (677---7631)T = fe

time. Introducing the task tracking error e = (

—pg e

d
(ef,... e )" = fa— pY the problem of the finite-time
control in the task space may be formally formulated using the
below equations:

lime(t) =0,

t—=T

limé(7) =0,

t—=T

limé(r) =0,

1—T (13)
where 0 < T denotes finite time of convergence of f(g) to py
and e(r) = é(t) = é(t) = 0 for t > T. Then, we introduce prac-
tically reasonable assumptions and summarise useful proper-
ties regarding both kinematic and dynamic equations that will
be employed while constructing our controller. Without loss of
generality of further considerations, matrix J(-) together with
its derivatives up to the second order with respect to g are taken
to be bounded

0%J
lle, H

(14)

where || - || stands for the Frobenius (Euclidean) matrix norm.
The components of dynamic equations (10) fulfil the follow-
ing inequalities for revolute kinematic pairs of the holonomic
manipulator [6]:

aCc oM’ or
L s e H
i 15
G 8D’ (1)
“9‘1 F H 99 ||p

(16)

ap/
<WHZH,

where w denotes a positive coefficient. The generalized exter-
nal force vector E in (12) together with its time derivative E
are assumed to be locally bounded Lebesgue measurable map-
pings. Without loss of generality, E and E are upper estimated
as follows

IE|| <B°(t.q,2),  |E| <B'(1,9,2), (17)
where B°(-), B!(-) denote the time-dependent non-negative lo-
cally bounded (and not necessarily globally bounded) Lebesgue
measurable functions.

3. CONTROL OF THE MOBILE MANIPULATOR

IN THE AUGMENTED TASK SPACE
Before we present the control laws that solve the kinematic task
(13), some useful concepts are first introduced. Let J = Jf(q)
denote an estimate of the uncertain extended Jacobian matrix
J(q). In further considerations, J is taken to satisfy the follow-
ing inequalities:

0<A<AL Apin(JIT), (18)
and o
o<1l < L. (19)

max

Iy > AL > 0 denotes a lower estimate of

where Apin (M~ i

_ p’ for [[/]lr <1, -
Amin(M7); p = . ; Amax(M1) <
min 5P {Pl/ HJHF otherwise; max )<
A", stands for un upper estimate of Amax(M~1); p’ € [0, A) is

the accuracy of the estimation. It is noteworthy that inequality
(19) may actually be easily satisfied by choosing a sufficiently
accurate device to measure kinematic parameters of a mobile
manipulator, for example link lengths, radius of the wheels,
joint offsets, etc. Although inequality (19) requires sufficiently
accurate estimate J of the Jacobian matrix J(g), the advantage
of fulfilment of (19) by J is the elimination of the parameter
adaptation process. If inequality (19) does not hold true, then
J has to be computed based on the adaptation of kinematic
and dynamic parameters of the mobile manipulator. Let us also
observe that inequality (18) means non-singularity of the esti-
mated Jacobian matrix J(g) in an operation region of the end-
effector. Relations (18)—(19) are only needed in the proof of the
finite-time stability of the controller to be designed. However,
in what follows, we shall allow also (isolated) singular configu-
rations appearing while trajectory tracking, which certainly do
not fulfil inequality condition (18).

3.1. The dynamic controller of the mobile manipulator

In order to obtain absolutely continuous control v solving the
robotic task (13), we first differentiate dynamic equations (12)

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e137943
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with respect to time, and then determine Z (let us observe that
M(q) is non-singular)

t=M""v—2, (20)
where 2 = M~ '[Mz— % (Pz+G) — E].

In order to reduce task errors e, ¢ and ¢ in finite time to zero
subject to generalized external disturbance forces E, we present
a new dynamic control law of the form

v=J"u, (21)
where u € R/~ denotes a new control to be defined. The aim
is to obtain input signal u(¢) and, in consequence, control v(z)
in order that the extended location vector p from (9) follows p,.
To do so, we triply differentiate e with respect to time. Hence,

€=U 20z +Jz—Py. (22)
Having replaced 7 from (22) by the right-hand sides of (20) and
(21), we would obtain an explicit form of the task jerk error ¢
from u
e=IM JTu+2-7,, (23)
where 2 = —J% +2JM~' (v+E — Pz— G) 4 Jz. In the sequel,
an upper estimate of ||2|| will be needed. Using inequalities
(14)—(17) and performing simple but time-consuming algebraic
computations, we find upper estimate for || 2|| of the form given
below
12| <7 (t,q,2), (24)
where # = wil|z]| + wal|z]|> +ws||z]| B +waB" + ws]lz]|[[v]];
wi,...,ws are positive constants (estimates of construc-
tion parameters of the mobile manipulator). Consider s =
(51, s S1ani)t € RI*7k 10 be a task space sliding vector vari-
able. Aiming to find steering signal u, we propose the following
new non-singular terminal sliding manifold:

M ={(é, é0), ¢, e, 5): S(¢ €0), ¢, e,5)=0}, (25)

t
where § = é—¢(0)+ / (;Lzé3/5+/12/1§/5(e~9/7 +A§/7e>1/3) dr—
0

s; A = diag(Ai1, ..., Aig1n—k); Aij represent positive coeffi-
cients (controller gains); i =0:2; j=1:1+n—k. The potency
of e, é, ¢ as well as Ay, A; is determined component-wise. It
is worth noticing that unlike the terminal sliding manifolds
(TSM) defined in our earlier works [21,22], relation (25) has a
great and practical property for the initial time moment t = 0
of control, i.e. s(0) = 0 (TSM s = 0 is attained at ¢ = 0). Before
we formulate our main theorems, let us recall the definition of
the stable convergence in finite time [21].

Definition 1. The origin (e, ¢, €) = (0, 0, 0) is said to be stably
convergent in finite time if it is Lyapunov stable, and the solu-
tion of differential equations (23), (27) and (12), which starts
from (e(0), ¢(0), £(0)) at time ¢ = 0, attains the origin in finite
time T (e(0), ¢(0), €(0)) < oo, i.e. lim,—,7(e(t), é(t), é(t)) =
(0, 0, 0) and lim<e, é, é)—(0, 0, 0) T=0.

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e137943

In the sequel, we present a useful lemma [27].

Lemma 1. If s(r) =0 for > T/, where 0 < T’ < T, then task
tracking errors (e, é, €) stably converge in finite-time to the
origin (e, ¢, &) = (0, 0, 0).

Aiming to compute u, and consequently to satisfy equality
constraints (13), the following control law is proposed:
c s
———(% +¢y)
u(t, q, z, s, ) = Alls]l
0 otherwise,

f 0,
or s # 26)

where % = || 1,&3/° +7Lzll3/5(é9/7 +109/7e)1/3 —Pall+ 7 c,
co stand for controller gains that will be considered further on.
In accordance with (21) and (26), we can determine v (in the
Filippov sense [28]) by solving the following differential equa-
tion:

v=Jlu(t, q, z, 5, é). (27)
Our objective is to impose such conditions on controller gains
Ao, A1, Az, ¢ and ¢ that ensure equalities (13) to be fulfilled.
Making use of the Lyapunov stability theory, we provide the
consequent result.

Theorem 1. If matrix J satisfied inequalities (18)—(19),
Ao, M, A2, c0>0,c= ﬁ, ¢ >1andgq,z, é,  are available,
then control scheme (26)—(27) results in finite-time stable con-
vergence of task errors (e, ¢,¢) to the origin (e, é,é) = (0,0,0).

Proof. Consider the following Lyapunov function candidate:

V= 1(s,s>.

> (28)

Let us differentiate (28) with respect to time and take equality
(25) into consideration, and as a result one gets

V= (5,¢+ M08 + A&7 +2)7e) ). (29
Based on (21) and (23), one obtains
V = (s,JM ' JTu)+
(5,24 2285+ A2 420 e)' P —By).  (30)

Let us reformulate expression (30) in an equivalent and more
convenient form for a further analysis

V = (s,JM T u) + (s, (J = NM 1T u)

(5,24 0854 AP+ e) P =By, (31

Let us upper estimate the sum of the first two terms of (31).
To do so, we insert the right-hand side of (26) into (31), thus
obtaining

V= (s, dM TS (W tp))—
N

c s

(s,(J=NHM1JT = —

Alls]

F (5,24 0S54 AP (O 42 e) P =B y).

(¥ +co))

(32)
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On account of inequalities (23)—(24), we get

/A

VS%MM@+mHWN%%@+mH

(5,24 M85+ AP @440 ) P =By, (33)

Next, we estimate the last term of V in (31). Based on defini-
tions of 2, % and inequality (24), we attain

/

. Cc
V< —lslle(® +co) + s 5@ + o) + sl <

/

—Wﬂk@7+aﬁ+Hﬂ%{ﬁy+f®+ﬂﬂwy+fw- (34)

/

Therefore in accordance with the assumptions ¢ = ICT/A’
¢’ > 1 and ¢y > 0 from Theorem 1, one easily has
V< —lslleo (e= P —1) — )@ (e—PC 1) =
< 0 1 A =
—lisllco(c’ = 1) = [Isl|# ("= 1) < =lIsllco(c" = 1) (35)

Since co(c’ — 1) > 0, inequality (35) proves that s = 0 is stably

\/2V(0
(c’l()c)o’ ie.s(t)=0
for t > T'. From (25), it follows that s(¢) =0 for r > T’, i.e.
€+ 0P+ 12113/5 (&7 + kgﬂe)l/?’ = 0. Consequently, from
Lemma 1, it follows that the origin (e, ¢, €) = (0, 0, 0) being
the solution of the above non-linear differential equations of the
third order with respect to the constraint equations ¢ = f(gq) —
pa(t) is stable and achievable in finite time 7. O

achievable in finite time less or equal to

Several remarks may be passed concerning the control law
(26)—(27) and Theorem 1.

Remark 1. First, let us observe that controller (26)—(27) does
not need force/torque sensors to detect external forces nor the
environment model. Nevertheless, most of the works [29, 30]
use these sensors to determine the values of external forces.
As is known, force/torque sensors are expensive, they introduce
measurement noise and are complicated to implement. Second,
the adaptive estimation of both the unexpected external forces
acting on the end-effector and parameters of dynamic equations
is not also required by our controller. On the other hand, recent
studies [14-16] estimate unexpected external forces as well as
involve the adaptive terms multiplied by the regression matrix
of the mobile manipulator dynamics what appears to be com-
plex to implement and also laborious. The construction of re-
gression matrix is not an unambiguous process nor a trivial task
in practice.

Remark 2. In the particular case p’ = 0, the extended Jaco-
bian matrix J fulfils equality / = J (the kinematic equations
are fully known). Let J(-) be singular at (isolated) configura-
tion ¢’ and 0 # s ¢ ker(J7(¢)). In such a case, equality (31)

from the proof of Theorem 1 takes the follow- ing simpli-
fied form: V = (JTs, M=\ JTu) + (5, 2+ 1835 + ;A2 (697 +
13/76)1/3 — D). For control law

, S
—s7— (¥ +co) for s#0,
M(l, q, 2, S, e) = ||S|| (36)
0 otherwise,
and
v=J"u(t, q, z, s, &), 37)

where cg > 1 is a gain coefficient, we have V <

W+ ¢
7HJTS||2Afnin ||S|| C(

+ ||s||% . Hence, for sufficiently large

ch, V takes negative values. Consequently, control law (36)—
(37) enables the mobile manipulator with known kinematics
and uncertain dynamics to pass also through singular manifold
{¢': det(J(¢q')) = 0} what will depict the computer simulations
conducted in the next section. It is also noteworthy that control
algorithms offered in the literature (see e.g. works [9—17]) can-
not tackle the singular configurations.

Remark 3. Let us observe that expressions (26)—(27) or (36)—
(37) present a transpose Jacobian controller. In this case, the
application of the transpose of the Jacobian matrix to robotic
manipulators in [31-33] is a well-known technique. However,
works [31-33] present stability analysis for the set-point control
problems. By contrast, Theorem 1 brings stability analysis for
trajectory tracking of the non-holonomic mechanisms whose
both kinematic and dynamic equations are uncertain as well as
disturbances acting on the mobile manipulators are unknown.
It is worth mentioning here that the authors of works [34, 35]
have also presented a finite-time convergence of their controller
by applying, however, the inverse of the Jacobian matrix and
higher order sliding variables.

3.2. The state estimation problem

Let us observe that controllers (26)—(27) or (36)—(37) require
the knowledge of task error e, task velocity error é, task accel-
eration error ¢ and manipulator velocity z, respectively in or-
der to produce appropriate steering signals. Generally, real mo-
bile manipulators are provided with joint and wheel encoders,
laser scanners and gyroscope sensors, what makes it possible to
measure joint angles y = y(z) and velocities y = y(¢), wheel dis-
placements ¢ = ¢ (¢) and velocities ¢ = ¢ (¢), task error e = e(¢)
and task error velocity é = é(t), respectively. In the literature,
there are a lot of approaches to reconstruct quantity ¢ (see for
instance the work [36] where various kinds of state observers
were discussed ). Almost all of the observers known from the
literature have to fulfil the so-called separation principle [37].
Due to discontinuity of control laws (26)—(27), (36)—(37), our
controllers do not satisfy a separation principle. Consequently, a
technique basing on the theoretical results presented in [38,39]
and also successfully adapted for non-holonomic mechanisms
without taking into account external disturbance forces (see
work [21]) will be now proposed for reconstruction of é. Let
us note that the observer from [21] requires the knowledge of
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kinematic parameters of the mobile platform, and additionally
the reconstruction of z. On account of the fact that e = e(t),
é=¢(t)and z =z(t) = (¢7 y7)T are measurable, one may ex-
actly retrace &(¢) (by disregarding a measurement noise of the
device) after a transient process in finite-time, say 7,. In our
case, the first-order uniform robust exact differentiator (which
is a model-free observer) can be expressed as:

&0 = & — A{L(1)"/?] 80 — e(1)]' *sign(& — é(r)),

. . (38)

§1 = —AgLe(1)sign(&o —€(1)),
where ig s if , stand for positive constants; &; signifies the out-
put of differentiator (38) exactly reconstructing task error ac-
celeration é(z), i.e., é(tr) = & (¢) for t > T); & represents the
estimate of ¢, and L, () denotes a positive continuous function
which takes the form L,(t) = |[J/T||7A% $(% +co) + # +
|Pall- Le(t) is a physically upper estimate of the norm of ¢
(task jerk error). By substituting ¢ in (26)—(27) and (36)—(37)
for its corresponding estimate &; from (38), one gets the fol-
lowing absolutely continuous trajectory tracking controller for
the case of uncertain kinematics and dynamics:

c S
———(# 4c¢y) for s#0,
u(t, g, 2,5, &) =14 Allsl
0 otherwise, (39
v:jTu(t7 Qa Z, Sa §1>7
as well as for only uncertain dynamics
—cgi(@—i—co) for s #0,
u(t, g, z, s, &) = Is1]
0 otherwise, (40)

V:JTM(I, q, 3, S, él)a

which require measurements of ¢(t), z(), e(¢) and task velocity
errors é(t), respectively. Based on (39) and (40), we are now in
position to give the following theorem.

Theorem 2. If g, e, é and z are obtainable from measurements
and the assumptions of Theorem 1 are satisfied, then control
scheme (39) ensures stable convergence in finite time of task
errors (e, ¢, €) to the origin (e, ¢, €) = (0, 0, 0).

Proof. The proof of finite-time stability of control law (39)
closely resembles that presented in the proof of Theorem 1.
Therefore it is omitted. O

Certainly, if controller (40) generates isolated singular con-
figurations while trajectory tracking, then (40) also guarantees
the stable finite-time convergence of (e, ¢, ¢) to the origin.

Generally, if measured task velocity error ¢ = é(¢), attained
from encoders, is also adulterated by a measurement noise, i.e.,
é(t) = éo(t) +Me(r), where ||n.|| < pLe(t); p signifies a normal-
ized noise magnitude (practically p € [1075, 1072]); éo(t) rep-
resents unknown true (noise-free) task velocity error, then the
observer (38) needs to be applied to estimate quantity é as well.
Note from equations (38), that ||éo(t) — &o(¢)]| < L.()O(p);

Bull. Pol. Acad. Sci. Tech. Sci. 69(5) 2021, e137943

é0(2) — E1(2)|| < Le(t)O(p'/?) after finite transient time 7.
[38]. Consequently, for task position, velocity and acceleration
error norm estimates |||, ||é|| = ||Eo ||, |€]| = ||&1 ||, respectively,
we obtain after simple calculations the following upper estima-
tions for controllers (39) and (40) subject to measurement noise
of device: [|é]| < O(p) [y Le(T)dT, [|é]| < O(p)Le(2) as well as
€] < O(p')Le(1).

4. NUMERICAL EXAMPLES

The performance of the controllers given by expressions (39)
and (40) on the two chosen mobile manipulator tasks is pre-
sented in this section. Furthermore, numerical comparisons of
our control laws to other renowned control algorithms are made
as well. To achieve that objective, we utilise a mobile manipula-
tor operating in the two-dimensional work space (m = 2). Fig-
ure 1 depicts its kinematic scheme with k =3 and / = 5 as well
as n = 2, respectively. Let us note that [ +n =7 >m+k = 5.
Consequently, the mobile manipulator from Fig. 1 develops
into redundant mechanism with / +n —k —m = 2 redundant
degrees of freedom and / +n — k = 4 actuators. All numeri-
cal simulations apply the SI units. The nominal values of both
kinematic and dynamic parameters of the mobile manipulator
have been taken from work [14]. The nominal values of link
lengths of the holonomic manipulator are equal to /; = 0.514,
I = 0.362. The wheel radius R equals R = 0.0508. The dis-
tance between the platform wheels 2W is equal to 2W = 0.364
and the distance d between the mass centre and common drive
wheels axle equals d = 0.116 as well as a = 0.1 respectively.
The dynamic parameters take the following nominal values:
wheel mass m,, = 0.159; mobile platform mass m = 17.25;
masses of the first and second links of the holonomic manipu-
lator m; = 2.56 and m, = 1.07, respectively; wheel inertia with
respect to its axis 1, = 0.0002; wheel inertia I, with respect to
global axis OX3 equals I, = 0.0001; platform inertia with re-
spect to its centre of mass I, = 0.297; links inertia with respect
to their centre of masses /1 = 0.148 and I, = 0.0228, respec-
tively. In all the simulations, matrix D’ from (10) takes the form

9r\T
D = ( f 6) . Hence, generalized force D'F in (10) equals

dq
ar.\"
I e
Ee_(f%z) F

where F € R? denotes external force vector (imitating the ac-
tion of e.g. a payload) exerted on the end-effector. The friction
forces H’' in (10) assumed in computations equal

(41)

H = (000061 1> 131 152)" 42)

with % = 0.05; i = 1,...,4. Consequently, dynamic equations
(12) are simplified as follows

M(q)z+Pz=v+E, (43)
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dfe
dq
troller (39) are chosen as A = 0.5, A}, = 2.4. Rough con-
servative estimates of w;, i = 1 : 5 have been made to sim-
plify numerical calculations. Therefore, positive constant co-
efficients w; were chosen as follows w; = 134; wp = 3; w3y =
134; wqy = 0 and ws = 2, respectively. The initial configura-
tion ¢(0) and reduced velocity z(0) are assumed to be equal to
q0)=00x/200 —x/4 —x/2)T, z(0) = (000 0)7, re-
spectively. Intending to accelerate the convergence process of
differentiator (38), we have decided on an appropriate initial
guess £1(0) in the numerical examples (which implies relation
T} ~ 0) on the basis of the nominal values of the kinematic and
dynamic parameters. Hence, model-free observer (38) was run
with the following initial values &) (0) = (0.2 0.157 0.2 0)7;
£1(0) = (60.04 46.7 —0.27 —0.13)7 and parameters 1 = 1.1,
Ae=14.

The aim is to numerically compare controller (39) with the
following two representative algorithms: adaptive control given
in [14] and robust control law proposed in [40]. Control algo-
rithms from [14] and [40] utilize the inverse of the extended
fully known Jacobian matrix. In order to compare the perfor-
mance of controller (39) and the one presented in [14], we
transform dynamic equations (43) into a linearly parametriz-
able form as follows (see [14] for the details of the parametrized
dynamic equations)

T
where E = CT ( ) F—H'|. The estimates for con-

Myp+P,p=Y,(q,4,p,p)¥ = B,v+E,F, (44)
where M), € R4x4, P, € R*x4, B, ¢ R4x4, E, = JLE denote
reduced components of dynamic model expressed in task co-
ordinates p; Y,(¢,q, p, p) € R**® stands for the regression ma-
trix and ¥ € R? is the vector of (unknown) dynamic param-
eters of the mobile manipulator (see also [14] for the details
of the reduced components of dynamic equations (44) of the
mobile manipulator from Fig. 1). Vector ¥ is equal to ¥ =
(mp,my,my,ma, 1y, 1,11, 1)T [14]. Based on (44), the adaptive
control law presented in [14] is expressed as follows:

v=8,'(Y(q,4,XX,)¥+Ks - E,F),

F=-K;TE]s, (45)

A

=k Ty's,

where X, = pg — Le; s = —(é+ ZLe) is the 4-dimensional slid-
ing vector variable; K, K¢, K, denote constant gain diagonal
matrices; £, ¥ mean the adaptive estimates of the unknown
dynamic parameters ¥ and external forces F whose initial val-
ues equal zeros. The best numerical values for K, K¢, K, and
% have been chosen by trials and errors. They are equal to
K=1501y, Ky =5-10"1,, K, = 1.514, £ = 1014, respectively.

In order to compare the performance of controller (39) and
the robust one presented in work [40], dynamic equations (43)
are reformulated to the following partially linearly parametriz-
able form

Mi+Pr+Y(eé,q,)¥ —E =v, (46)

where r = z—J!(ps — ate) denotes a filtered tracking error
signal [40]; Y = Y(e,é,q,q4) € R*® is a regression matrix;
¥ € R? stands for a vector of unknown dynamic parameters;

d
o is a constant gain coefficient; YV = ME (J’1 (pa— ae)) +

P (J -1 (Pa— ae)). Based on dynamic equations (46), the robust
control law proposed in [40] and adapted herein to mobile ma-
nipulators is expressed as follows:

v=Y¥+Kr—JTe+vg, 47)
2
where vg = ————— stands for an auxiliary robust control
[Ir|A+e

component which was designed to improve the controller per-
formance by compensating unknown disturbances E and pa-
rameter uncertainties of terms M and P, respectively; K denotes
a gain coefficient; g signifies the most appropriate guess esti-
mates (of the unknown parameters ¥). We have chosen good
values for A, K, o, € by trials and errors. They are equal to
A =40, K =5, a = 2.5 and € = 0.01, respectively. Aiming
to demonstrate the role of the feedback amplitude adjustable
term § (% +co) of controller (39) in comparison with the cor-
responding constant term A from (47), components M and P of
dynamic equations (46) are considered to be fully known, that
is, the following equality is satisfied: ¥ = ¥,,, where ¥, stands
for the vector of nominal values of dynamic parameters.

Intending to illustrate the robustness of our control schemes
against singular configurations, the mobile manipulator from
Fig. 1 is to fulfil two tasks.

The first task, performed by controller (39) is to track the
same desired augmented singularity-free trajectory as that given
in work [14]. It takes the form

pa(t) = (0.2 +0.30.5+0.25sin(0.27r) 0.2t 0)7 € R*. (48)

The estimate /(g) of the uncertain Jacobian matrix J(g) is as-
sumed in this simulation to be equal to

J = J +diag(0.015 0.008 0.02 0.01). (49)

The aim of the first task is to show the ability of our control
law in the effective counteracting of unknown (globally) un-
bounded external forces of a Brownian motion type exerted on
the end-effector. Hence, external forces F take the following
unstructured form:

F=(50+m(t), 20+m(t))", (50)
t)

where dn; =225/tX (t)dt; X (t) ~N(0, 1) ;i=1,2;1 € [0, 15].
Due to inequality [ +n —k —m =2 > 0, we can augment vector

Pe = fe(q) = (

by additional coordinates p, € R? of the point at which the
holonomic manipulator is attached to the platform as follows

)
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Xie+1acO+11c01 + 1012

eR? (51)
X2c+1q50 + 11501 + 15012

X1 ¢+ 1acO

52
X2+ 150 (52)

Pa= falq) = <
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where c6 = cos(0), s6 = sin(0), c01 = cos(6 +y;), s61 =
sin(0 +y;), c012 = cos(6 +y; +y2) and s612 = sin(6 +y; +
y2). The following numerical values of gain coefficients are
taken for our controller: Ag = 1; A} = 11; A, = 6; ¢o = 0.5;
¢ =1.95; p’ =0.03; B =67 and B' = 0 to obtain the conver-
gence of task errors e not less than or equal to 1073, The mea-
sured task error velocity ¢ has also been adulterate by a mea-
surement noise of a Brownian motion of the form ||dn,(¢)|| <
1072y/1X (t)dt for t € [0, 15]; X(t) ~ N(0, 1).

The results of a numerical comparison of control law (39)
with both adaptive controller (45) and the robust one (47) are
demonstrated in Figs. 2-3. In Fig. 2 can be seen that our con-
troller generates tracking errors e, which are practically for
t > 3.5 equal to zero compared with those provided by adaptive
controller (45) and robust control law (47). Moreover, controller
(39) provides the energy minimal solution with integral norm

[ = 1/ fo” (v,v) dt equal to ||7]| = 86 whereas control schemes
(45), (47) result in significantly greater torque norms equal to
|7]] = 108.6 for the controller from [14] and ||7| = 1818 in
the case of robust control law from [40], respectively. Further-
more, in Fig. 3 can be seen that controller (39) still generates
absolutely continuous steering torques whereas those provided
by control algorithms (45), (47) have taken unacceptably large
values at the very beginning of the task accomplishment.

—controller (39)F
g I---controller (45)
107 R controller (47)

[lel] [m]

6 L L
10 0 5 10 15

ts]

Fig. 2. Task errors log(|le||) for controllers (39), (45) and (47)-
singularity-free desired trajectory

Fig. 3. Torques vy, vz, v3, v4 for controller (39)-singularity-free de-
sired trajectory

The second task is to depict the robustness of our transposed
Jacobian control law against singular movements. For this pur-
pose, we assume a full knowledge of the mobile manipulator
kinematics to show passing through singular manifold of the
mechanism for control law (40). We have also assumed the nu-
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merical value of gain coefficient ¢, equal to ¢}, = 10 in this sim-
ulation. All other controller gains are the same as those given in
the first experiment. In order to force singular (isolated) config-
urations, we have utilised controller (40) to track the following
extended desired trajectory:

p5(t) = (0.26+0.3 0.626+0.255in(0.27¢) 0.2:40.2 0)7. (53)

It is worth mentioning that trajectory (53) produces count-

less singular configurations related to the set of time instances

P 0.54+2k L.
{tk = 02 k is mteger}

whose Lebesgue measure
equals zero provided that e = 0. The simulation results can be
seen in Figs. 4-6 that depict the stable finite-time convergence
of the end-effector location p to desired trajectory py in the
singular movement. Figure 5 presents how the mobile manipu-
lator passes through singular manifold {¢’ : det(J(g')) = 0} in
neighbourhoods of time instances ¢’ € {2.5, 12.5}. Such a pass-
ing can be considered as affecting the mobile manipulator by a
disturbance signal in small neighbourhoods of ¢ € {2.5, 12.5}.
Visible variations of ||e|| and vy, vz, v3, v4 (Figs. 4, 6) in small
neighbourhoods of time instances ¢’ € {2.5, 12.5} are a con-
sequence of violating the assumption (18) in a set of time in-
stances of non-zero Lebesgue measure by the equivalent numer-
ical value of Apin(J(¢')J7(¢")). Choosing a sufficiently large
value for ¢! can make these variations utterly small. Let us ob-
serve that steering signals shown in Fig. 6 could not be fea-
sible in the real case due to the physical limitations of the
actuators. In such a case, smoothing of controls v in neigh-
bourhoods of time instances {2.5, 12.5} should be carried out.

HeL[m]
—

0.1 /\ N
\J\} \\’\\ A/ \\/\\ _

0
0 5 10 15
t [s]

Fig. 4. Task errors ||e|| for controller (40) — singular desired trajectory

-4
3><10

Y |
o |
?: /\/\/ ]

I

det(J)

0

Fig. 5. Determinant of the extended Jacobian matrix J(g) for
controller (40) — singular desired trajectory
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In order to eliminate an additional phase delay related to recur-
sive low-pass filters which may further limit the performance
of our closed-loop system (12), (27), (7), one could apply the
Newton predictor enhanced Kalman filter (NPEKF) [41] which
provides a wide bandwidth and significantly reduces phase lag.

200

v1, V2, V3, V4 [Nm]

Fig. 6. Torques vy, vy, v3, v4 for controller (40) — singular desired
trajectory

5. CONCLUSIONS

A new class of task space TSM controllers with finite-time sta-
bility when tracking a desired end-effector trajectory by the
mobile manipulator under conditions of uncertain kinematics
and dynamics as well as acting unknown external forces on the
end-effector has been proposed in this paper. The main fea-
ture of the offered control laws is the elimination of both the
process of external force estimation and Jacobian matrix in-
verse (or pseudo-inverse) from trajectory tracking. Instead, es-
timated Jacobian transpose matrix has been used. Applying the
Lyapunov stability theory, control strategies (39) and (40) are
proved to be finite-time stable by fulfilment of practically rea-
sonable assumptions. The numerical simulations have shown
that controllers (39) and (40) are superior to a well known
control schemes (45), (47) in trajectory tracking accuracy. Al-
though our transposed Jacobian controllers need the knowledge
extracted from both the system kinematics and dynamics of
the mechanism, the approach is able to handle uncertainties
(in kinematics, dynamics and external forces acting on the end-
effector) occurring in the multi-body system.
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