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Synchronization of FitzHugh-Nagumo
reaction-diffusion systems via one-dimensional

linear control law

Adel OUANNAS, Fatiha MESDOUI, Shaher MOMANI, Iqbal BATIHA and Giuseppe GRASSI

The Fitzhugh-Nagumo model (FN model), which is successfully employed in modeling the 
function of the so-called membrane potential, exhibits various formations in neuronal networks 
and rich complex dynamics. This work deals with the problem of control and synchronization
of the FN reaction-diffusion model. The proposed control law in this study is designed to be 
uni-dimensional and linear law for the purpose of reducing the cost of implementation. In 
order to analytically prove this assertion, Lyapunov’s second method is utilized and illustrated 
numerically in one- and/or two-spatial dimensions.
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1. Introduction

Due to the extreme complexity of the nervous system and its importance in
the human body, many biologists, chemists, psychiatrists, computer scientists,
physicists, and even mathematicians contributed to the study of this central part
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of the body. One of the most interesting questions in studying the nervous system
is how neurons can synchronize. Synchronization is a process that makes two
or more systems oscillate in a harmonious way and have the same behavior
over time [13, 25]. In consequence of its efficient implementations in secure
communications, laser technology, cryptography, combinatorial optimization and
ecological systems [8], different methods were developed as well as various
control techniques were implemented to accomplish synchronization in low- [1,
7,12,19,20,22,23,26], or high-dimension domains [10,14–16,21,24,29,32,33].

Like most natural processes, the activities of a neuron can be described by
several equations analyzing the evolution of its characteristics over time. This
description is usually called a mathematical model. In the literature, a few neu-
ron models have been recently developed to explain neuronal dynamics. One of
the simplest modification of the well-known Hodgkin-Huxley model [11] is the
Fitzhugh-Nagumo model (FN model) [9,17] that usefully describes such dynam-
ics. Several significant researches were devoted to analyze the synchronization
of the uni-dimensional FN model through describing its dynamics via some ap-
propriate Ordinary Differential Equations (ODEs). For instance, H∞ universe
fuzzy approach [28], single- and two-input control technique [5], feedback con-
trol scheme [18], nonlinear feedback and adaptive controls approaches [27], and
the internal model technique for spatially homogeneous FN model [31], are some
examples of those researches. Although, in real neural modeling, the effect of the
spatial component can not be avoided and the FN model must be presented by
Partial Differential Equations (PDEs), the synchronization in the spatio-temporal
domain of such model remains limited, just some results can be found in [2–4].
However, this work addresses some control techniques and some synchroniza-
tion’s analysis for the FN reaction-diffusion model that was expressed in [30] as
follows:




∂u1(x, t)
∂t

= d1∆u1 − u2 + f (u1) + I,

∂u2(x, t)
∂t

= d2∆u2 + εu1 − εγu2 ,

x ∈ Ω, t > 0. (1)

where Ω is a bounded domain in Rn (n ­ 1), and f (u) is a nonlinear function
given by:

f (u) = −u3 + (1 + α)u2 − αu. (2)

In this spatially extended system, the state u1 corresponds to the membrane
potential, while u2 represents a combination of potassium activation and sodium
inactivation at point (x, t) ∈ Ω × (0,∞). The parameters α, ε and γ are positive
constants in which 0 < α < 1 and ε � 1. The parameter I corresponds to
the external injected current. At the boundary of Ω, we assume that system (1)
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satisfies the following homogeneous Neumann conditions:

∂u1

∂η
=
∂u2

∂η
= 0, x ∈ ∂Ω, (3)

where η is the unit vector normal to ∂Ω.
Due to significant benefit of this model, a suitable control scheme will be next

designed in a viable format to achieve synchronization between two neurons. The
resultant findings will be analytically proved using some properties of the solution
of system (1) together with the Lyapunov’s second method. These findings will
be then displayed numerically in one- and two-spatial dimensions. However,
the structure of this paper is arranged as follow: In section 2, the problem of
drive-response is formulated and the error associated with synchronization is
defined mathematically. Section 3 presents the main resultant findings of this
work. Section 4 illustrates how such findings can be applicable through using
several numerical simulations. At the end section, the final conclusion and some
concluding remarks are reported.

2. Problem formulation

To assess the possibility of synchronizing couple of FN models, the drive-
response method is implemented where these two models can be coupled us-
ing certain functions called controllers. The role of these functions is to force
the response system’s output follows the drive system’s output over time. This
mechanism is called the complete synchronization and, consequently, the two
considered systems are said to be completely synchronized. In particular, the
drive system (1) can be coupled with the following response system:




∂v1(x, t)
∂t

= d1∆v1 − v2 + f (v1) + I + C,

∂v2(x, t)
∂t

= d2∆v2 + εv1 − εγv2 ,

∂v1

∂η
=
∂v2

∂η
= 0, x ∈ ∂Ω,

x ∈ Ω, t > 0. (4)

We assume here that the parameters and the nonlinear function are the same as in
system (1), but the associate initial conditions are arbitrary. The main aim of this
study is to design a suitable controller C in a simplest form, making the control
scheme cheaper in the application framework and easier to implement. To express
the aforementioned details mathematically, we define the synchronization error
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between the two systems, system (1) and system (4), as follows:

e(x, t) =
(

e1 = v1 − u1
e2 = v2 − u2

)
. (5)

Afterwards, we intend to prove that this error converges to zero as t goes to
infinity. For purpose of clarity, we state the following definition:
Definition 1 The drive and response systems given, respectively, in (1) and (4)
are called completely synchronized if

lim
t→∞
‖e(x, t)‖L2 = 0. (6)

Before we present the main result of this study, it is necessary to note that
model (1) is well-posed and its associated solution is uniformly bounded. In
particular, the following Lemma confirms and summarised all these affirmations.

Lemma 1 [6] Model (1) admits a global unique solution (u1, u2) and ∃K ∈ R+
such that:

u1(x, t), u2(x, t) ¬ K

for all (x, t) in Ω × [0,∞).

3. Main results

In a logically equivalent manner to definition 1, we can prove the complete
synchronization between system (1) and system (4) by showing that the zero
solution of the following synchronization error system:




∂e1(x, t)
∂t

= d1∆e1 − e2 + f (v1) − f (u1) + C,

∂e2(x, t)
∂t

= d2∆e2 + εe1 − εγe2 ,

x ∈ Ω, t > 0 (7)

is globally asymptotically stable. At the boundary, it is clear that the above system
satisfies the Neumann conditions:

∂e1

∂η
=
∂e2

∂η
= 0, x ∈ ∂Ω. (8)

Theorem 1 The drive and the response systems given, respectively, in (1) and (4)
are completely synchronized in accordance with the following one-dimensional
linear control law:

C = −
(
3K2 + 2(1 + α)K

)
e1 + (1 − ε)e2 , (9)

where K is positive constant given in Lemma 1.
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Proof. Substituting controller (9) in the error system given in (7) yields:




∂e1(x, t)
∂t

= d1∆e1 − εe2 −
(
3K2 + 2(1 + α)K

)
e1 + f (v1) − f (u1),

∂e2(x, t)
∂t

= d2∆e2 + εe1 − εγe2 , x ∈ Ω, t > 0

To prove the global stability of the zero solution of system (7), we use the
Lyapunov’s direct (second) method together with the following positive definite
Lyapunov functional:

V =
1
2

∫ (
eT e

)
d x.

This leads us to prove that the derivative of this functional with respect to t is
negative definite. Actually, this can be carried out as follows:

∂V
∂t
=

∫
Ω

(
e1
∂e1

∂t
+ e2

∂e2

∂t

)
d x

=

∫
Ω

e1
(
d1∆e1 − εe2 −

(
3K2 + 2(1 + α)K

)
e1 + f (v1) − f (u1)

)
d x

+

∫
Ω

e2
(
d2∆e2 + εe1 − εγe2

)
d x =

∫
Ω

(d1e1∆e1 + d2e2∆e2) d x

−

∫
Ω

((
3K2 + 2(1 + α)K

)
e2

1 − εγe2
2

)
d x +

∫
Ω

e1
(

f (v1) − f (u1)
)

d x.

In view of Eq. (2) and Lemma 1, we can attain the following assertion:
∂V
∂t
=

∫
Ω

(d1e1∆e1 + d2e2∆e2) d x −
∫
Ω

((
3K2 + 2(1 + α)K

)
e2

1 − εγe2
2

)
d x

+

∫
Ω

(
|v1 |

2 + |v1 | |u1 | + |u1 |
2 + (1 + α) (|u1 | + |v1 |) − α

)
e2

1d x,

¬
∫
Ω

(d1e1∆e1 + d2e2∆e2) d x −
∫
Ω

(
(3K2 + 2(1 + α)K )e2

1 − εγe2
2

)
d x

+

∫
Ω

(
3K2 + 2(1 + α)K − α

)
e2

1d x,

¬
∫
Ω

(d1e1∆e1 + d2e2∆e2) d x −
∫
Ω

(
αe2

1 + εγe2
2

)
d x.
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By using Green’s formula, one can show that the derivative of the Lyapunov
functional V satisfies the following estimate:

∂V
∂t
¬ −d1

∫
Ω

|∇e1 |
2 d x + d1

∫
∂Ω

e1
∂e1

∂η
dσ − d2

∫
Ω

|∇e2 |
2 d x

+ d2

∫
∂Ω

e2
∂e2

∂η
dσ − α

∫
Ω

e2
1d x − εγ

∫
Ω

e2
1d x.

Accordingly, using the homogeneous Neumann conditions given in (8) leads one
to obtain:

∂V
∂t
¬ −

*..
,
d1

∫
Ω

|∇e1 |
2 d x + d2

∫
Ω

|∇e2 |
2 d x + α

∫
Ω

e2
1d x + εγ

∫
Ω

e2
1d x

+//
-
< 0,

which finishes the proof. 2

4. Numerical simulations

This part intends to demonstrate some numerical illustrations in one- and
two-spacial dimensions to explain the suitability of the synchronization scheme
described in this article. These simulations have been carried out using the finite
difference approach and MATLAB software. In such simulations, we let Ω =
[0, 50], t ¬ 100 and(

d1, d2, α, ε, γ, I
)
= (0.5, 0.8, 0.139, 0.008, 2.54, 2). (10)

On the other hand, we select the initial condition associated with the drive system
to be as follows:

(u1(x, 0), u2(x, 0)) =
(
0.5 + 0.1 sin

(
πx
5

)
, 0.8 + 0.2 cos

(
πx
5

))
. (11)

The dynamics of the spatio-temporal solutions of system (1) are exhibited in
Fig. 1. For more illustration, Fig. 2 depicts these solutions in 2-dimensional space
(2D-space). For comparison reasons, we plot the uncontrolled response system
(i.e., system (4) with C = 0) in one- and two-spatial dimensions (see Fig. 3 and
Fig. 4), where the initial condition associated with system (4) is given as follows:

(v1(x, 0), v2(x, 0)) = (1.5 + 0.2 sin(x), 0.28 + 0.21 cos(x)). (12)

Comparing with the dynamics of the drive system (Fig. 1 and 2), one might notice
that both figures, Fig. 3 and Fig. 4, have confirmed that the uncontrolled response
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(a)
(b)

Figure 1: Dynamic behavior of the drive system (1) with d1 = 0.5, d2 = 0.8, α = 0.139,
ε = 0.008, γ = 2.54, I = 2 according to the initial conditions given in (11)

(a) at t = 0 (b) at t = 2

(c) at t = 4

Figure 2: Solution of the drive system (1) in 2D-space

system (4) does not synchronizewith the drive system (1). In the same perspective
and based on Theorem 1, if one selects K = 0.2, then the uni-dimensional linear
controller will be designed as follows:

C = 3.259e1 + 0.992e2
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(a) (b)

Figure 3: Dynamic behavior of the response system (4) with d1 = 0.5, d2 = 0.8,
α = 0.139, ε = 0.008, γ = 2.54, I = 2 according to the initial conditions given in (12)

(a) at t = 0 (b) at t = 2

(c) at t = 4

Figure 4: Solution of the response system (4) in 2D-space

with noting that the drive system (1) and the response system (4) will be also
globally synchronized. To illustrate this numerically, the spatiotemporal solutions
of the error synchronization system (7) are provided in Fig. 5 and Fig. 6 in one-
and two-dimensional space. This evolution indicates, consequently, that all errors
go to 0 as t goes to +∞.
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(a) (b)

Figure 5: Dynamic behavior of the solutions of the spatiotemporal synchronization error
system (5) with d1 = 0.5, d2 = 0.8 and K = 0.2

(a) at t = 0 (b) at t = 2

(c) at t = 4

Figure 6: Solution of the spatiotemporal synchronization error system (5) in 2D-space

5. Conclusion

Over the past few years, several researchers were focused on studying the
nervous system, especially in how neurons synchronize with each others. In this
paper, we have developed a novel control scheme to achieve synchronization
between two neurons in spatially extended domain. This contribution has been
proved rigorously with the use of the uniform boundedness of the unique solution
of the Fitzhugh-Nagumo model and the Lyapunov’s second method. In order
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to reduce the implementation cost, this controller has been designed in uni-
dimensional and linear form, and then it has been illustrated numerically in one-
and two-spatial dimensions. There is no question that the findings of this study
will motivate us to discuss this subject further. For this reason, we are planning to
analyze synchronization in many types of spatially extended systems, including
lattice maps, stochastic and fractional-order models.
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