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a hybrid structural model of the machine rotor-shaft system, 
which consists of continuous beam finite elements and dis-
crete oscillators. The main research focuses on sensitivity to 
imperfections and stability analyses, including applying the 
harmonic balance method for a parametric problem. Numer-
ical calculations are carried out for parameters characterizing 
a very representative real object, i.e., a heavy blower applied 
in the mining industry.

2. MODELLING OF TYPICAL IMPERFECTIONS OF  
THE ROTOR MACHINES WITH OVERHUNG ROTORS

Rotor machines with overhung rotors are characterized by two 
basic features, which usually significantly influence magni-
tudes of lateral/bending vibrations affecting these devices. 
The first of these features is a very heavy overhung rotor, the 
mass of which often can be up to ten times greater than that of 
the shaft itself. The second important feature is the presence 
of a rigid or flexible coupling connecting the rotor shaft with 
the shaft of the driving motor. These characteristic properties 
clearly distinguish these machines from a very wide group of 
various rotating machines, also experiencing several types of 
onerous mechanical vibrations. Namely, these features deter-
mine additional, specific sources of excitation, which in the 
case of rotating machines of different types often become sec-
ondary or even insignificant. The vibration sources important 
for the rotor machines with overhung rotors include:
1. dynamic unbalance of the rotor, which most often may be 

caused by its improper mounting on the shaft or incorrectly 
positioned blades;

2. mutual misalignment, parallel or angular, of the rotor shaft 
in relation to the remaining shaft segments and the rotor of 
the driving motor;

1. INTRODUCTION
The rotating machines with overhung rotors form a broad 
class of devices used in many types of industry. These include 
pumps, compressors, fans, blowers, beater mills and many 
more. Most of them are characterized by a similar structure in 
the form of a relatively short shaft with a heavy rotor mounted 
outside the bearing surfaces. Electric motors usually drive them 
by means of rigid or flexible couplings. Results of experimental 
measurements registered on real objects show that balancing 
errors of their rotors, worn rolling bearing raceways, rotor-to-
stator rubbing, and various inaccuracies in a connection of the 
machine with the motor cause significant lateral vibrations of 
the entire rotating system. Because of these reasons, the rotating 
machines with overhung rotors became an object of numerous 
dynamic investigations during the last decade. In [1], nonlinear 
whirl effects are studied for the overhung rotor model of Cran-
dall and Brosens. In [2], a dynamic interaction of the unbal-
anced flexible overhung rotor with ball bearings is investigated. 
Dynamic responses of an elastically supported overhung rotor 
with uncertain parameters are studied in [3]. An influence of 
friction during contact between the rotor and stator on rotor-
shaft forward and backward precession is analyzed in [4] on 
the example of a machine with an overhung rotor.

For this class of rotor machines, in the paper presented here, 
there is investigated an influence of dynamic and static unbal-
ance of rotors, parallel and angular misalignments of shafts, 
and inner anisotropy of rigid couplings on a system dynamic 
responses. The considerations are performed by means of 
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Fig. 1. Dynamic unbalance of the rigid body representing a rotor

3. anisotropy of elastic properties of couplings in the form of 
the so-called inner anisotropy, caused by errors in the man-
ufacture or assembly of couplings, or most often, plastic 
deformations of faces of the coupling discs and their screw 
connections, which gradually increase during operation.
There are also other sources of excitations, typical for most 

rotating machines, such as static unbalances of rotors, i.e., the 
overhung rotor itself and the rotor of the driving motor. More-
over, additional excitations are often caused, e.g., by cracked 
or bowed rotor-shafts, rotor-to-stator rub-impacts, and damage 
of bearing raceways, especially rolling bearings. However, it 
should be noted here that the mentioned above kinds of imper-
fections will not be considered in this study because they are 
also common to a wide variety of other rotating machines, and 
not particularly to the rotating machines with overhung rotors.

2.1.  Modelling of the dynamic unbalance of  
the overhung rotor

From the viewpoint of fundamentals of dynamics of a rigid 
body, a dynamic unbalance consists of a rotation of its central 
principal axes of inertia by a slight angle with respect to the 
center of mass of the rigid body so that one of these axes do 
not coincide with the axis around which this body rotates. This 
situation has been illustrated schematically in Fig. 1.

components of the bending moments Mz(t) and My(t) forcing 
lateral/bending vibrations of the rotor shaft, respectively in the 
vertical plane Oxy and the horizontal plane Oxz:
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Generally, as commonly defined e.g. in [5], in cases of long, 
slender rotors the dynamic unbalance is equivalent to two static 
unbalance forces with amplitudes proportional to a square of 
the rotor-shaft current rotational speed. These forces act in two 
specified planes perpendicular to the rotation axis, and their 
temporary values mutually fluctuate in antiphase, so that they 
yield a moment of couple of forces, which causes a dynamic 
bending of the entire rotor-shaft.  
Overhung rotors, however, usually belong to the class of so 
called “narrow rotors”, and thus their dynamic unbalance ought 
to be modelled in another way. Namely, by transforming the 
inertia tensor of a rigid body that represents an overhung rotor 
to the inertial, non-rotating coordinate system Oxyz, 
determining next the total kinetic energy of this rigid body in a 
spherical motion, by means of the components of this tensor and 
using Lagrange's equations of the second kind one gets 
components of the bending moments Mz(t) and My(t) forcing 

lateral/bending vibrations of the rotor shaft, respectively in the 
vertical plane Oxy and the horizontal plane Oxz: 
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(t) is the current rotational speed around Ox axis and Iξ, Iη are 
the two out of three central, main mass moments of inertia of 
the rigid body. These excitations are harmonically variable with 
a synchronous frequency 1X, and have a form analogous to an 
excitation due to static unbalances. It should be emphasized that 
if the rigid body in question represents a heavy overhung rotor, 
Iξ  is its polar mass moment of inertia with respect to the rotation 
axis Oξ in the rotating coordinate system, and Iη is the 
diametrical mass moment of inertia of this rotor with respect to 
the axis perpendicular to Oξ, as illustrated in Fig. 1, then despite 
the aforementioned low value of angle α, the product 
0.5⋅(Iξ−Iη)⋅sin(2⋅α) can be large enough to generate excitation 
magnitudes comparable or much greater than those caused by 
realistic static unbalances. 

2.2 Modelling of the rotor-shaft misalignments.  
The individual sections of shafts of the rotating machinery drive 
systems are generally interconnected by couplings of different 
types, with different properties depending on the specific 
structure of the entire device. Both during an assembly process 
and as a result of changes taking place during operation, there 
is often a lack of perfect mutual coaxiality of these shafts in the 
form of their mutual parallel or angular displacement. In these 
cases properties of couplings joining these shafts have a huge 
impact on static and dynamic loads which occur during an 
operation of the device. Although this phenomenon has been 
observed since the beginning of the drive systems of various 
types of machines, devices and vehicles, scientific research on 
misalignments of shafts and rotors was intensified at the very 
end of the 20th century, and especially in the two decades of the 
current century. This is confirmed by numerous publications 
from that period, for example [6-11]. 
Rigid couplings in the form of flanges connected with bolts 
directly or by means of appropriate sleeves, or by the use of 
lamella discs have a special influence on the misalignment of 
shafts. Then, such a screw connection significantly affects a 
nature of the load of an entire rotating drive system. In the 
case of a perfectly concentric connection of both coupling 
flanges mounted on mutually misaligned sections of the 
shafts, their static bending occurs, thus determining a 
geometric shape of the isostatic deflection line of the entire 
rotor-shaft system. This results in an action of only constant 
additional reaction forces of bearing supports, sometimes very 
significant, but without variable components inducing 
vibrations, [7], [9]. It should be noted here that in such 
situations the parallel misalignment of shafts connected in this 
way transforms into their angular misalignment. It usually 
occurs as a result of degradation of bearing supports in the 
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Ω(t) is the current rotational speed around the Ox axis, and 
Iξ, Iη are the two out of three central, main mass moments of 
inertia of the rigid body. These excitations are harmonically 
variable with a synchronous frequency 1X and have a form 
analogous to excitation due to static unbalances. It should be 
emphasized that if the rigid body in question represents a heavy 
overhung rotor, and Iξ is its polar mass moment of inertia with 
respect to the rotation axis Oξ in the rotating coordinate system, 
and Iη is the diametrical mass moment of inertia of this rotor 
with respect to the axis perpendicular to Oξ, as illustrated in 
Fig. 1, then despite the aforementioned low value of angle α, 
the product 0.5 ⋅(Iξ ¡ Iη) ⋅ sin(2 ⋅ α) can be large enough to gen-
erate excitation magnitudes comparable or much greater than 
those caused by realistic static unbalances.

2.2. Modelling of the rotor-shaft misalignments
The individual sections of shafts of the rotating machinery drive 
systems are generally interconnected by couplings of differ-
ent types, with different properties depending on the specific 
structure of the entire device. Both during an assembly process 
and due to changes taking place during operation, there is often 
a lack of perfect mutual coaxiality of these shafts in the form of 
their mutual parallel or angular displacement. In these cases, the 
properties of couplings joining these shafts have a huge impact 
on static and dynamic loads that occur during the device’s oper-
ation. Although this phenomenon has been observed since the 
beginning of the drive systems of various types of machines, 
devices and vehicles, scientific research on misalignments of 
shafts and rotors was intensified at the end of the 20th century, 
and especially in the two decades of the current century. This 
is confirmed by numerous publications from that period, for 
example [6‒11].

Rigid couplings in the form of flanges connected with bolts 
directly or through appropriate sleeves or by the use of lamella 
discs have a special influence on the misalignment of shafts. 
Then, such a screw connection significantly affects the nature 
of the load of an entire rotating drive system. In the case of 
a perfectly concentric connection of both coupling flanges 
mounted on mutually misaligned sections of the shafts, their 
static bending occurs, thus determining a geometric shape of the 
isostatic deflection line of the entire rotor-shaft system. This 
results in the action of only constant additional reaction forces 
of bearing supports, sometimes very significant, but without 
variable components inducing vibrations, [7, 9]. It should be 
noted here that in such situations, the parallel misalignment 

Generally, as commonly defined, e.g., in [5], in cases of 
long, slender rotors, the dynamic unbalance is equivalent to two 
static unbalance forces with amplitudes proportional to a square 
of the rotor-shaft current rotational speed. These forces act in 
two specified planes perpendicular to the rotation axis, and their 
temporary values mutually fluctuate in antiphase so that they 
yield a moment of a couple of forces, which causes a dynamic 
bending of the entire rotor-shaft.

Overhung rotors, however, usually belong to the class of 
so-called “narrow rotors”, and thus their dynamic unbalance 
ought to be modelled in another way. Namely, by transform-
ing the inertia tensor of a rigid body that represents an over-
hung rotor to the inertial, non-rotating coordinate system Oxyz, 
determining next the total kinetic energy of this rigid body in 
a spherical motion, by means of the components of this tensor 
and using Lagrange’s equations of the second kind one gets 
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Fig. 2. The model of the coupling with an inner anisotropy and 
parallel (a) and angular (b) misalignment

of shafts connected in this way transforms into their angular 
misalignment. It usually occurs as a result of degradation of 
bearing supports in the form of “settling” on foundations, which 
increases during the operation of a given object.

A completely different effect on the parallel misalignment 
of shafts connected by a rigid coupling is a lack of mutual 
concentricity of the circuits formed by rims of the bolts on 
both flanges, see Fig. 2a. This occurs most often as a result of 
mounting inaccurately aligned sections of shafts in their sup-
ports. Then, most often, these shafts do not experience initial 
static deformations. However, the resulting mutual parallel dis-
placement of their geometric axes by a finite value of δk during 
rotational motion becomes a source of harmonic excitation of 
a kinematic type with a synchronous frequency 1X for trans-
verse loads that induce bending vibrations of the entire shaft 
line and with a double synchronous frequency 2X for torsional 
loads that induce coupled torsional vibrations. This type of mis-
alignment was analyzed in works [6, 8‒11], both in the case of 
assuming a direct, completely non-compliant joint of both cou-
pling flanges and taking into account certain slight flexibility 
resulting from structural properties of screw connections and 
a possible presence of lamella discs. Since a magnitude of the 
coupling of torsional vibrations with bending vibrations caused 
by the parallel misalignment of shafts connected by such a cou-

pling, as indicated in [8], is of the order of the square of the 
value of this misalignment δk

2, it can be considered negligible. 
Thus, the effect of coupling with torsional vibrations will not 
be taken into account here.

The proposed mathematical model of the coupling character-
ized by the parallel misalignment comes down to a description 
of the connection of the extreme cross-section of the rotating 
Rayleigh or Timoshenko beam, representing in this model the 
k-1-st coupling flange, with the extreme cross-section of the 
analogous beam, representing the k-th flange, by means of 
a massless spring with the given shear stiffness G0k, as shown 
in Fig. 2a. This description is a condition of equilibrium for 
viscoelastic, inertial and gyroscopic transverse forces, which in 
the case of applying the Rayleigh beam bending theory takes 
the following form:
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vk(x,t)=uk(x,t)+jwk(x,t), uk(x,t) being the lateral displacement 
in the vertical direction and wk(x,t) the lateral displacement 
in the horizontal direction, both of the cross-section with the 
spatial coordinate x of the k-th beam segment, j denotes the 
imaginary number, (t) is the current shaft rotational speed, 
Θ(t) is the current shaft rotation angle, e denotes the 
retardation time for beam flexural deformations, EIk is the 
bending stiffness of the k-th beam segment with the geometric 
moment of inertia Ik and material density ρ, δk denotes the 
value of the parallel shaft misalignment, and Ψk is the phase 
angle of the coupling parallel misalignment.  
In addition to the above-mentioned parallel misalignment, in 
a general case also angular misalignments may occur as a 
consequence of a wrong mounting or imperfect machining of 
the coupling flanges. Then, the coupling faces can be not only 
mutually eccentric of the small off-set δk, but also slightly 
deviated of the angle βk +β0k from the plane perpendicular to 
the rotation axis, as shown in Fig. 2b, where angle βk is a result 
of coupling flange machining error and β0k denotes the angular 
shaft misalignment, e.g. due to a misalignment of bearings.  
In a structural physical model of the rotor machine drive 
system the discussed type of coupling with the angular 
misalignment can be also represented by two flexible rotating 
beams corresponding respectively to both coupling flanges 
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account a certain slight flexibility resulting from structural 
properties of screw connections and a possible presence of 
lamella discs. Since a magnitude of the coupling of torsional 
vibrations with bending vibrations caused by the parallel 
misalignment of shafts connected by such a coupling, as 
indicated in [8], is of the order of the square of the value of 
this misalignment δk

2, it can be considered negligible. Thus, 
the effect of coupling with torsional vibrations will not be 
taken into account here.  

 

 
Fig.2. The model of the coupling with an inner anisotropy and parallel 

(a) and angular (b) misalignment  

The proposed mathematical model of the coupling 
characterized by the parallel misalignment comes down to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given shear stiffness 
G0k, as shown in Fig. 2a. This description is a condition of 
equilibrium for viscoelastic, inertial and gyroscopic 
transverse forces, which in the case of applying the Rayleigh 
beam bending theory takes the following form:  
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vk(x,t)=uk(x,t)+jwk(x,t), uk(x,t) being the lateral displacement 
in the vertical direction and wk(x,t) the lateral displacement 
in the horizontal direction, both of the cross-section with the 
spatial coordinate x of the k-th beam segment, j denotes the 
imaginary number, (t) is the current shaft rotational speed, 
Θ(t) is the current shaft rotation angle, e denotes the 
retardation time for beam flexural deformations, EIk is the 
bending stiffness of the k-th beam segment with the geometric 
moment of inertia Ik and material density ρ, δk denotes the 
value of the parallel shaft misalignment, and Ψk is the phase 
angle of the coupling parallel misalignment.  
In addition to the above-mentioned parallel misalignment, in 
a general case also angular misalignments may occur as a 
consequence of a wrong mounting or imperfect machining of 
the coupling flanges. Then, the coupling faces can be not only 
mutually eccentric of the small off-set δk, but also slightly 
deviated of the angle βk +β0k from the plane perpendicular to 
the rotation axis, as shown in Fig. 2b, where angle βk is a result 
of coupling flange machining error and β0k denotes the angular 
shaft misalignment, e.g. due to a misalignment of bearings.  
In a structural physical model of the rotor machine drive 
system the discussed type of coupling with the angular 
misalignment can be also represented by two flexible rotating 
beams corresponding respectively to both coupling flanges 

VOLUME XX, 2021  3 
 

form of "settling" on foundations, which increases during 
operation of a given object. 
A completely different effect on the parallel misalignment of 
shafts connected by a rigid coupling is a lack of mutual 
concentricity of the circuits formed by rims of the bolts on 
both flanges, see Fig. 2a. This occurs most often as a result of 
mounting inaccurately aligned sections of shafts in their 
supports. Then, most often these shafts do not experience 
initial static deformations, but the resulting mutual parallel 
displacement of their geometric axes by a finite value of δk 
during rotational motion becomes a source of harmonic 
excitation of a kinematic type with a synchronous frequency 
1X for transverse loads that induce bending vibrations of the 
entire shaft line, and with a double synchronous frequency 2X 
for torsional loads that induce coupled torsional vibrations. 
This type of misalignment was analysed in works [6], [8-11], 
both in the case of assuming a direct, completely non-
compliant joint of both coupling flanges, and taking into 
account a certain slight flexibility resulting from structural 
properties of screw connections and a possible presence of 
lamella discs. Since a magnitude of the coupling of torsional 
vibrations with bending vibrations caused by the parallel 
misalignment of shafts connected by such a coupling, as 
indicated in [8], is of the order of the square of the value of 
this misalignment δk

2, it can be considered negligible. Thus, 
the effect of coupling with torsional vibrations will not be 
taken into account here.  

 

 
Fig.2. The model of the coupling with an inner anisotropy and parallel 

(a) and angular (b) misalignment  

The proposed mathematical model of the coupling 
characterized by the parallel misalignment comes down to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given shear stiffness 
G0k, as shown in Fig. 2a. This description is a condition of 
equilibrium for viscoelastic, inertial and gyroscopic 
transverse forces, which in the case of applying the Rayleigh 
beam bending theory takes the following form:  
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vk(x,t)=uk(x,t)+jwk(x,t), uk(x,t) being the lateral displacement 
in the vertical direction and wk(x,t) the lateral displacement 
in the horizontal direction, both of the cross-section with the 
spatial coordinate x of the k-th beam segment, j denotes the 
imaginary number, (t) is the current shaft rotational speed, 
Θ(t) is the current shaft rotation angle, e denotes the 
retardation time for beam flexural deformations, EIk is the 
bending stiffness of the k-th beam segment with the geometric 
moment of inertia Ik and material density ρ, δk denotes the 
value of the parallel shaft misalignment, and Ψk is the phase 
angle of the coupling parallel misalignment.  
In addition to the above-mentioned parallel misalignment, in 
a general case also angular misalignments may occur as a 
consequence of a wrong mounting or imperfect machining of 
the coupling flanges. Then, the coupling faces can be not only 
mutually eccentric of the small off-set δk, but also slightly 
deviated of the angle βk +β0k from the plane perpendicular to 
the rotation axis, as shown in Fig. 2b, where angle βk is a result 
of coupling flange machining error and β0k denotes the angular 
shaft misalignment, e.g. due to a misalignment of bearings.  
In a structural physical model of the rotor machine drive 
system the discussed type of coupling with the angular 
misalignment can be also represented by two flexible rotating 
beams corresponding respectively to both coupling flanges 
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form of "settling" on foundations, which increases during 
operation of a given object. 
A completely different effect on the parallel misalignment of 
shafts connected by a rigid coupling is a lack of mutual 
concentricity of the circuits formed by rims of the bolts on 
both flanges, see Fig. 2a. This occurs most often as a result of 
mounting inaccurately aligned sections of shafts in their 
supports. Then, most often these shafts do not experience 
initial static deformations, but the resulting mutual parallel 
displacement of their geometric axes by a finite value of δk 
during rotational motion becomes a source of harmonic 
excitation of a kinematic type with a synchronous frequency 
1X for transverse loads that induce bending vibrations of the 
entire shaft line, and with a double synchronous frequency 2X 
for torsional loads that induce coupled torsional vibrations. 
This type of misalignment was analysed in works [6], [8-11], 
both in the case of assuming a direct, completely non-
compliant joint of both coupling flanges, and taking into 
account a certain slight flexibility resulting from structural 
properties of screw connections and a possible presence of 
lamella discs. Since a magnitude of the coupling of torsional 
vibrations with bending vibrations caused by the parallel 
misalignment of shafts connected by such a coupling, as 
indicated in [8], is of the order of the square of the value of 
this misalignment δk

2, it can be considered negligible. Thus, 
the effect of coupling with torsional vibrations will not be 
taken into account here.  

 

 
Fig.2. The model of the coupling with an inner anisotropy and parallel 

(a) and angular (b) misalignment  

The proposed mathematical model of the coupling 
characterized by the parallel misalignment comes down to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given shear stiffness 
G0k, as shown in Fig. 2a. This description is a condition of 
equilibrium for viscoelastic, inertial and gyroscopic 
transverse forces, which in the case of applying the Rayleigh 
beam bending theory takes the following form:  
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vk(x,t)=uk(x,t)+jwk(x,t), uk(x,t) being the lateral displacement 
in the vertical direction and wk(x,t) the lateral displacement 
in the horizontal direction, both of the cross-section with the 
spatial coordinate x of the k-th beam segment, j denotes the 
imaginary number, (t) is the current shaft rotational speed, 
Θ(t) is the current shaft rotation angle, e denotes the 
retardation time for beam flexural deformations, EIk is the 
bending stiffness of the k-th beam segment with the geometric 
moment of inertia Ik and material density ρ, δk denotes the 
value of the parallel shaft misalignment, and Ψk is the phase 
angle of the coupling parallel misalignment.  
In addition to the above-mentioned parallel misalignment, in 
a general case also angular misalignments may occur as a 
consequence of a wrong mounting or imperfect machining of 
the coupling flanges. Then, the coupling faces can be not only 
mutually eccentric of the small off-set δk, but also slightly 
deviated of the angle βk +β0k from the plane perpendicular to 
the rotation axis, as shown in Fig. 2b, where angle βk is a result 
of coupling flange machining error and β0k denotes the angular 
shaft misalignment, e.g. due to a misalignment of bearings.  
In a structural physical model of the rotor machine drive 
system the discussed type of coupling with the angular 
misalignment can be also represented by two flexible rotating 
beams corresponding respectively to both coupling flanges 
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form of "settling" on foundations, which increases during 
operation of a given object. 
A completely different effect on the parallel misalignment of 
shafts connected by a rigid coupling is a lack of mutual 
concentricity of the circuits formed by rims of the bolts on 
both flanges, see Fig. 2a. This occurs most often as a result of 
mounting inaccurately aligned sections of shafts in their 
supports. Then, most often these shafts do not experience 
initial static deformations, but the resulting mutual parallel 
displacement of their geometric axes by a finite value of δk 
during rotational motion becomes a source of harmonic 
excitation of a kinematic type with a synchronous frequency 
1X for transverse loads that induce bending vibrations of the 
entire shaft line, and with a double synchronous frequency 2X 
for torsional loads that induce coupled torsional vibrations. 
This type of misalignment was analysed in works [6], [8-11], 
both in the case of assuming a direct, completely non-
compliant joint of both coupling flanges, and taking into 
account a certain slight flexibility resulting from structural 
properties of screw connections and a possible presence of 
lamella discs. Since a magnitude of the coupling of torsional 
vibrations with bending vibrations caused by the parallel 
misalignment of shafts connected by such a coupling, as 
indicated in [8], is of the order of the square of the value of 
this misalignment δk

2, it can be considered negligible. Thus, 
the effect of coupling with torsional vibrations will not be 
taken into account here.  

 

 
Fig.2. The model of the coupling with an inner anisotropy and parallel 

(a) and angular (b) misalignment  

The proposed mathematical model of the coupling 
characterized by the parallel misalignment comes down to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given shear stiffness 
G0k, as shown in Fig. 2a. This description is a condition of 
equilibrium for viscoelastic, inertial and gyroscopic 
transverse forces, which in the case of applying the Rayleigh 
beam bending theory takes the following form:  
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vk(x,t)=uk(x,t)+jwk(x,t), uk(x,t) being the lateral displacement 
in the vertical direction and wk(x,t) the lateral displacement 
in the horizontal direction, both of the cross-section with the 
spatial coordinate x of the k-th beam segment, j denotes the 
imaginary number, (t) is the current shaft rotational speed, 
Θ(t) is the current shaft rotation angle, e denotes the 
retardation time for beam flexural deformations, EIk is the 
bending stiffness of the k-th beam segment with the geometric 
moment of inertia Ik and material density ρ, δk denotes the 
value of the parallel shaft misalignment, and Ψk is the phase 
angle of the coupling parallel misalignment.  
In addition to the above-mentioned parallel misalignment, in 
a general case also angular misalignments may occur as a 
consequence of a wrong mounting or imperfect machining of 
the coupling flanges. Then, the coupling faces can be not only 
mutually eccentric of the small off-set δk, but also slightly 
deviated of the angle βk +β0k from the plane perpendicular to 
the rotation axis, as shown in Fig. 2b, where angle βk is a result 
of coupling flange machining error and β0k denotes the angular 
shaft misalignment, e.g. due to a misalignment of bearings.  
In a structural physical model of the rotor machine drive 
system the discussed type of coupling with the angular 
misalignment can be also represented by two flexible rotating 
beams corresponding respectively to both coupling flanges 
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form of "settling" on foundations, which increases during 
operation of a given object. 
A completely different effect on the parallel misalignment of 
shafts connected by a rigid coupling is a lack of mutual 
concentricity of the circuits formed by rims of the bolts on 
both flanges, see Fig. 2a. This occurs most often as a result of 
mounting inaccurately aligned sections of shafts in their 
supports. Then, most often these shafts do not experience 
initial static deformations, but the resulting mutual parallel 
displacement of their geometric axes by a finite value of δk 
during rotational motion becomes a source of harmonic 
excitation of a kinematic type with a synchronous frequency 
1X for transverse loads that induce bending vibrations of the 
entire shaft line, and with a double synchronous frequency 2X 
for torsional loads that induce coupled torsional vibrations. 
This type of misalignment was analysed in works [6], [8-11], 
both in the case of assuming a direct, completely non-
compliant joint of both coupling flanges, and taking into 
account a certain slight flexibility resulting from structural 
properties of screw connections and a possible presence of 
lamella discs. Since a magnitude of the coupling of torsional 
vibrations with bending vibrations caused by the parallel 
misalignment of shafts connected by such a coupling, as 
indicated in [8], is of the order of the square of the value of 
this misalignment δk

2, it can be considered negligible. Thus, 
the effect of coupling with torsional vibrations will not be 
taken into account here.  

 

 
Fig.2. The model of the coupling with an inner anisotropy and parallel 

(a) and angular (b) misalignment  

The proposed mathematical model of the coupling 
characterized by the parallel misalignment comes down to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given shear stiffness 
G0k, as shown in Fig. 2a. This description is a condition of 
equilibrium for viscoelastic, inertial and gyroscopic 
transverse forces, which in the case of applying the Rayleigh 
beam bending theory takes the following form:  
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vk(x,t)=uk(x,t)+jwk(x,t), uk(x,t) being the lateral displacement 
in the vertical direction and wk(x,t) the lateral displacement 
in the horizontal direction, both of the cross-section with the 
spatial coordinate x of the k-th beam segment, j denotes the 
imaginary number, (t) is the current shaft rotational speed, 
Θ(t) is the current shaft rotation angle, e denotes the 
retardation time for beam flexural deformations, EIk is the 
bending stiffness of the k-th beam segment with the geometric 
moment of inertia Ik and material density ρ, δk denotes the 
value of the parallel shaft misalignment, and Ψk is the phase 
angle of the coupling parallel misalignment.  
In addition to the above-mentioned parallel misalignment, in 
a general case also angular misalignments may occur as a 
consequence of a wrong mounting or imperfect machining of 
the coupling flanges. Then, the coupling faces can be not only 
mutually eccentric of the small off-set δk, but also slightly 
deviated of the angle βk +β0k from the plane perpendicular to 
the rotation axis, as shown in Fig. 2b, where angle βk is a result 
of coupling flange machining error and β0k denotes the angular 
shaft misalignment, e.g. due to a misalignment of bearings.  
In a structural physical model of the rotor machine drive 
system the discussed type of coupling with the angular 
misalignment can be also represented by two flexible rotating 
beams corresponding respectively to both coupling flanges 
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form of "settling" on foundations, which increases during 
operation of a given object. 
A completely different effect on the parallel misalignment of 
shafts connected by a rigid coupling is a lack of mutual 
concentricity of the circuits formed by rims of the bolts on 
both flanges, see Fig. 2a. This occurs most often as a result of 
mounting inaccurately aligned sections of shafts in their 
supports. Then, most often these shafts do not experience 
initial static deformations, but the resulting mutual parallel 
displacement of their geometric axes by a finite value of δk 
during rotational motion becomes a source of harmonic 
excitation of a kinematic type with a synchronous frequency 
1X for transverse loads that induce bending vibrations of the 
entire shaft line, and with a double synchronous frequency 2X 
for torsional loads that induce coupled torsional vibrations. 
This type of misalignment was analysed in works [6], [8-11], 
both in the case of assuming a direct, completely non-
compliant joint of both coupling flanges, and taking into 
account a certain slight flexibility resulting from structural 
properties of screw connections and a possible presence of 
lamella discs. Since a magnitude of the coupling of torsional 
vibrations with bending vibrations caused by the parallel 
misalignment of shafts connected by such a coupling, as 
indicated in [8], is of the order of the square of the value of 
this misalignment δk

2, it can be considered negligible. Thus, 
the effect of coupling with torsional vibrations will not be 
taken into account here.  

 

 
Fig.2. The model of the coupling with an inner anisotropy and parallel 

(a) and angular (b) misalignment  

The proposed mathematical model of the coupling 
characterized by the parallel misalignment comes down to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given shear stiffness 
G0k, as shown in Fig. 2a. This description is a condition of 
equilibrium for viscoelastic, inertial and gyroscopic 
transverse forces, which in the case of applying the Rayleigh 
beam bending theory takes the following form:  
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vk(x,t)=uk(x,t)+jwk(x,t), uk(x,t) being the lateral displacement 
in the vertical direction and wk(x,t) the lateral displacement 
in the horizontal direction, both of the cross-section with the 
spatial coordinate x of the k-th beam segment, j denotes the 
imaginary number, (t) is the current shaft rotational speed, 
Θ(t) is the current shaft rotation angle, e denotes the 
retardation time for beam flexural deformations, EIk is the 
bending stiffness of the k-th beam segment with the geometric 
moment of inertia Ik and material density ρ, δk denotes the 
value of the parallel shaft misalignment, and Ψk is the phase 
angle of the coupling parallel misalignment.  
In addition to the above-mentioned parallel misalignment, in 
a general case also angular misalignments may occur as a 
consequence of a wrong mounting or imperfect machining of 
the coupling flanges. Then, the coupling faces can be not only 
mutually eccentric of the small off-set δk, but also slightly 
deviated of the angle βk +β0k from the plane perpendicular to 
the rotation axis, as shown in Fig. 2b, where angle βk is a result 
of coupling flange machining error and β0k denotes the angular 
shaft misalignment, e.g. due to a misalignment of bearings.  
In a structural physical model of the rotor machine drive 
system the discussed type of coupling with the angular 
misalignment can be also represented by two flexible rotating 
beams corresponding respectively to both coupling flanges 
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form of "settling" on foundations, which increases during 
operation of a given object. 
A completely different effect on the parallel misalignment of 
shafts connected by a rigid coupling is a lack of mutual 
concentricity of the circuits formed by rims of the bolts on 
both flanges, see Fig. 2a. This occurs most often as a result of 
mounting inaccurately aligned sections of shafts in their 
supports. Then, most often these shafts do not experience 
initial static deformations, but the resulting mutual parallel 
displacement of their geometric axes by a finite value of δk 
during rotational motion becomes a source of harmonic 
excitation of a kinematic type with a synchronous frequency 
1X for transverse loads that induce bending vibrations of the 
entire shaft line, and with a double synchronous frequency 2X 
for torsional loads that induce coupled torsional vibrations. 
This type of misalignment was analysed in works [6], [8-11], 
both in the case of assuming a direct, completely non-
compliant joint of both coupling flanges, and taking into 
account a certain slight flexibility resulting from structural 
properties of screw connections and a possible presence of 
lamella discs. Since a magnitude of the coupling of torsional 
vibrations with bending vibrations caused by the parallel 
misalignment of shafts connected by such a coupling, as 
indicated in [8], is of the order of the square of the value of 
this misalignment δk

2, it can be considered negligible. Thus, 
the effect of coupling with torsional vibrations will not be 
taken into account here.  

 

 
Fig.2. The model of the coupling with an inner anisotropy and parallel 

(a) and angular (b) misalignment  

The proposed mathematical model of the coupling 
characterized by the parallel misalignment comes down to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given shear stiffness 
G0k, as shown in Fig. 2a. This description is a condition of 
equilibrium for viscoelastic, inertial and gyroscopic 
transverse forces, which in the case of applying the Rayleigh 
beam bending theory takes the following form:  
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vk(x,t)=uk(x,t)+jwk(x,t), uk(x,t) being the lateral displacement 
in the vertical direction and wk(x,t) the lateral displacement 
in the horizontal direction, both of the cross-section with the 
spatial coordinate x of the k-th beam segment, j denotes the 
imaginary number, (t) is the current shaft rotational speed, 
Θ(t) is the current shaft rotation angle, e denotes the 
retardation time for beam flexural deformations, EIk is the 
bending stiffness of the k-th beam segment with the geometric 
moment of inertia Ik and material density ρ, δk denotes the 
value of the parallel shaft misalignment, and Ψk is the phase 
angle of the coupling parallel misalignment.  
In addition to the above-mentioned parallel misalignment, in 
a general case also angular misalignments may occur as a 
consequence of a wrong mounting or imperfect machining of 
the coupling flanges. Then, the coupling faces can be not only 
mutually eccentric of the small off-set δk, but also slightly 
deviated of the angle βk +β0k from the plane perpendicular to 
the rotation axis, as shown in Fig. 2b, where angle βk is a result 
of coupling flange machining error and β0k denotes the angular 
shaft misalignment, e.g. due to a misalignment of bearings.  
In a structural physical model of the rotor machine drive 
system the discussed type of coupling with the angular 
misalignment can be also represented by two flexible rotating 
beams corresponding respectively to both coupling flanges 
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form of "settling" on foundations, which increases during 
operation of a given object. 
A completely different effect on the parallel misalignment of 
shafts connected by a rigid coupling is a lack of mutual 
concentricity of the circuits formed by rims of the bolts on 
both flanges, see Fig. 2a. This occurs most often as a result of 
mounting inaccurately aligned sections of shafts in their 
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The proposed mathematical model of the coupling 
characterized by the parallel misalignment comes down to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given shear stiffness 
G0k, as shown in Fig. 2a. This description is a condition of 
equilibrium for viscoelastic, inertial and gyroscopic 
transverse forces, which in the case of applying the Rayleigh 
beam bending theory takes the following form:  
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vk(x,t)=uk(x,t)+jwk(x,t), uk(x,t) being the lateral displacement 
in the vertical direction and wk(x,t) the lateral displacement 
in the horizontal direction, both of the cross-section with the 
spatial coordinate x of the k-th beam segment, j denotes the 
imaginary number, (t) is the current shaft rotational speed, 
Θ(t) is the current shaft rotation angle, e denotes the 
retardation time for beam flexural deformations, EIk is the 
bending stiffness of the k-th beam segment with the geometric 
moment of inertia Ik and material density ρ, δk denotes the 
value of the parallel shaft misalignment, and Ψk is the phase 
angle of the coupling parallel misalignment.  
In addition to the above-mentioned parallel misalignment, in 
a general case also angular misalignments may occur as a 
consequence of a wrong mounting or imperfect machining of 
the coupling flanges. Then, the coupling faces can be not only 
mutually eccentric of the small off-set δk, but also slightly 
deviated of the angle βk +β0k from the plane perpendicular to 
the rotation axis, as shown in Fig. 2b, where angle βk is a result 
of coupling flange machining error and β0k denotes the angular 
shaft misalignment, e.g. due to a misalignment of bearings.  
In a structural physical model of the rotor machine drive 
system the discussed type of coupling with the angular 
misalignment can be also represented by two flexible rotating 
beams corresponding respectively to both coupling flanges 

 (2)

where: Dk(Θ(t) ¡ Ψk) = δk 1 ¡ cos(Θ(t) ¡ Ψk)  + 

where: + j –δk sin(Θ(t) ¡ Ψk) ,

vk(x, t) = uk(x, t) + jwk(x, t), uk(x, t) being the lateral displace-
ment in the vertical direction and wk(x, t) the lateral displace-
ment in the horizontal direction, both of the cross-section with 
the spatial coordinate x of the k-th beam segment, j denotes the 
imaginary number, Ω(t) is the current shaft rotational speed, 
Θ(t) is the current shaft rotation angle, e denotes the retarda-
tion time for beam flexural deformations, EIk is the bending 
stiffness of the k-th beam segment with the geometric moment 
of inertia Ik and material density ρ, δk denotes the value of the 
parallel shaft misalignment, and Ψk is the phase angle of the 
coupling parallel misalignment.

In addition to the above-mentioned parallel misalignment, 
in a general case, angular misalignments may occur due to an 
improper mounting or imperfect machining of the coupling 
flanges. Then, the coupling faces can be not only mutually 
eccentric of the small off-set δk but also slightly deviated of 
the angle βk + β0k from the plane perpendicular to the rotation 
axis, as shown in Fig. 2b, where angle βk is a result of coupling 
flange machining error, and β0k denotes the angular shaft mis-
alignment, e.g. due to a misalignment of bearings.
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In a structural physical model of the rotor machine drive 
system, the discussed type of coupling with the angular mis-
alignment can also be represented by two flexible rotating 
beams corresponding respectively to both coupling flanges 
interconnected by a massless viscoelastic spring that substitutes 
flexural compliance of the assembly bolts and lamellar discs, 
as presented in Fig. 2b.

Here, the proposed mathematical model of the coupling char-
acterized by the angular misalignment is reduced to a description 
of the connection of the extreme cross-section of the rotating 
Rayleigh or Timoshenko beam, representing in this model the 
k-1-st coupling flange, with the extreme cross-section of the anal-
ogous beam, representing the k-th flange, by means of a massless 
spring with the given bending stiffness H0k, as shown in Fig. 2b. 
This description is a condition of equilibrium for viscoelastic 
and inertial bending moments, which in the case of applying 
the Rayleigh beam bending theory takes the following form:
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interconnected by a massless viscoelastic spring that 
substitutes a flexural compliance of the assembly bolts and 
lamellar discs, as presented in Fig. 2b.  
Here, the proposed mathematical model of the coupling 
characterized by the angular misalignment is reduced to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given bending stiffness 
H0k, as shown in Fig. 2b. This description is a condition of 
equilibrium for viscoelastic and inertial bending moments, 
which in the case of applying the Rayleigh beam bending 
theory takes the following form:  
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β0k is the constant mutual angular misalignment of the k-1-th 
and k-th shaft segment axes, βk denotes the angular 
misalignment due to a coupling flange machining error, see 
Fig. 2b, and Φk is the phase angle of the coupling angular 
misalignment.  

2.3 Modelling of the coupling inner anisotropy. 
Based on reviews of the available literature, it can be 
concluded that the problem of anisotropy of the dynamic 
properties of rotor systems has not been fully investigated so 
far. The main reasons for an occurrence of rotor shafts 
anisotropy were mainly different viscoelastic characteristics 
of bearing supports in the vertical and horizontal direction, as 
studied e.g. in [12]. However, due to a legitimacy of 
maintaining a circular-symmetric shape of cross-sections of 
rotating elements, an anisotropy of elastic or visco-inertial-
elastic properties of the rotor shafts is observed rather rarely, 
for example in the case of rotors of two-pole generators or 
various types of atypical elements interconnecting rotor-shaft 
segments. This type of anisotropy is called "inner anisotropy" 
of the rotor shaft. The inner anisotropy of rotor shafts, 
distributed continuously along their length, was investigated 
by means of the finite element method for cognitive purposes 
in dissertation [13], and for diagnosis of imperfections in [10]. 
Different values of shaft stiffness in mutually perpendicular 

directions to the axis of rotation as a result of a transverse 
crack in a given rotor shaft section can be considered as the 
local anisotropy as well. Then, the resulting coupling of 
bending vibrations of the rotor shaft with its torsional 
vibrations can be used as a source of diagnostic information 
for detection and identification of transverse cracks, which 
was the subject of research e.g. in [14]. 
In a case of operation of couplings mutually connecting rotor 
shafts under high dynamic and static loadings, gradual 
degradation of the coupling components occurs, for example 
in the form of loosening of the connecting bolts or progressive 
plastic deformation of their seats or entire flanges' faces. As a 
result of such degradation, even with a correct assembly of the 
coupling, sometimes there is even a very significant difference 
in the bending stiffness of such a connection in two mutually 
perpendicular directions to the axis of rotation. So we are also 
dealing here with the inner anisotropy of the local type. This 
type of anisotropy due to imperfection of the coupling 
components will be investigated here by means of the similar 
structural model as those which include the parallel and 
angular coupling misalignment. Its mathematical description 
is an analogous condition of equilibrium for viscoelastic, 
inertial and gyroscopic transverse forces and bending 
moments as the both above, which in the case of applying the 
Rayleigh beam bending theory takes the following form:  

( )

3 3( , ) ( , )1 111 13 2

2 ( , )12 ( ) 1

2 ( )
e ( , ) ( , ) 0,0 1

v x t v x tk kEI e Ik kx x tt

v x tkj t Ik x t

j t kG G v x t v x tk Vk k k

∂ ∂∂
ρ

∂ ∂ ∂∂

∂
 ρ

∂ ∂

Θ  
 
 

− −− + + −− −

−− −−

−
− + − =−

 
  
 

 
⋅  

 

 

( )

3 3( , ) ( , )
1 3 2

2 ( , )
2 ( )

2 ( )
e ( , ) ( , ) 0, (4)0 1

v x t v x tk kEI e Ik kx x tt

v x tkj t Ik x t

j t kG G v x t v x tk Vk k k

∂ ∂∂
ρ

∂ ∂ ∂∂

∂
 ρ

∂ ∂

Θ  
 
 

+ − +

+ +

−
+ − =−

 
  
 

 
+ ⋅  
 

 

2 ( , )111 2

( , ) ( , )2 ( ) 1e 0,0

v x tkEI ek xt

v x t v x tj t k kkH Hk Vk x x

∂∂

∂∂

∂ ∂Θ 

∂ ∂

 
 
 

−+ +−

− −+ − =

 
  
 

   
+ ⋅        

 

2 ( , ) 1
1 for2 1

( , ) ( , )2 ( ) 1e 0,0

,
v x t kkEI e x lik ixt

v x t v x tj t k kkH Hk Vk x x

∂∂

∂∂

∂ ∂Θ 

∂ ∂

 
 
 

−
+ + = ∑

=

− −+ − =

 
  
 

   
+ ⋅        

 

VOLUME XX, 2021  4 
 

interconnected by a massless viscoelastic spring that 
substitutes a flexural compliance of the assembly bolts and 
lamellar discs, as presented in Fig. 2b.  
Here, the proposed mathematical model of the coupling 
characterized by the angular misalignment is reduced to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given bending stiffness 
H0k, as shown in Fig. 2b. This description is a condition of 
equilibrium for viscoelastic and inertial bending moments, 
which in the case of applying the Rayleigh beam bending 
theory takes the following form:  
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β0k is the constant mutual angular misalignment of the k-1-th 
and k-th shaft segment axes, βk denotes the angular 
misalignment due to a coupling flange machining error, see 
Fig. 2b, and Φk is the phase angle of the coupling angular 
misalignment.  

2.3 Modelling of the coupling inner anisotropy. 
Based on reviews of the available literature, it can be 
concluded that the problem of anisotropy of the dynamic 
properties of rotor systems has not been fully investigated so 
far. The main reasons for an occurrence of rotor shafts 
anisotropy were mainly different viscoelastic characteristics 
of bearing supports in the vertical and horizontal direction, as 
studied e.g. in [12]. However, due to a legitimacy of 
maintaining a circular-symmetric shape of cross-sections of 
rotating elements, an anisotropy of elastic or visco-inertial-
elastic properties of the rotor shafts is observed rather rarely, 
for example in the case of rotors of two-pole generators or 
various types of atypical elements interconnecting rotor-shaft 
segments. This type of anisotropy is called "inner anisotropy" 
of the rotor shaft. The inner anisotropy of rotor shafts, 
distributed continuously along their length, was investigated 
by means of the finite element method for cognitive purposes 
in dissertation [13], and for diagnosis of imperfections in [10]. 
Different values of shaft stiffness in mutually perpendicular 

directions to the axis of rotation as a result of a transverse 
crack in a given rotor shaft section can be considered as the 
local anisotropy as well. Then, the resulting coupling of 
bending vibrations of the rotor shaft with its torsional 
vibrations can be used as a source of diagnostic information 
for detection and identification of transverse cracks, which 
was the subject of research e.g. in [14]. 
In a case of operation of couplings mutually connecting rotor 
shafts under high dynamic and static loadings, gradual 
degradation of the coupling components occurs, for example 
in the form of loosening of the connecting bolts or progressive 
plastic deformation of their seats or entire flanges' faces. As a 
result of such degradation, even with a correct assembly of the 
coupling, sometimes there is even a very significant difference 
in the bending stiffness of such a connection in two mutually 
perpendicular directions to the axis of rotation. So we are also 
dealing here with the inner anisotropy of the local type. This 
type of anisotropy due to imperfection of the coupling 
components will be investigated here by means of the similar 
structural model as those which include the parallel and 
angular coupling misalignment. Its mathematical description 
is an analogous condition of equilibrium for viscoelastic, 
inertial and gyroscopic transverse forces and bending 
moments as the both above, which in the case of applying the 
Rayleigh beam bending theory takes the following form:  
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interconnected by a massless viscoelastic spring that 
substitutes a flexural compliance of the assembly bolts and 
lamellar discs, as presented in Fig. 2b.  
Here, the proposed mathematical model of the coupling 
characterized by the angular misalignment is reduced to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given bending stiffness 
H0k, as shown in Fig. 2b. This description is a condition of 
equilibrium for viscoelastic and inertial bending moments, 
which in the case of applying the Rayleigh beam bending 
theory takes the following form:  
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β0k is the constant mutual angular misalignment of the k-1-th 
and k-th shaft segment axes, βk denotes the angular 
misalignment due to a coupling flange machining error, see 
Fig. 2b, and Φk is the phase angle of the coupling angular 
misalignment.  

2.3 Modelling of the coupling inner anisotropy. 
Based on reviews of the available literature, it can be 
concluded that the problem of anisotropy of the dynamic 
properties of rotor systems has not been fully investigated so 
far. The main reasons for an occurrence of rotor shafts 
anisotropy were mainly different viscoelastic characteristics 
of bearing supports in the vertical and horizontal direction, as 
studied e.g. in [12]. However, due to a legitimacy of 
maintaining a circular-symmetric shape of cross-sections of 
rotating elements, an anisotropy of elastic or visco-inertial-
elastic properties of the rotor shafts is observed rather rarely, 
for example in the case of rotors of two-pole generators or 
various types of atypical elements interconnecting rotor-shaft 
segments. This type of anisotropy is called "inner anisotropy" 
of the rotor shaft. The inner anisotropy of rotor shafts, 
distributed continuously along their length, was investigated 
by means of the finite element method for cognitive purposes 
in dissertation [13], and for diagnosis of imperfections in [10]. 
Different values of shaft stiffness in mutually perpendicular 

directions to the axis of rotation as a result of a transverse 
crack in a given rotor shaft section can be considered as the 
local anisotropy as well. Then, the resulting coupling of 
bending vibrations of the rotor shaft with its torsional 
vibrations can be used as a source of diagnostic information 
for detection and identification of transverse cracks, which 
was the subject of research e.g. in [14]. 
In a case of operation of couplings mutually connecting rotor 
shafts under high dynamic and static loadings, gradual 
degradation of the coupling components occurs, for example 
in the form of loosening of the connecting bolts or progressive 
plastic deformation of their seats or entire flanges' faces. As a 
result of such degradation, even with a correct assembly of the 
coupling, sometimes there is even a very significant difference 
in the bending stiffness of such a connection in two mutually 
perpendicular directions to the axis of rotation. So we are also 
dealing here with the inner anisotropy of the local type. This 
type of anisotropy due to imperfection of the coupling 
components will be investigated here by means of the similar 
structural model as those which include the parallel and 
angular coupling misalignment. Its mathematical description 
is an analogous condition of equilibrium for viscoelastic, 
inertial and gyroscopic transverse forces and bending 
moments as the both above, which in the case of applying the 
Rayleigh beam bending theory takes the following form:  
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β0k is the constant mutual angular misalignment of the k-1-th 
and k-th shaft segment axes, βk denotes the angular 
misalignment due to a coupling flange machining error, see 
Fig. 2b, and Φk is the phase angle of the coupling angular 
misalignment.  

2.3 Modelling of the coupling inner anisotropy. 
Based on reviews of the available literature, it can be 
concluded that the problem of anisotropy of the dynamic 
properties of rotor systems has not been fully investigated so 
far. The main reasons for an occurrence of rotor shafts 
anisotropy were mainly different viscoelastic characteristics 
of bearing supports in the vertical and horizontal direction, as 
studied e.g. in [12]. However, due to a legitimacy of 
maintaining a circular-symmetric shape of cross-sections of 
rotating elements, an anisotropy of elastic or visco-inertial-
elastic properties of the rotor shafts is observed rather rarely, 
for example in the case of rotors of two-pole generators or 
various types of atypical elements interconnecting rotor-shaft 
segments. This type of anisotropy is called "inner anisotropy" 
of the rotor shaft. The inner anisotropy of rotor shafts, 
distributed continuously along their length, was investigated 
by means of the finite element method for cognitive purposes 
in dissertation [13], and for diagnosis of imperfections in [10]. 
Different values of shaft stiffness in mutually perpendicular 

directions to the axis of rotation as a result of a transverse 
crack in a given rotor shaft section can be considered as the 
local anisotropy as well. Then, the resulting coupling of 
bending vibrations of the rotor shaft with its torsional 
vibrations can be used as a source of diagnostic information 
for detection and identification of transverse cracks, which 
was the subject of research e.g. in [14]. 
In a case of operation of couplings mutually connecting rotor 
shafts under high dynamic and static loadings, gradual 
degradation of the coupling components occurs, for example 
in the form of loosening of the connecting bolts or progressive 
plastic deformation of their seats or entire flanges' faces. As a 
result of such degradation, even with a correct assembly of the 
coupling, sometimes there is even a very significant difference 
in the bending stiffness of such a connection in two mutually 
perpendicular directions to the axis of rotation. So we are also 
dealing here with the inner anisotropy of the local type. This 
type of anisotropy due to imperfection of the coupling 
components will be investigated here by means of the similar 
structural model as those which include the parallel and 
angular coupling misalignment. Its mathematical description 
is an analogous condition of equilibrium for viscoelastic, 
inertial and gyroscopic transverse forces and bending 
moments as the both above, which in the case of applying the 
Rayleigh beam bending theory takes the following form:  
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where: Fk(Θ(t) ¡ Φk) =  β0k ¡ βk cos(Θ(t) ¡ Φk)  + 

where: + j βk sin(Θ(t) ¡ Φk) ,

β0k is the constant mutual angular misalignment of the k-1-th 
and k-th shaft segment axes, βk denotes the angular misalign-
ment due to a coupling flange machining error (see Fig. 2b), 
and Φk is the phase angle of the coupling angular misalignment.

2.3. Modelling of the coupling inner anisotropy
Based on reviews of the available literature, it can be concluded 
that the problem of anisotropy of the dynamic properties of 
rotor systems has not been thoroughly investigated so far. The 
main reasons for the occurrence of rotor shafts anisotropy were 
mainly different viscoelastic characteristics of bearing supports 
in the vertical and horizontal direction, as studied, e.g. in [12]. 
However, due to the legitimacy of maintaining a circular-sym-
metric shape of cross-sections of rotating elements, anisotropy 
of elastic or visco-inertial-elastic properties of the rotor shafts 
is observed relatively rarely, for example, in the case of rotors 
of two-pole generators or various types of atypical elements 
interconnecting rotor-shaft segments. This type of anisotropy 
is called the “inner anisotropy” of the rotor shaft. The inner 
anisotropy of rotor shafts, distributed continuously along their 
length, was investigated by means of the finite element method 
for cognitive purposes in the dissertation [13] and diagnosis 
of imperfections in [10]. Different values of shaft stiffness in 

mutually perpendicular directions to the axis of rotation due 
to a transverse crack in a given rotor shaft section can be con-
sidered the local anisotropy. Then, the resulting coupling of 
bending vibrations of the rotor shaft with its torsional vibrations 
can be used as a source of diagnostic information for detect-
ing and identifying transverse cracks, which was the subject of 
research, e.g. in [14].

In the case of operation of couplings mutually connecting 
rotor shafts under high dynamic and static loadings, gradual 
degradation of the coupling components occurs, for example, 
in the form of loosening the connecting bolts or progressive 
plastic deformation of their seats or entire flanges’ faces. As 
a result of such degradation, even with a correct assembly of 
the coupling, sometimes there is even a very significant dif-
ference in the bending stiffness of such a connection in two 
mutually perpendicular directions to the axis of rotation. So 
we are also dealing here with the inner anisotropy of the local 
type. This type of anisotropy due to the imperfection of the 
coupling components will be investigated here through a similar 
structural model as those that include the parallel and angular 
coupling misalignment. Its mathematical description is an anal-
ogous condition of equilibrium for viscoelastic, inertial and 
gyroscopic transverse forces and bending moments as the both 
above, which in the case of applying the Rayleigh beam bend-
ing theory takes the following form:
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substitutes a flexural compliance of the assembly bolts and 
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description of the connection of the extreme cross-section of 
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β0k is the constant mutual angular misalignment of the k-1-th 
and k-th shaft segment axes, βk denotes the angular 
misalignment due to a coupling flange machining error, see 
Fig. 2b, and Φk is the phase angle of the coupling angular 
misalignment.  

2.3 Modelling of the coupling inner anisotropy. 
Based on reviews of the available literature, it can be 
concluded that the problem of anisotropy of the dynamic 
properties of rotor systems has not been fully investigated so 
far. The main reasons for an occurrence of rotor shafts 
anisotropy were mainly different viscoelastic characteristics 
of bearing supports in the vertical and horizontal direction, as 
studied e.g. in [12]. However, due to a legitimacy of 
maintaining a circular-symmetric shape of cross-sections of 
rotating elements, an anisotropy of elastic or visco-inertial-
elastic properties of the rotor shafts is observed rather rarely, 
for example in the case of rotors of two-pole generators or 
various types of atypical elements interconnecting rotor-shaft 
segments. This type of anisotropy is called "inner anisotropy" 
of the rotor shaft. The inner anisotropy of rotor shafts, 
distributed continuously along their length, was investigated 
by means of the finite element method for cognitive purposes 
in dissertation [13], and for diagnosis of imperfections in [10]. 
Different values of shaft stiffness in mutually perpendicular 

directions to the axis of rotation as a result of a transverse 
crack in a given rotor shaft section can be considered as the 
local anisotropy as well. Then, the resulting coupling of 
bending vibrations of the rotor shaft with its torsional 
vibrations can be used as a source of diagnostic information 
for detection and identification of transverse cracks, which 
was the subject of research e.g. in [14]. 
In a case of operation of couplings mutually connecting rotor 
shafts under high dynamic and static loadings, gradual 
degradation of the coupling components occurs, for example 
in the form of loosening of the connecting bolts or progressive 
plastic deformation of their seats or entire flanges' faces. As a 
result of such degradation, even with a correct assembly of the 
coupling, sometimes there is even a very significant difference 
in the bending stiffness of such a connection in two mutually 
perpendicular directions to the axis of rotation. So we are also 
dealing here with the inner anisotropy of the local type. This 
type of anisotropy due to imperfection of the coupling 
components will be investigated here by means of the similar 
structural model as those which include the parallel and 
angular coupling misalignment. Its mathematical description 
is an analogous condition of equilibrium for viscoelastic, 
inertial and gyroscopic transverse forces and bending 
moments as the both above, which in the case of applying the 
Rayleigh beam bending theory takes the following form:  
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interconnected by a massless viscoelastic spring that 
substitutes a flexural compliance of the assembly bolts and 
lamellar discs, as presented in Fig. 2b.  
Here, the proposed mathematical model of the coupling 
characterized by the angular misalignment is reduced to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given bending stiffness 
H0k, as shown in Fig. 2b. This description is a condition of 
equilibrium for viscoelastic and inertial bending moments, 
which in the case of applying the Rayleigh beam bending 
theory takes the following form:  
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β0k is the constant mutual angular misalignment of the k-1-th 
and k-th shaft segment axes, βk denotes the angular 
misalignment due to a coupling flange machining error, see 
Fig. 2b, and Φk is the phase angle of the coupling angular 
misalignment.  

2.3 Modelling of the coupling inner anisotropy. 
Based on reviews of the available literature, it can be 
concluded that the problem of anisotropy of the dynamic 
properties of rotor systems has not been fully investigated so 
far. The main reasons for an occurrence of rotor shafts 
anisotropy were mainly different viscoelastic characteristics 
of bearing supports in the vertical and horizontal direction, as 
studied e.g. in [12]. However, due to a legitimacy of 
maintaining a circular-symmetric shape of cross-sections of 
rotating elements, an anisotropy of elastic or visco-inertial-
elastic properties of the rotor shafts is observed rather rarely, 
for example in the case of rotors of two-pole generators or 
various types of atypical elements interconnecting rotor-shaft 
segments. This type of anisotropy is called "inner anisotropy" 
of the rotor shaft. The inner anisotropy of rotor shafts, 
distributed continuously along their length, was investigated 
by means of the finite element method for cognitive purposes 
in dissertation [13], and for diagnosis of imperfections in [10]. 
Different values of shaft stiffness in mutually perpendicular 

directions to the axis of rotation as a result of a transverse 
crack in a given rotor shaft section can be considered as the 
local anisotropy as well. Then, the resulting coupling of 
bending vibrations of the rotor shaft with its torsional 
vibrations can be used as a source of diagnostic information 
for detection and identification of transverse cracks, which 
was the subject of research e.g. in [14]. 
In a case of operation of couplings mutually connecting rotor 
shafts under high dynamic and static loadings, gradual 
degradation of the coupling components occurs, for example 
in the form of loosening of the connecting bolts or progressive 
plastic deformation of their seats or entire flanges' faces. As a 
result of such degradation, even with a correct assembly of the 
coupling, sometimes there is even a very significant difference 
in the bending stiffness of such a connection in two mutually 
perpendicular directions to the axis of rotation. So we are also 
dealing here with the inner anisotropy of the local type. This 
type of anisotropy due to imperfection of the coupling 
components will be investigated here by means of the similar 
structural model as those which include the parallel and 
angular coupling misalignment. Its mathematical description 
is an analogous condition of equilibrium for viscoelastic, 
inertial and gyroscopic transverse forces and bending 
moments as the both above, which in the case of applying the 
Rayleigh beam bending theory takes the following form:  
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interconnected by a massless viscoelastic spring that 
substitutes a flexural compliance of the assembly bolts and 
lamellar discs, as presented in Fig. 2b.  
Here, the proposed mathematical model of the coupling 
characterized by the angular misalignment is reduced to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given bending stiffness 
H0k, as shown in Fig. 2b. This description is a condition of 
equilibrium for viscoelastic and inertial bending moments, 
which in the case of applying the Rayleigh beam bending 
theory takes the following form:  
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β0k is the constant mutual angular misalignment of the k-1-th 
and k-th shaft segment axes, βk denotes the angular 
misalignment due to a coupling flange machining error, see 
Fig. 2b, and Φk is the phase angle of the coupling angular 
misalignment.  

2.3 Modelling of the coupling inner anisotropy. 
Based on reviews of the available literature, it can be 
concluded that the problem of anisotropy of the dynamic 
properties of rotor systems has not been fully investigated so 
far. The main reasons for an occurrence of rotor shafts 
anisotropy were mainly different viscoelastic characteristics 
of bearing supports in the vertical and horizontal direction, as 
studied e.g. in [12]. However, due to a legitimacy of 
maintaining a circular-symmetric shape of cross-sections of 
rotating elements, an anisotropy of elastic or visco-inertial-
elastic properties of the rotor shafts is observed rather rarely, 
for example in the case of rotors of two-pole generators or 
various types of atypical elements interconnecting rotor-shaft 
segments. This type of anisotropy is called "inner anisotropy" 
of the rotor shaft. The inner anisotropy of rotor shafts, 
distributed continuously along their length, was investigated 
by means of the finite element method for cognitive purposes 
in dissertation [13], and for diagnosis of imperfections in [10]. 
Different values of shaft stiffness in mutually perpendicular 

directions to the axis of rotation as a result of a transverse 
crack in a given rotor shaft section can be considered as the 
local anisotropy as well. Then, the resulting coupling of 
bending vibrations of the rotor shaft with its torsional 
vibrations can be used as a source of diagnostic information 
for detection and identification of transverse cracks, which 
was the subject of research e.g. in [14]. 
In a case of operation of couplings mutually connecting rotor 
shafts under high dynamic and static loadings, gradual 
degradation of the coupling components occurs, for example 
in the form of loosening of the connecting bolts or progressive 
plastic deformation of their seats or entire flanges' faces. As a 
result of such degradation, even with a correct assembly of the 
coupling, sometimes there is even a very significant difference 
in the bending stiffness of such a connection in two mutually 
perpendicular directions to the axis of rotation. So we are also 
dealing here with the inner anisotropy of the local type. This 
type of anisotropy due to imperfection of the coupling 
components will be investigated here by means of the similar 
structural model as those which include the parallel and 
angular coupling misalignment. Its mathematical description 
is an analogous condition of equilibrium for viscoelastic, 
inertial and gyroscopic transverse forces and bending 
moments as the both above, which in the case of applying the 
Rayleigh beam bending theory takes the following form:  
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interconnected by a massless viscoelastic spring that 
substitutes a flexural compliance of the assembly bolts and 
lamellar discs, as presented in Fig. 2b.  
Here, the proposed mathematical model of the coupling 
characterized by the angular misalignment is reduced to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given bending stiffness 
H0k, as shown in Fig. 2b. This description is a condition of 
equilibrium for viscoelastic and inertial bending moments, 
which in the case of applying the Rayleigh beam bending 
theory takes the following form:  
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β0k is the constant mutual angular misalignment of the k-1-th 
and k-th shaft segment axes, βk denotes the angular 
misalignment due to a coupling flange machining error, see 
Fig. 2b, and Φk is the phase angle of the coupling angular 
misalignment.  

2.3 Modelling of the coupling inner anisotropy. 
Based on reviews of the available literature, it can be 
concluded that the problem of anisotropy of the dynamic 
properties of rotor systems has not been fully investigated so 
far. The main reasons for an occurrence of rotor shafts 
anisotropy were mainly different viscoelastic characteristics 
of bearing supports in the vertical and horizontal direction, as 
studied e.g. in [12]. However, due to a legitimacy of 
maintaining a circular-symmetric shape of cross-sections of 
rotating elements, an anisotropy of elastic or visco-inertial-
elastic properties of the rotor shafts is observed rather rarely, 
for example in the case of rotors of two-pole generators or 
various types of atypical elements interconnecting rotor-shaft 
segments. This type of anisotropy is called "inner anisotropy" 
of the rotor shaft. The inner anisotropy of rotor shafts, 
distributed continuously along their length, was investigated 
by means of the finite element method for cognitive purposes 
in dissertation [13], and for diagnosis of imperfections in [10]. 
Different values of shaft stiffness in mutually perpendicular 

directions to the axis of rotation as a result of a transverse 
crack in a given rotor shaft section can be considered as the 
local anisotropy as well. Then, the resulting coupling of 
bending vibrations of the rotor shaft with its torsional 
vibrations can be used as a source of diagnostic information 
for detection and identification of transverse cracks, which 
was the subject of research e.g. in [14]. 
In a case of operation of couplings mutually connecting rotor 
shafts under high dynamic and static loadings, gradual 
degradation of the coupling components occurs, for example 
in the form of loosening of the connecting bolts or progressive 
plastic deformation of their seats or entire flanges' faces. As a 
result of such degradation, even with a correct assembly of the 
coupling, sometimes there is even a very significant difference 
in the bending stiffness of such a connection in two mutually 
perpendicular directions to the axis of rotation. So we are also 
dealing here with the inner anisotropy of the local type. This 
type of anisotropy due to imperfection of the coupling 
components will be investigated here by means of the similar 
structural model as those which include the parallel and 
angular coupling misalignment. Its mathematical description 
is an analogous condition of equilibrium for viscoelastic, 
inertial and gyroscopic transverse forces and bending 
moments as the both above, which in the case of applying the 
Rayleigh beam bending theory takes the following form:  
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interconnected by a massless viscoelastic spring that 
substitutes a flexural compliance of the assembly bolts and 
lamellar discs, as presented in Fig. 2b.  
Here, the proposed mathematical model of the coupling 
characterized by the angular misalignment is reduced to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given bending stiffness 
H0k, as shown in Fig. 2b. This description is a condition of 
equilibrium for viscoelastic and inertial bending moments, 
which in the case of applying the Rayleigh beam bending 
theory takes the following form:  
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β0k is the constant mutual angular misalignment of the k-1-th 
and k-th shaft segment axes, βk denotes the angular 
misalignment due to a coupling flange machining error, see 
Fig. 2b, and Φk is the phase angle of the coupling angular 
misalignment.  

2.3 Modelling of the coupling inner anisotropy. 
Based on reviews of the available literature, it can be 
concluded that the problem of anisotropy of the dynamic 
properties of rotor systems has not been fully investigated so 
far. The main reasons for an occurrence of rotor shafts 
anisotropy were mainly different viscoelastic characteristics 
of bearing supports in the vertical and horizontal direction, as 
studied e.g. in [12]. However, due to a legitimacy of 
maintaining a circular-symmetric shape of cross-sections of 
rotating elements, an anisotropy of elastic or visco-inertial-
elastic properties of the rotor shafts is observed rather rarely, 
for example in the case of rotors of two-pole generators or 
various types of atypical elements interconnecting rotor-shaft 
segments. This type of anisotropy is called "inner anisotropy" 
of the rotor shaft. The inner anisotropy of rotor shafts, 
distributed continuously along their length, was investigated 
by means of the finite element method for cognitive purposes 
in dissertation [13], and for diagnosis of imperfections in [10]. 
Different values of shaft stiffness in mutually perpendicular 

directions to the axis of rotation as a result of a transverse 
crack in a given rotor shaft section can be considered as the 
local anisotropy as well. Then, the resulting coupling of 
bending vibrations of the rotor shaft with its torsional 
vibrations can be used as a source of diagnostic information 
for detection and identification of transverse cracks, which 
was the subject of research e.g. in [14]. 
In a case of operation of couplings mutually connecting rotor 
shafts under high dynamic and static loadings, gradual 
degradation of the coupling components occurs, for example 
in the form of loosening of the connecting bolts or progressive 
plastic deformation of their seats or entire flanges' faces. As a 
result of such degradation, even with a correct assembly of the 
coupling, sometimes there is even a very significant difference 
in the bending stiffness of such a connection in two mutually 
perpendicular directions to the axis of rotation. So we are also 
dealing here with the inner anisotropy of the local type. This 
type of anisotropy due to imperfection of the coupling 
components will be investigated here by means of the similar 
structural model as those which include the parallel and 
angular coupling misalignment. Its mathematical description 
is an analogous condition of equilibrium for viscoelastic, 
inertial and gyroscopic transverse forces and bending 
moments as the both above, which in the case of applying the 
Rayleigh beam bending theory takes the following form:  
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interconnected by a massless viscoelastic spring that 
substitutes a flexural compliance of the assembly bolts and 
lamellar discs, as presented in Fig. 2b.  
Here, the proposed mathematical model of the coupling 
characterized by the angular misalignment is reduced to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given bending stiffness 
H0k, as shown in Fig. 2b. This description is a condition of 
equilibrium for viscoelastic and inertial bending moments, 
which in the case of applying the Rayleigh beam bending 
theory takes the following form:  
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β0k is the constant mutual angular misalignment of the k-1-th 
and k-th shaft segment axes, βk denotes the angular 
misalignment due to a coupling flange machining error, see 
Fig. 2b, and Φk is the phase angle of the coupling angular 
misalignment.  

2.3 Modelling of the coupling inner anisotropy. 
Based on reviews of the available literature, it can be 
concluded that the problem of anisotropy of the dynamic 
properties of rotor systems has not been fully investigated so 
far. The main reasons for an occurrence of rotor shafts 
anisotropy were mainly different viscoelastic characteristics 
of bearing supports in the vertical and horizontal direction, as 
studied e.g. in [12]. However, due to a legitimacy of 
maintaining a circular-symmetric shape of cross-sections of 
rotating elements, an anisotropy of elastic or visco-inertial-
elastic properties of the rotor shafts is observed rather rarely, 
for example in the case of rotors of two-pole generators or 
various types of atypical elements interconnecting rotor-shaft 
segments. This type of anisotropy is called "inner anisotropy" 
of the rotor shaft. The inner anisotropy of rotor shafts, 
distributed continuously along their length, was investigated 
by means of the finite element method for cognitive purposes 
in dissertation [13], and for diagnosis of imperfections in [10]. 
Different values of shaft stiffness in mutually perpendicular 

directions to the axis of rotation as a result of a transverse 
crack in a given rotor shaft section can be considered as the 
local anisotropy as well. Then, the resulting coupling of 
bending vibrations of the rotor shaft with its torsional 
vibrations can be used as a source of diagnostic information 
for detection and identification of transverse cracks, which 
was the subject of research e.g. in [14]. 
In a case of operation of couplings mutually connecting rotor 
shafts under high dynamic and static loadings, gradual 
degradation of the coupling components occurs, for example 
in the form of loosening of the connecting bolts or progressive 
plastic deformation of their seats or entire flanges' faces. As a 
result of such degradation, even with a correct assembly of the 
coupling, sometimes there is even a very significant difference 
in the bending stiffness of such a connection in two mutually 
perpendicular directions to the axis of rotation. So we are also 
dealing here with the inner anisotropy of the local type. This 
type of anisotropy due to imperfection of the coupling 
components will be investigated here by means of the similar 
structural model as those which include the parallel and 
angular coupling misalignment. Its mathematical description 
is an analogous condition of equilibrium for viscoelastic, 
inertial and gyroscopic transverse forces and bending 
moments as the both above, which in the case of applying the 
Rayleigh beam bending theory takes the following form:  
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interconnected by a massless viscoelastic spring that 
substitutes a flexural compliance of the assembly bolts and 
lamellar discs, as presented in Fig. 2b.  
Here, the proposed mathematical model of the coupling 
characterized by the angular misalignment is reduced to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given bending stiffness 
H0k, as shown in Fig. 2b. This description is a condition of 
equilibrium for viscoelastic and inertial bending moments, 
which in the case of applying the Rayleigh beam bending 
theory takes the following form:  
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β0k is the constant mutual angular misalignment of the k-1-th 
and k-th shaft segment axes, βk denotes the angular 
misalignment due to a coupling flange machining error, see 
Fig. 2b, and Φk is the phase angle of the coupling angular 
misalignment.  

2.3 Modelling of the coupling inner anisotropy. 
Based on reviews of the available literature, it can be 
concluded that the problem of anisotropy of the dynamic 
properties of rotor systems has not been fully investigated so 
far. The main reasons for an occurrence of rotor shafts 
anisotropy were mainly different viscoelastic characteristics 
of bearing supports in the vertical and horizontal direction, as 
studied e.g. in [12]. However, due to a legitimacy of 
maintaining a circular-symmetric shape of cross-sections of 
rotating elements, an anisotropy of elastic or visco-inertial-
elastic properties of the rotor shafts is observed rather rarely, 
for example in the case of rotors of two-pole generators or 
various types of atypical elements interconnecting rotor-shaft 
segments. This type of anisotropy is called "inner anisotropy" 
of the rotor shaft. The inner anisotropy of rotor shafts, 
distributed continuously along their length, was investigated 
by means of the finite element method for cognitive purposes 
in dissertation [13], and for diagnosis of imperfections in [10]. 
Different values of shaft stiffness in mutually perpendicular 

directions to the axis of rotation as a result of a transverse 
crack in a given rotor shaft section can be considered as the 
local anisotropy as well. Then, the resulting coupling of 
bending vibrations of the rotor shaft with its torsional 
vibrations can be used as a source of diagnostic information 
for detection and identification of transverse cracks, which 
was the subject of research e.g. in [14]. 
In a case of operation of couplings mutually connecting rotor 
shafts under high dynamic and static loadings, gradual 
degradation of the coupling components occurs, for example 
in the form of loosening of the connecting bolts or progressive 
plastic deformation of their seats or entire flanges' faces. As a 
result of such degradation, even with a correct assembly of the 
coupling, sometimes there is even a very significant difference 
in the bending stiffness of such a connection in two mutually 
perpendicular directions to the axis of rotation. So we are also 
dealing here with the inner anisotropy of the local type. This 
type of anisotropy due to imperfection of the coupling 
components will be investigated here by means of the similar 
structural model as those which include the parallel and 
angular coupling misalignment. Its mathematical description 
is an analogous condition of equilibrium for viscoelastic, 
inertial and gyroscopic transverse forces and bending 
moments as the both above, which in the case of applying the 
Rayleigh beam bending theory takes the following form:  
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interconnected by a massless viscoelastic spring that 
substitutes a flexural compliance of the assembly bolts and 
lamellar discs, as presented in Fig. 2b.  
Here, the proposed mathematical model of the coupling 
characterized by the angular misalignment is reduced to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given bending stiffness 
H0k, as shown in Fig. 2b. This description is a condition of 
equilibrium for viscoelastic and inertial bending moments, 
which in the case of applying the Rayleigh beam bending 
theory takes the following form:  
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β0k is the constant mutual angular misalignment of the k-1-th 
and k-th shaft segment axes, βk denotes the angular 
misalignment due to a coupling flange machining error, see 
Fig. 2b, and Φk is the phase angle of the coupling angular 
misalignment.  

2.3 Modelling of the coupling inner anisotropy. 
Based on reviews of the available literature, it can be 
concluded that the problem of anisotropy of the dynamic 
properties of rotor systems has not been fully investigated so 
far. The main reasons for an occurrence of rotor shafts 
anisotropy were mainly different viscoelastic characteristics 
of bearing supports in the vertical and horizontal direction, as 
studied e.g. in [12]. However, due to a legitimacy of 
maintaining a circular-symmetric shape of cross-sections of 
rotating elements, an anisotropy of elastic or visco-inertial-
elastic properties of the rotor shafts is observed rather rarely, 
for example in the case of rotors of two-pole generators or 
various types of atypical elements interconnecting rotor-shaft 
segments. This type of anisotropy is called "inner anisotropy" 
of the rotor shaft. The inner anisotropy of rotor shafts, 
distributed continuously along their length, was investigated 
by means of the finite element method for cognitive purposes 
in dissertation [13], and for diagnosis of imperfections in [10]. 
Different values of shaft stiffness in mutually perpendicular 

directions to the axis of rotation as a result of a transverse 
crack in a given rotor shaft section can be considered as the 
local anisotropy as well. Then, the resulting coupling of 
bending vibrations of the rotor shaft with its torsional 
vibrations can be used as a source of diagnostic information 
for detection and identification of transverse cracks, which 
was the subject of research e.g. in [14]. 
In a case of operation of couplings mutually connecting rotor 
shafts under high dynamic and static loadings, gradual 
degradation of the coupling components occurs, for example 
in the form of loosening of the connecting bolts or progressive 
plastic deformation of their seats or entire flanges' faces. As a 
result of such degradation, even with a correct assembly of the 
coupling, sometimes there is even a very significant difference 
in the bending stiffness of such a connection in two mutually 
perpendicular directions to the axis of rotation. So we are also 
dealing here with the inner anisotropy of the local type. This 
type of anisotropy due to imperfection of the coupling 
components will be investigated here by means of the similar 
structural model as those which include the parallel and 
angular coupling misalignment. Its mathematical description 
is an analogous condition of equilibrium for viscoelastic, 
inertial and gyroscopic transverse forces and bending 
moments as the both above, which in the case of applying the 
Rayleigh beam bending theory takes the following form:  
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interconnected by a massless viscoelastic spring that 
substitutes a flexural compliance of the assembly bolts and 
lamellar discs, as presented in Fig. 2b.  
Here, the proposed mathematical model of the coupling 
characterized by the angular misalignment is reduced to a 
description of the connection of the extreme cross-section of 
the rotating Rayleigh or Timoshenko beam, representing in 
this model the k-1-st coupling flange, with the extreme cross-
section of the analogous beam, representing the k-th flange, 
by means of a massless spring with the given bending stiffness 
H0k, as shown in Fig. 2b. This description is a condition of 
equilibrium for viscoelastic and inertial bending moments, 
which in the case of applying the Rayleigh beam bending 
theory takes the following form:  
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β0k is the constant mutual angular misalignment of the k-1-th 
and k-th shaft segment axes, βk denotes the angular 
misalignment due to a coupling flange machining error, see 
Fig. 2b, and Φk is the phase angle of the coupling angular 
misalignment.  

2.3 Modelling of the coupling inner anisotropy. 
Based on reviews of the available literature, it can be 
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where: G0k = 1
2 (Gη + Gς), GVk =  2

2 (Gη + Gς), 

where: H0k = 1
2 (Hη + Hς), HVk =  2

2 (Hη + Hς), 

Gη, Gζ  and Hη, Hζ  are respectively the shear and bending stiff-
ness of the massless spring connecting both coupling flanges 
about two mutually perpendicular axes η and ζ of the coordi-
nate system rotating with the shaft, see Fig. 1, and ∆k is the 
phase angle of the coupling inner anisotropy.

2.4.  Mathematical modelling of the coupling  
with combined imperfections.

A proper combination of relationships (2)‒(4) leads to the 
complete mathematical model of the coupling characterized 
by the simultaneous parallel and angular misalignment and the 
inner anisotropy. Then, one obtains the resultant conditions of 
equilibrium for viscoelastic, inertial and gyroscopic transverse 
forces and bending moments:
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Here, the all symbols above have been already defined for 
relationships (2)-(4), and the explicit time functions of the shaft 
current rotation angle Θ(t), which occur in (5), i.e. Dk(Θ(t)−Ψk), 
Fk(Θ(t)−Φk) and C⋅exp(j(2Θ(t)−k)), where C=GVk or HVk, can 
be treated as concentrated external excitations applied to both 
flanges of the coupling.  

3. MODELLING OF THE ENTIRE ROTOR-SHAFT 
SYSTEM 

In order to obtain sufficiently reliable results of qualitative 
analyses and numerical simulations for the rotor-shaft system, 
all computations will be performed by means of the hybrid 
structural modelling approach which uses flexurally 
deformable, as in [14,15,17], and torsionally deformable, as in 
[15,16], continuous viscoelastic beam finite elements combined 
with discrete oscillators. In an identical way as in the case of a 
classical discretized beam finite element formulation, the 
following points are taken into consideration when using such 
a modelling: the rotor-shaft geometry, its material properties, 
gyroscopic effects and shaft material damping as described by 
the three-parameter solid model. Here, in the hybrid model 
successive cylindrical segments of the stepped rotor-shaft are 
represented by flexurally deformable cylindrical finite elements 
with continuously distributed inertial-visco-elastic properties. 
However, some heavy rotors, dynamic deformations of which 
are negligible, can be substituted by rigid bodies attached to the 
continuous finite element extreme cross-sections.  

 

 
Fig.3. The industrial blower with an overhung rotor: the real object 

and its hybrid mechanical model  

Each journal bearing is represented by a dynamic oscillator of 
two degrees of freedom, using which, in addition to the oil-film 
interaction, also the viscoelastic properties of the bearing 
housing and foundation are included. By means of this bearing 
model it is possible to represent reliably kinetostatic and 
dynamic anisotropic and anti-symmetric properties of the oil-
film in the form of variable or constant damping and stiffness 
coefficients. The mutual combination of continuous finite 
elements together with discrete oscillators and rigid bodies 
according to the structure of the real object results in a hybrid 
mechanical model created in this way. Fig. 3 presents the real 
object and the hybrid model of that representative rotor-
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Here, the all symbols above have been already defined for 
relationships (2)-(4), and the explicit time functions of the shaft 
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be treated as concentrated external excitations applied to both 
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3. MODELLING OF THE ENTIRE ROTOR-SHAFT 
SYSTEM 

In order to obtain sufficiently reliable results of qualitative 
analyses and numerical simulations for the rotor-shaft system, 
all computations will be performed by means of the hybrid 
structural modelling approach which uses flexurally 
deformable, as in [14,15,17], and torsionally deformable, as in 
[15,16], continuous viscoelastic beam finite elements combined 
with discrete oscillators. In an identical way as in the case of a 
classical discretized beam finite element formulation, the 
following points are taken into consideration when using such 
a modelling: the rotor-shaft geometry, its material properties, 
gyroscopic effects and shaft material damping as described by 
the three-parameter solid model. Here, in the hybrid model 
successive cylindrical segments of the stepped rotor-shaft are 
represented by flexurally deformable cylindrical finite elements 
with continuously distributed inertial-visco-elastic properties. 
However, some heavy rotors, dynamic deformations of which 
are negligible, can be substituted by rigid bodies attached to the 
continuous finite element extreme cross-sections.  
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Each journal bearing is represented by a dynamic oscillator of 
two degrees of freedom, using which, in addition to the oil-film 
interaction, also the viscoelastic properties of the bearing 
housing and foundation are included. By means of this bearing 
model it is possible to represent reliably kinetostatic and 
dynamic anisotropic and anti-symmetric properties of the oil-
film in the form of variable or constant damping and stiffness 
coefficients. The mutual combination of continuous finite 
elements together with discrete oscillators and rigid bodies 
according to the structure of the real object results in a hybrid 
mechanical model created in this way. Fig. 3 presents the real 
object and the hybrid model of that representative rotor-
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In order to obtain sufficiently reliable results of qualitative anal-
yses and numerical simulations for the rotor-shaft system, all 
computations will be performed by means of the hybrid struc-
tural modelling approach, which uses flexurally deformable, as 
in [14‒16], and torsionally deformable, as in [15, 17], contin-
uous viscoelastic beam finite elements combined with discrete 
oscillators. Identically, as in the case of a classical discretized 
beam finite element formulation, the following points are con-
sidered when using such modelling: the rotor-shaft geometry, 
its material properties, gyroscopic effects and shaft material 
damping as described by the three-parameter solid model. 
Here, in the hybrid model, successive cylindrical segments of 
the stepped rotor-shaft are represented by flexurally deform-
able cylindrical finite elements with continuously distributed 
inertial-visco-elastic properties. However, some heavy rotors, 
dynamic deformations of which are negligible, can be substi-
tuted by rigid bodies attached to the continuous finite element 
extreme cross-sections.

Each journal bearing is represented by a dynamic oscillator 
of two degrees of freedom, using which, in addition to the 
oil-film interaction, the viscoelastic properties of the bearing 
housing and foundation are included. By means of this bear-
ing model, it is possible to represent reliably kinetostatic and 
dynamic anisotropic and anti-symmetric properties of the oil 
film in the form of a variable or constant damping and stiffness 
coefficients. The mutual combination of continuous finite ele-
ments together with discrete oscillators and rigid bodies accord-
ing to the structure of the real object results in a hybrid mechan-
ical model created in this way. Figure 3 presents the real object 

Fig. 3. The industrial blower with an overhung rotor: the real object 
and its hybrid mechanical model
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and the hybrid model of that representative rotor-machine with 
an overhung rotor and driven by an electric motor by means of 
two rigid couplings.

4. MATHEMATICAL SOLUTION OF THE PROBLEM
The complete mathematical formulation and solution for the 
rotor-shaft system hybrid model applied here can be found, e.g. 
in [14‒16]. In this model, the flexural motion of cross-sections 
of each viscoelastic continuous finite element is governed by 
the partial differential equations derived using the Rayleigh 
or Timoshenko rotating-beam theory. In such equations, there 
are contained gyroscopic forces mutually coupling rotor-shaft 
bending vibrations in the horizontal and vertical plane. The 
analogous coupling effect caused by the system rotational 
speed-dependent shaft material damping, described by the use 
of the three-parameter solid model, is also included.

As in the works [14‒16], mutual connections of the suc-
cessive macro-elements creating the stepped shaft and their 
interactions with the bearing supports and rigid bodies repre-
senting the heavy rotors are described by equations of compli-
ance conditions. These are the equations of geometrical condi-
tions of equality for translational and rotational displacements 
of extreme cross-sections of the continuous finite elements. 
The second group of compliance conditions are dynamic ones, 
which generally contain linear, parametric and nonlinear equa-
tions of equilibrium for concentrated external forces, static 
and dynamic unbalance forces and moments, inertial, elastic 
and external damping forces, support reactions and gyroscopic 
moments. Interaction of the shaft with discrete oscillators rep-
resenting the bearing supports is also described by means of the 
dynamic compliance conditions. Such compliance conditions 
contain anti-symmetrical terms with cross-coupling oil-film 
stiffness and damping components, which couple shaft bending 
vibrations in two mutually perpendicular planes. In these equa-
tions, the damping and stiffness coefficients can be variable or 
constant when the nonlinear properties of the oil film are not 
taken into consideration. Dynamic properties of the coupling 
model with imperfections are also described by the dynamic 
compliance conditions (5) containing concentrated harmonic 
excitations oscillating with a single- 1X and double-synchro-
nous 2X frequency.

The solution for simulations of the forced lateral vibra-
tions has been obtained using the analytical–computational 
approach described in detail in [14, 15]. In the first step, the 
set of bending eigenmode functions is determined by solving 
the differential eigenvalue problem for the linear orthogonal 
system. Next, all anti-symmetric, gyroscopic and parametric 
terms omitted to solve the eigenvalue problem are regarded 
here as response-dependent external excitations. Finally, for 
the hybrid model of the rotor-shaft system, the Fourier solu-
tion in the form of series in the orthogonal eigenfunctions is 
applied, which leads to an infinite number of known separate 
ordinary differential equations in modal coordinates. However, 
the above-mentioned response-dependent external excitations 
and gyroscopic forces mutually couple these equations in the 
case considered here. Thus, consequently, one obtains the fol-

lowing set of parametric ordinary differential equations in the 
modal coordinates:
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bending vibrations in the horizontal and vertical plane. The 
analogous coupling effect caused by the system rotational speed 
dependent shaft material damping, described by the use of the 
standard body model, is also included.  
As in the works [14,15,17], mutual connections of the 
successive macro-elements creating the stepped shaft as well as 
their interactions with the bearing supports and rigid bodies 
representing the heavy rotors are described by equations of 
compliance conditions. These are the equations of geometrical 
conditions of equality for translational and rotational 
displacements of extreme cross-sections of the continuous finite 
elements. The second group of compliance conditions are 
dynamic ones, which generally contain linear, parametric and 
nonlinear equations of equilibrium for concentrated external 
forces, static and dynamic unbalance forces and moments, 
inertial, elastic and external damping forces, support reactions 
and gyroscopic moments. An interaction of the shaft with 
discrete oscillators representing the bearing supports is also 
described by means of the dynamic compliance conditions. 
Here, such compliance conditions contain anti-symmetrical 
terms with cross-coupling oil-film stiffness and damping 
components, which couple shaft bending vibrations in two 
mutually perpendicular planes. In these equations the damping 
and stiffness coefficients can be variable or constant, when non-
linear properties of the oil-film are not taken into consideration. 
Dynamic properties of the coupling model with imperfections 
are also described by the dynamic compliance conditions (5) 
containing concentrated harmonic excitations oscillating with a 
single- 1X and double-synchronous 2X frequency. 
The solution for simulations of the forced lateral vibrations 
has been obtained using the analytical–computational 
approach described in detail in [14,15]. In the first step, by 
solving the differential eigenvalue problem for the linear 
orthogonal system, the set of bending eigenmode functions is 
determined. Next, all anti-symmetric, gyroscopic and 
parametric terms omitted to solve the eigenvalue problem are 
regarded here as response-dependent external excitations. 
Finally, for the hybrid model of the rotor-shaft system, the 
Fourier solution in the form of series in the orthogonal 
eigenfunctions is applied, which leads to an infinite number 
of known separate ordinary differential equations in modal 
coordinates. But, in the case considered here, the above 
mentioned response-dependent external excitations and 
gyroscopic forces mutually couple these equations. Thus, 
consequently one obtains the following set of parametric 
ordinary differential equations in the modal coordinates: 
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The symbols M0, K0 are the diagonal modal mass and stiffness 
matrices, respectively, Ka is the symmetrical matrix of 
parametric excitation with a double-synchronous frequency 2X 
due to anisotropic properties of the coupling, D0 denotes the 
symmetrical damping matrix and Dg() is the skew-
symmetrical matrix of gyroscopic effects. Skew- or non-
symmetrical elastic properties of the bearings are expressed by 
matrix Kb(). Anti-symmetrical effects due to the standard 
body material damping model of the rotating shaft are described 
by the skew-symmetrical matrix Kd(), symbol F( 2(t), Θ(t)) 
denotes the vector of external excitations caused by static and 
dynamic unbalances, gravitational forces, and parallel and 
angular misalignments of the rotor shaft sections. Here, the 
unbalance terms depending on rotor-shaft angular acceleration 
and velocity are negligible. The modal coordinate vector r(t) 
consists of the unknown time functions standing in the Fourier 
solution. The mathematically proven quick convergence of the 
Fourier solution allows for a limitation of the number of 
equations (6) to solve to the number of bending eigenmodes 
taken into consideration in the frequency range of interest. In 
order to determine eigenvalues of the rotor-shaft dynamic 
model, it is convenient to transform its modal motion equations 
(6) to analogous equations in the modal state co-ordinates, as 
described in the paper [17]. Consequently, it is possible to solve 
the standard eigenvalue problem in which a characteristic non-
symmetrical matrix is reduced to the Hessenberg form by 
means of the Hausholder transformation. Then, the final 
determination of the eigenvalue real and imaginary parts for 
each bending eigenmode of the system under study is achieved 
by means of the commonly known QR algorithm.  

5. COMPUTATIONAL RESULTS 
The object of computations is a heavy industrial blower driven 
by an asynchronous motor with a power of 6.3 MW at the 
rated speed of 993 rpm via two lamella couplings C1 and C2 
interconnected by an intermediate shaft, as schematically 
shown in Fig. 3. The rotor of this blower is characterized by 
the outer diameter of 4.4 m and the total mass 5.61 times 
greater than the mass of its shaft. This shaft is suspended on 
two oil-journal bearings mutually distant by 0.79 m. The span 
of the rolling element bearings supporting the motor rotor is 
equal to 2.345 m. In the hybrid model subsequent cylindrical 
sections of the real rotor-shaft of this device have been 
substituted by 42 continuous beam finite elements.  
The model update was carried out in four stages. In the first 
one, geometric dimensions and material constants of 
individual beam finite elements were established on the basis 
of the technical documentation of the real object. On this 
basis, stiffness and damping coefficients of the bearings and 
their housing were calculated too. However, all imperfection 
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described in the paper [17]. Consequently, it is possible to solve 
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symmetrical matrix is reduced to the Hessenberg form by 
means of the Hausholder transformation. Then, the final 
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each bending eigenmode of the system under study is achieved 
by means of the commonly known QR algorithm.  
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The object of computations is a heavy industrial blower driven 
by an asynchronous motor with a power of 6.3 MW at the 
rated speed of 993 rpm via two lamella couplings C1 and C2 
interconnected by an intermediate shaft, as schematically 
shown in Fig. 3. The rotor of this blower is characterized by 
the outer diameter of 4.4 m and the total mass 5.61 times 
greater than the mass of its shaft. This shaft is suspended on 
two oil-journal bearings mutually distant by 0.79 m. The span 
of the rolling element bearings supporting the motor rotor is 
equal to 2.345 m. In the hybrid model subsequent cylindrical 
sections of the real rotor-shaft of this device have been 
substituted by 42 continuous beam finite elements.  
The model update was carried out in four stages. In the first 
one, geometric dimensions and material constants of 
individual beam finite elements were established on the basis 
of the technical documentation of the real object. On this 
basis, stiffness and damping coefficients of the bearings and 
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linear properties of the oil-film are not taken into consideration. 
Dynamic properties of the coupling model with imperfections 
are also described by the dynamic compliance conditions (5) 
containing concentrated harmonic excitations oscillating with a 
single- 1X and double-synchronous 2X frequency. 
The solution for simulations of the forced lateral vibrations 
has been obtained using the analytical–computational 
approach described in detail in [14,15]. In the first step, by 
solving the differential eigenvalue problem for the linear 
orthogonal system, the set of bending eigenmode functions is 
determined. Next, all anti-symmetric, gyroscopic and 
parametric terms omitted to solve the eigenvalue problem are 
regarded here as response-dependent external excitations. 
Finally, for the hybrid model of the rotor-shaft system, the 
Fourier solution in the form of series in the orthogonal 
eigenfunctions is applied, which leads to an infinite number 
of known separate ordinary differential equations in modal 
coordinates. But, in the case considered here, the above 
mentioned response-dependent external excitations and 
gyroscopic forces mutually couple these equations. Thus, 
consequently one obtains the following set of parametric 
ordinary differential equations in the modal coordinates: 

( )( ) ( ) ( ) ( ) exp( 2 ( )) ( )0
2( , ( )), where: ( ) ( ) (6)0

t t j t ta

t g

  Θ

 Θ  

+ + + =  

= = +

M r D r K K r

F D D D

ɺɺ ɺ
 

and  ( ) ( ), ( ) ( ) .0
0

t
t db d  Θ  τ τ= + + = ∫K K K K  

The symbols M0, K0 are the diagonal modal mass and stiffness 
matrices, respectively, Ka is the symmetrical matrix of 
parametric excitation with a double-synchronous frequency 2X 
due to anisotropic properties of the coupling, D0 denotes the 
symmetrical damping matrix and Dg() is the skew-
symmetrical matrix of gyroscopic effects. Skew- or non-
symmetrical elastic properties of the bearings are expressed by 
matrix Kb(). Anti-symmetrical effects due to the standard 
body material damping model of the rotating shaft are described 
by the skew-symmetrical matrix Kd(), symbol F( 2(t), Θ(t)) 
denotes the vector of external excitations caused by static and 
dynamic unbalances, gravitational forces, and parallel and 
angular misalignments of the rotor shaft sections. Here, the 
unbalance terms depending on rotor-shaft angular acceleration 
and velocity are negligible. The modal coordinate vector r(t) 
consists of the unknown time functions standing in the Fourier 
solution. The mathematically proven quick convergence of the 
Fourier solution allows for a limitation of the number of 
equations (6) to solve to the number of bending eigenmodes 
taken into consideration in the frequency range of interest. In 
order to determine eigenvalues of the rotor-shaft dynamic 
model, it is convenient to transform its modal motion equations 
(6) to analogous equations in the modal state co-ordinates, as 
described in the paper [17]. Consequently, it is possible to solve 
the standard eigenvalue problem in which a characteristic non-
symmetrical matrix is reduced to the Hessenberg form by 
means of the Hausholder transformation. Then, the final 
determination of the eigenvalue real and imaginary parts for 
each bending eigenmode of the system under study is achieved 
by means of the commonly known QR algorithm.  

5. COMPUTATIONAL RESULTS 
The object of computations is a heavy industrial blower driven 
by an asynchronous motor with a power of 6.3 MW at the 
rated speed of 993 rpm via two lamella couplings C1 and C2 
interconnected by an intermediate shaft, as schematically 
shown in Fig. 3. The rotor of this blower is characterized by 
the outer diameter of 4.4 m and the total mass 5.61 times 
greater than the mass of its shaft. This shaft is suspended on 
two oil-journal bearings mutually distant by 0.79 m. The span 
of the rolling element bearings supporting the motor rotor is 
equal to 2.345 m. In the hybrid model subsequent cylindrical 
sections of the real rotor-shaft of this device have been 
substituted by 42 continuous beam finite elements.  
The model update was carried out in four stages. In the first 
one, geometric dimensions and material constants of 
individual beam finite elements were established on the basis 
of the technical documentation of the real object. On this 
basis, stiffness and damping coefficients of the bearings and 
their housing were calculated too. However, all imperfection 
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The symbols M0, K0 are the diagonal modal mass and stiff-
ness matrices, respectively, Ka is the symmetrical matrix of 
parametric excitation with a double-synchronous frequency 
2X due to anisotropic properties of the coupling, D0 denotes 
the symmetrical damping matrix, and Dg(Ω ) is the skew-sym-
metrical matrix of gyroscopic effects. Skew- or non-symmet-
rical elastic properties of the bearings are expressed by matrix 
Kb(Ω ). Anti-symmetrical effects due to the three-parameter 
solid material damping model of the rotating shaft are described 
by the skew-symmetrical matrix Kd(Ω), symbol F(Ω 2(t), Θ(t)) 
denotes the vector of external excitations caused by static and 
dynamic unbalances, gravitational forces, and parallel and 
angular misalignments of the rotor shaft sections. Here, the 
unbalance terms depending on rotor-shaft angular acceleration 
and velocity are negligible. The modal coordinate vector r(t) 
consists of the unknown time functions standing in the Fourier 
solution. The mathematically proven quick convergence of the 
Fourier solution allows for a limitation of the number of equa-
tions (6) to solve to the number of bending eigenmodes taken 
into consideration in the frequency range of interest. In order 
to determine eigenvalues of the rotor-shaft dynamic model, it 
is convenient to transform its modal motion equations (6) to 
analogous equations in the modal state coordinates, as described 
in the paper [16]. Consequently, it is possible to solve the stan-
dard eigenvalue problem in which a characteristic non-sym-
metrical matrix is reduced to the Hessenberg form by means of 
the Hausholder transformation. Then, the final determination 
of the eigenvalue real and imaginary parts for each bending 
eigenmode of the system under study is achieved by means of 
the commonly known QR algorithm.

5. COMPUTATIONAL RESULTS
The object of computations is a heavy industrial blower driven 
by an asynchronous motor with a power of 6.3 MW at the rated 
speed of 993 rpm via two lamella couplings C1 and C2, inter-
connected by an intermediate shaft, as schematically shown 
in Fig. 3. The rotor of this blower is characterized by an outer 
diameter of 4.4 m and a total mass 5.61 times greater than the 
mass of its shaft. This shaft is suspended on two oil-journal 
bearings mutually distant by 0.79 m. The span of the rolling 
element bearings supporting the motor rotor is equal to 2.345 m. 
In the hybrid model, subsequent cylindrical sections of the real 
rotor-shaft of this device have been substituted by 42 continu-
ous beam finite elements.
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The model update was carried out in four stages. In the first 
one, geometric dimensions and material constants of individual 
beam finite elements were established based on the technical 
documentation of the real object. On this basis, stiffness and 
damping coefficients of the bearings and their housing were 
calculated too. However, all imperfection parameters, i.e., the 
rotor unbalances, parallel and angular misalignments of both 
couplings and coupling inner anisotropy factors, each of which 
is usually difficult to identify, must have been initially approx-
imated by means of experimental measurements performed 
using the real object. Thus, in the second stage, basing on the 
fundamental synchronous components 1X of the measured sys-
tem responses, the unbalances of the overhung blower rotor, 
and the driving motor rotor and coupling parallel misalignments 
have been estimated by means of the automated trial-and-error 
approach. Since the measured responses were also characterized 
by the double- 2X and triple-synchronous 3X components, the 
most probably induced by the internal anisotropy of the cou-
plings, in the third stage of model updating the coupling inner 
anisotropy factors defined as κk = GVk/G0k and χk = HVk/H0k, 
k = 1, 2, had to be determined in the same way. In order to 
achieve the greatest possible similarity of the measured and 
computed responses in the vertical and horizontal direction, 
the initially calculated values of the stiffness and damping 
coefficients of all four bearing housings had to be subjected 
to additional fine-tuning in the fourth stage. Finally, the best 
mutual similarity of the measured and computed results have 
been obtained for the blower rotor static unbalance admissi-
ble eccentricity ε  = 0.081 mm, its dynamic unbalance angular 
inclination α = 0.05 deg, the parallel misalignments of both 
couplings δ1, 2 = 0.5 mm, coupling inner anisotropy factors 
κk = GVk/G0k and χk = HVk/H0k, k = 1, 2, both equal to 0.2, 
and for the motor rotor uniform mass admissible eccentricity 
ν = 0.082 mm. In all computational tests, the retardation time 
e of the structural damping corresponded to the loss-factor of 
0.0094 and the logarithmic decrement of the rotor-shaft free 
lateral vibrations equal to 0.0296, which take into consideration 
material losses and frictional effects in the couplings. In Fig. 4 
there are presented measured and calculated time-histories of 

the horizontal vibration velocities registered at the constant 
rotational speed for the bearing support #1 at the blower rotor 
and bearing #3 at the asynchronous motor.

Despite the most careful tuning of the tested machine model, 
the exact identification of the values characterizing the imper-
fections in question is extremely difficult. Therefore, in the 
further part of this work, these parameters will be treated as 
so-called uncertain and will receive special attention.

5.1.  Stability analysis of the blower rotor-shaft-bearing 
system

In the form of determining the rotor-shaft system’s eigenvalue 
real parts, a stability analysis has been performed for parameters 
of the experimentally tuned blower rotor-shaft system model 
with coupling inner anisotropy neglected and in the frequency 
range comprising the first four bending eigenmodes. Figure 5 
illustrates the characteristics of these eigenvalue real parts 
obtained in the rotational speed range of 0‒2400 rpm, corre-
sponding to 0‒40 rev/s. For greater clarity, the respective suc-
cessive eigenfunctions are also depicted on the left-hand side of 
the diagram. From the plots illustrated in this figure, it is evident 
that not all eigenvalue real parts are negative, which means that 
the blower rotor-shaft system under study possesses a degree of 
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results of standard computations obtained by means of this 
approach indicated three classic zones of instability in the form 
of periodic parametric resonances of the first order in the vicin-
ity of the first three system natural frequencies, i.e., between 
»9‒16, 20‒25 and 29‒36 Hz. This fact has been confirmed by 
simulations of the blower start-up from a standstill to nominal 
operation within 90 s carried out for three inner anisotropy 
factors GVk/G0k and HVk/H0k, k = 1, 2, equal to 0.2, 0.3 and 
0.4. In Fig. 6, in time and frequency domain, there are presented 

Fig. 4. Measured and calculated vibration velocities at housings of bearing #1 (a) and bearing #3 (b)
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Fig. 5. Maximal eigenvalue real parts of the blower rotor-shaft system
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plots of the vertical and horizontal vibration velocity registered 
for the housing of bearing #3, which is close to the second rigid 
coupling C2, see Fig. 3. Namely, during the start-ups, between 
the 23rd and 28th second, the first parametric amplification of 
the first instability zone is observed. Next, after the 35th second 
also the second zone is activated, and after the 50th second, 
all three instability zones have been significantly amplified. 
Successively, in the horizontal direction at the ca. 65th second 
of the run-up, severe peaks of an ordinary resonance with the 
system first eigenmode occur, while due to both couplings’ 
inner anisotropy also the second and third parametric instability 
zones are remarkably excited.

Because of a strong anisotropy of the bearing supports, the 
next peaks of the transient responses are observed in the vertical 
plane due to the periodic parametric resonance with the sys-
tem second eigenmode. Then, in steady-state operational con-
ditions, i.e., after the 90th second, the synchronous excitation 
frequency 1X of 16.55 Hz is predominant. However, since its 
double value 2X, equal to 33.1 Hz, coincides with the third 
parametric instability zone, this results in the additional severe 
vibration component. From the time-histories of the blower, 
lateral oscillation velocities demonstrated in Fig. 6; one can 
remark that a contribution of the parametric effects to the sys-
tem transient and steady-state dynamic responses seems to be 
proportional to the factors GVk/G0k and HVk/H0k, k = 1, 2, of 
the inner anisotropy of the rigid couplings C1 and C2 connect-
ing the blower with the asynchronous motor.

5.2.  Testing of the blower rotor-shaft system sensitivity to 
excitations caused by imperfections. 

Assuming all modal harmonic excitations contained in the right-
hand side vector F(Ω 2, t) of Equations (6) fluctuate mutually 
in phase, amplitudes of successive components of this vector 
can be expressed as:
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where mR, VRi, ΦRi are respectively the mass, normalized 
eigen-displacement and eigen-inclination angle of the 
overhung rotor, VCki, V’Cki denote differences of coupling 
flange eigen-displacements and eigen-inclination angles, 
k=1,2, ρM, AM, lM are respectively the average density, cross-
section area and length of the electric motor rotor, VMi(x) is the 
eigen-displacement function of this rotor, and ν denotes the 
uniformly distributed mass eccentricity along the motor rotor, 
which causes its static unbalance. These amplitudes are sums 
of linear functions of the rotor-shaft imperfection parameters 
ε, α, δ1, β1, δ2, β2, ν  treated here as uncertain parameters of 
the system under study. Their multipliers in (7), being 
functions of system structural parameters, modal 
displacements and the nominal rotational speed value , can 
be interpreted as external excitation gains for successive 
eigenmodes, which serve as a measure of system sensitivity to 
induction of forced lateral vibrations. For the hybrid model of 
the industrial blower rotor-shaft system under consideration 
these gains have been illustrated in Fig. 7 in the form of a 
block diagram. In this figure the blocks corresponding to the 
individual system imperfections are marked by following 
colours: red – the static unbalance of the rotor (RSU), navy 
blue – rotor dynamic unbalance (RDU), green – parallel 
misalignment of coupling C1 (C1PM), violet – angular 
misalignment of coupling C1 (C1AM), grey – parallel 
misalignment of coupling C2 (C2PM), blue – angular 
misalignment of coupling C2 (C2AM) and brown – static 
unbalance of the motor rotor (MSU). It should be noted that  

 
Fig.7. External excitation gains for successive eigenmodes of the 

blower rotor-shaft system 

these excitation gains have different physical dimensions, i.e. 
N/m and N, and therefore not all of them can be directly 
compared. Nevertheless, their absolute values are increase 
gradients of magnitudes of the given types of excitations being 
the components of successive elements of vector F( 2,t). 
Thanks to this, their numerical values can be treated as a 
sensitivity measure of the vibrating system to oscillations 
caused by the types of imperfections under consideration. 
Based on the heights of individual blocks presented in Fig. 7, it 
can be concluded that the first, fundamental eigenmodes of this 
system are the most sensitive to excitations due to static and 
dynamic unbalances. Although the numerical values of the 
gains for the excitations caused by the dynamic unbalances are 
often respectively slightly smaller than these due to the static 
ones, but it should be remembered that in practice the angular 
deviations α can be great enough to make the dynamic 
unbalance of the overhung rotors much more dangerous than 
the static imbalances which are usually limited by strict 
industrial standards. However, an influence of coupling parallel 
and angular misalignments is quite remarkable for the 
fundamental eigenmodes, but particularly significant for 
excitations with higher frequencies, i.e. above 70 Hz and more.  

5.3 An analysis of dynamic responses caused by the 
imperfections of the rotor-shaft system.  

Since the all kinds of imperfections of the rotor-machine with 
the overhung rotor under study are treated here as uncertain 
parameters, their influence on system’s dynamic behaviour 
can be investigated by means of a stochastic or interval 
approach. Generally, uncertainty analyses in engineering can 
be performed in two ways, i.e. by means of the polynomial 
chaos expansion method in the case of random approach, as 
in [10,18], and using the interval method described e.g. in 
[19,20]. The random uncertainties are used to describe those 
whose exact probability density functions (PDFs) are already 
known. Then, the PDFs of a given random quantity can be 
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these excitation gains have different physical dimensions, i.e. 
N/m and N, and therefore not all of them can be directly 
compared. Nevertheless, their absolute values are increase 
gradients of magnitudes of the given types of excitations being 
the components of successive elements of vector F( 2,t). 
Thanks to this, their numerical values can be treated as a 
sensitivity measure of the vibrating system to oscillations 
caused by the types of imperfections under consideration. 
Based on the heights of individual blocks presented in Fig. 7, it 
can be concluded that the first, fundamental eigenmodes of this 
system are the most sensitive to excitations due to static and 
dynamic unbalances. Although the numerical values of the 
gains for the excitations caused by the dynamic unbalances are 
often respectively slightly smaller than these due to the static 
ones, but it should be remembered that in practice the angular 
deviations α can be great enough to make the dynamic 
unbalance of the overhung rotors much more dangerous than 
the static imbalances which are usually limited by strict 
industrial standards. However, an influence of coupling parallel 
and angular misalignments is quite remarkable for the 
fundamental eigenmodes, but particularly significant for 
excitations with higher frequencies, i.e. above 70 Hz and more.  

5.3 An analysis of dynamic responses caused by the 
imperfections of the rotor-shaft system.  

Since the all kinds of imperfections of the rotor-machine with 
the overhung rotor under study are treated here as uncertain 
parameters, their influence on system’s dynamic behaviour 
can be investigated by means of a stochastic or interval 
approach. Generally, uncertainty analyses in engineering can 
be performed in two ways, i.e. by means of the polynomial 
chaos expansion method in the case of random approach, as 
in [10,18], and using the interval method described e.g. in 
[19,20]. The random uncertainties are used to describe those 
whose exact probability density functions (PDFs) are already 
known. Then, the PDFs of a given random quantity can be 
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modes but particularly significant for excitations with higher 
frequencies, i.e., above 70 Hz and more.

5.3.  An analysis of dynamic responses caused by 
the imperfections of the rotor-shaft system

Since all kinds of imperfections of the rotor machine with the 
overhung rotor under study are treated here as uncertain param-
eters, their influence on the system’s dynamic behaviour can be 
investigated by means of a stochastic or interval approach. Gen-
erally, uncertainty analyses in engineering can be performed in 
two ways, i.e., using the polynomial chaos expansion method 
in the random approach, as in [10, 18], and using the interval 
method described, e.g., in [19, 20]. The random uncertainties 
are used to describe those whose exact probability density func-
tions (PDFs) are already known. Then, the PDFs of a given 
random quantity can be constructed basing on sufficient statis-
tical information when there are multiple samples or validated 
empirical distribution models. Only under this condition they 
are precise and accurate in uncertainty propagation analysis, and 
using the polynomial chaos expansion method, reliable results 
in stochastic modelling of the random variables and processes 
can be obtained. For example, to assume proper PDFs applied 
for crack detection and identification in [14], fracture mechan-
ics fundamentals were used.

Similarly, in [18], the PDF was estimated basing on deep 
knowledge about visco-elastic properties of the journal bear-
ings and manufacturing technology of the rotor-machine, in 
the structural model of which bearing stiffness and damping 
coefficients, as well as rotor mass eccentricities, were treated 
as uncertain parameters. Therefore, the PDF is recently popular 
and widely applied in analyses of the uncertainty of mechanical 
systems and has also been successfully adapted as an effective 
method for stochastic dynamic investigations of rotor machines 
[10]. Nevertheless, it is necessary to be conscious that insuf-
ficient prior knowledge of uncertain structural parameters, or 
their changing with time due to operational degradation of 
the most heavily affected machine components, make results 
obtained using the random approach unrealistic.

Interval variables of the uncertain parameters characterized 
only by their bounds can alternatively and successfully be 
applied in situations where exact PDFs of uncertain param-
eters are unavailable. As indicated in [20], calculation results 
obtained by means of the interval approach, when the parameter 
perturbation method is applied, are consistent with the theoret-
ical proofs, which justify that the dynamic interval responses 
enclose those determined using the probabilistic approach. 
This means that the lower bounds determined by the parame-
ter perturbation method are smaller than those predicted by the 
probabilistic approach. The upper bounds calculated using the 
parameter perturbation method are greater than those obtained 
by the use of the probabilistic approach. In addition to good 
robustness to uncertainty, this property of the obtained results 
can be considered safer from the viewpoint of engineering prac-
tice, which makes the interval method very suitable in analyzing 
dynamic responses of the rotor-shaft systems, e.g. in [19]. For 
this reason, in [21], to use advantages of both approaches mutu-
ally confronted above, for engineering problems with partial, 

incomplete information, the random and interval uncertainties 
are simultaneously included in the form of a standard algo-
rithm, called hybrid uncertainties.

Distributions of the uncertain parameters of the industrial 
blower being tested are rather unknown. However, their inter-
vals can be got easier. Then, an interval analysis can be used 
most conveniently when such information about these uncertain 
variables in the form of a preference or probability function is 
not available. Thus, similarly as in [19,20], the interval uncer-
tainty approach has been applied here, in which the imperfec-
tion parameters µ = ε , α, δ1, β1, κ1, χ1, δ 2, β2, κ2, χ2, ν are 
uncertain but bounded. They all can be described by interval 
notation as µ = 

£
µC ¡ σµC, µC + σµC¤, where µC denotes their 

nominal values and σ  is the deviation coefficient.
First, this section will carry out a qualitative analysis of the 

object’s sensitivity under consideration to excitations caused by 
the aforementioned imperfections in the form of interval fre-
quency response characteristics determined in steady-state oper-
ational conditions at the constant rotational speed of 993 rpm. In 
the discussed case, the sources of excitations, according to the 
models of these imperfections described by equations (1)– (5) 
and (7), are transverse forces (“forc”) and bending moments 
(“mom”) applied in places of the rotor-shaft model correspond-
ing to the position of the blower rotor (“rotor”), both C1 and 
C2 couplings and the rotor of the electric motor (“motor”). In 
this way, in a frequency range of interest, it is possible to inves-
tigate the sensitivity of the system being tested to excitations 
caused by the dynamic unbalance of the blower rotor, parallel 
and angular misalignments of both couplings and their internal 
anisotropy, as well as static, unbalances of the blower rotor 
and electric motor rotor. For the imperfections under consid-
eration in the excitation frequency range of 0‒300 Hz with the 
maximum expected in practice deviation coefficient σ  = 0.15 
in Fig. 8, there are presented the interval frequency response 
characteristics determined for horizontal displacements at the 
housings of bearing #1 in the vicinity of the blower overhung 
rotor (Fig. 8a) and bearings #3 and #4 which support the motor 
rotor (Fig. 8b, 8c). All plots in these figures are characterized 
by the local maxima corresponding to the successive system 
natural frequencies listed in Fig. 7. It is worth noting that an 
influence of the excitation corresponding to the blower rotor 
dynamic unbalance is greater than that of its static unbalance 
and is predominant at frequencies smaller than 80 Hz at the 
housings of bearing #1 (Fig. 8a) and #3 (Fig. 8b), contrary to 
the excitation corresponding to the static unbalance of the motor 
rotor, which is the most significant at the housing of bearing #4 
(Fig. 8c). However, an influence of excitations corresponding 
to coupling imperfections begins to dominate over those of 
unbalances at excitation frequencies bigger than 125 Hz at the 
housings of bearing #3 and #4, as shown in Figs. 8b and 8c. 
Nevertheless, at greater oscillation frequencies, a relatively 
high level of damping, taken into account in determining the 
frequency response characteristics, significantly reduces the 
amplitudes of rotor-shaft lateral vibrations excited by imperfec-
tions of both couplings to significant but not dominant values.

Then, a quantitative analysis of the influence of the imper-
fections will be carried out with their parameters established 
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experimentally during the tuning of the hybrid model of the 
industrial blower under consideration. Here, as listed at the 
beginning of this chapter, εC = 8.1 ⋅ 10‒5 m, αC = 0.05 deg, 
δ 1

C = δ 2
C = 0.5 ⋅  10 ‒ 4 m, κ 1

C = χ1
C = κ 2

C = χ2
C = 0.2 and 

νC = 8.2 ⋅ 10‒5 m. The angular misalignments of both couplings 
C1 and C2 described by parameters βk and β0k were not con-
sidered because, as shown by the measurement results recorded 
on the aforementioned real object, their influence on dynamic 
excitations turned out to be negligible.

Individual contributions of the listed imperfections under 
study as well as their resultant influence on dynamic responses 
of the blower rotor-shaft system will be investigated in steady-
state operating conditions at the nominal rotational speed of 
993 rpm and for the same deviation coefficient σ  = 0.15, as 
above. Figure 9 presents time-histories of the vertical vibration 
velocity registered at the housing of bearing #1 (Fig. 9a) and at 
the housings of bearings #3 and #4 (Figs. 9b, 9c). These figures 
show plotted time-histories of the system responses obtained 

Fig. 8. Interval frequency response characteristics at housings of bearing #1 (a), #3 (b) and #4 (c) induced by system imperfections
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for the lower and upper bounds of the intervals of individ-
ual imperfections with the remaining nominal imperfection 
parameters and the resultant time-histories following from the 
lower and upper bounds of the intervals of all tested uncertain 
parameters together.

From the plots presented in these figures, it follows that 
the blower rotor-shaft system is more sensitive to the dynamic 
unbalance of the overhung rotor than to the static one, par-
ticularly close to its location at bearing #1. The parallel mis-
alignments of couplings C1 and C2 are felt more strongly at 
the housings of bearings #3 and #4, as shown in Figs. 9b and 
9c, which seems to be rather intuitive. However, a quite strong 
influence of the coupling inner anisotropy is remarkable at all 
three bearing housings. Nevertheless, the most significant is 
the severity of the system dynamic responses observed at the 
housing of bearing #3, which is closest to both couplings C1 
and C2. Namely, these responses are characterized by great 
extreme values, and here, the contributions of all individual 
system imperfections are very clear. This effect results from the 
dynamic properties of the entire blower drive system, which are 
expressed, among others, by lateral displacement distributions 
of the fundamental eigenforms shown in Fig. 5. Moreover, it is 
worth noting that this fact can be particularly essential from the 
viewpoint of a planned installation of monitoring and diagnos-
tic devices on the real object under consideration.

6. FINAL REMARKS
In the paper, a stability and sensitivity analysis has been per-
formed for the rotating machine with an overhung rotor through 
a hybrid model, in which typical imperfections of such an 
object were included. The results of qualitative studies and 
numerical simulations performed for this system showed that 
even very small mounting inaccuracies of its heavy overhung 
rotor, which cause a dynamic unbalance, lead to much more 
severe lateral vibrations than analogous oscillations induced 
by an admissible static imbalance. Furthermore, the assembly 

faults of rigid couplings, commonly observed in practice, were 
a source of significant local inner anisotropy, resulting in dan-
gerous parametric resonances and instability of the entire rotor-
shaft system. The findings of the sensitivity analysis obtained 
for subsequent eigenvibration modes of this rotor-shaft system 
proved to be very helpful in identifying the most probable syn-
chronous excitation sources among the possible types of rotor 
unbalance and shaft misalignments. Finally, the results of the 
qualitative tests carried out in this paper have been confirmed 
by multi-fault damage investigations, in which all the imperfec-
tions considered here were treated as uncertain interval quan-
tities. Using the findings of this study, a diagnostic system for 
such a machine will be built.
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