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The unique solvability of stationary and non-stationary
incompressible melt models in the case

of their linearization

Saule Sh. KAZHIKENOVA

The article presents ε-approximation of hydrodynamics equations’ stationary model along
with the proof of a theorem about existence of a hydrodynamics equations’ strongly generalized
solution. It was proved by a theorem on the existence of uniqueness of the hydrodynamics
equations’ temperature model’s solution, taking into account energy dissipation. There was
implemented the Galerkin method to study the Navier–Stokes equations, which provides the
study of the boundary value problems correctness for an incompressible viscous flow both
numerically and analytically. Approximations of stationary and non-stationary models of the
hydrodynamics equations were constructed by a system of Cauchy–Kovalevsky equations with
a small parameter ε. There was developed an algorithm for numerical modelling of the Navier–
Stokes equations by the finite difference method.

Key words: Navier–Stokes equations, hydrodynamic, approximations, mathematical mod-
els, incompressible melt

1. Introduction

Numerous hydrodynamic paradoxes point to the long and thorny path that
has been covered since its inception. The first long stage was associated with the
study and research of ideal incompressible liquid’s potential flows. Mathematical
methods of their research using the theory of complex variable functions seemed
almost perfect. Imperfection of the ideal liquid theorywas indicated by the famous
Euler-d’Alembert paradox: the total force acting on a body flowing around a
potential flow is equal to zero. Then there was created a mathematical model of
a viscous incompressible fluid with its basic Navier–Stokes equations. Proposed
section outlines various methods for solving and studying the Navier–Stokes
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equations [1–15]. Each considered work offers its own method, but it must be
borne in mind that it can be used, perhaps with some necessary modifications.

Asymptotic decomposition and the conditions of their convergence for the
class of incompressible viscous liquids under non-standard boundary conditions
are researched in the paper [1]. There are introduced generalized elliptic systems
of hydrodynamic type’s equations, which under certain conditions are trans-
formed into the Navier–Stokes equations. There is proposed a method of the
homogenization theory, which allows a numerical study of the eigenvalue prob-
lem in nonhomogeneous fields. For the description of nonhomogeneity a large
number of holes of εsize is considered. As shown in the paper, at ε → 0 solution
is proved convergent. Tending to zero is the homogenization essence.

There is presented a spectralmethod of theNavier–Stokes equations numerical
integration for an incompressible viscous liquid in the paper [2]. Solution has
been decomposed into Chebyshev polynomials for the main flow, and the Fourier
transformation is applied for the transverse flow. It is necessary to note the
peculiarity of proposed algorithm. It lies in the fact that there is used a special
iterative procedure. According to the authors of the paper, proposed algorithm
can be used in modeling the internal and external boundary flow’s layers. At the
same time there is the possibility of viscosity coefficient variation. According
to the authors, spectral method is more economical than the well-known finite
difference methods.

There are considered some fundamental questions of the incompressible liquid
dynamics in the paper [3]. All things considered an interstructural review on the
Navier–Stokes equations is made where special attention is paid to computational
problems.

Also, there are considered mixed boundary value problems for evolutionary
equations in the paper. Various boundary and initial conditions that are used in
the calculations are presented.

Viscoelastic theory’s distinctive feature, which has received widespread at
this time, is a unified liquid and solid states description. In this regard, the article
sets and solves the following problems: approximation of stationary and non-
stationary models of hydrodynamic equations in order to reduce the nonlinear
Navier–Stokes equations to the systemofCauchy–Kovalevsky equations; building
finite-difference schemes for Navier–Stokes equations; developing an algorithm
for numerical integration of hydrodynamic equations, allowing to predict the
technological parameters of metal melt casting.

2. Problem formulation. Nonlinear stationary Navier–Stokes equations

In the article, we establish one of the important aspects of the Navier–Stokes
equations’ theory: the unique stationary problems’ solvability in the case of their
linearization. This is most easily done in a Hilbert space with a well-defined
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extension of the solution concept, which will be described below. The studies
conducted in this chapter allow us to state the fact that not only considering
problems’ unique solvability, but also the possibility of applying approximate
methods for finding these solutions, for example, the Galerkin method.

In a limited area Ω ⊂ R3 with a smooth border S we consider the following
system of nonlinear stationary equations that is a representation of amathematical
model of the incompressible melt’s motion:

(ρυ · ∇)υ = µ∆υ − ∇p + λ(∇ρ · ∇)υ + λ(υ · ∇)∇ρ

− λ2div
((

1
ρ
· ∇ρ · ∇

)
ρ

)
+ ρ f , (1)

(υ · ∇)ρ = λ∆ρ, (2)
div υ = 0, (3)

with the boundary conditions:

υ��S = 0, ρ��S = ρS (x), (4)

where υ(x) = υ(x1, x2, x3)− velocities’ vector function, ρ(x) = ρ(x1, x2, x3) –
density field, p(x) = p(x1, x2, x3) – melt pressure field, f (x) = f (x1, x2, x3) –
mass force vector, λ, µ – diffusion and viscosity coefficients, and λ > 0, µ > 0,
S = ∂Ω – sufficiently smooth border area Ω.

Problem’s solvability (1)–(4) was researched in the works [4–7]. It is known
that the system of equations (1)–(3) is not evolutionary (i.e. it is not a system
of Cauchy–Kovalevskaya type), and therefore direct application of numerical
methods is difficult.

To solve the difficulty, we will consider another model of an nonhomogeneous
melt, which is an approximation of the original model (1)–(4) with a small
parameter ε (ε > 0).

So, let’s consider the following task:

(ρευε · ∇)υε = µ∆υε − ∇pε + λ(∇ρε · ∇)υε + λ(υε · ∇)∇ρε

− λ2div
((

1
ρε
· ∇ρε · ∇

)
ρε

)
+ ρε f −

1
2
ρευεdiv υε, (5)

(υε · ∇)ρε = λ∆ρε, (6)
εpε + div υε = 0, (7)

with the boundary conditions:

υε��S = 0, ρε��S = ρS (x). (8)
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As it is known, the system of equations (5)–(8) is a system of Cauchy–
Kovalevskaya type.

We recall that Rn – Euclidean space; L2(Ω) is a Hilbert space; Lp(Ω), 1 <

p ¬ 6 is a Banach space; W 1
2 (Ω) is a space consisting of elements L2(Ω), having

squarely summable over Ω generalized first order derivatives; W 2
2 (Ω) is a space

consisting of elements L2(Ω), having squarely summable over Ω generalized

derivatives of the first and second orders; a space
0

W 1
2(Ω) – subspace W 1

2 (Ω) and
is the closure of infinitely differentiable finite vector functions’ set [6].

Definition 1 Strongly generalized solution of the problem (5)–(8) is called the
set of functions {υε (x), ρε (x), pε (x)}, which satisfies the following conditions:

1) υε (x) ∈
0

W 1
2(Ω), ρε (x) ∈ W (

2Ω), 0 < m ¬ ρε (x) ¬ M < ∞;

2) ∀ϕ(x) ∈
0

W 1
2(Ω) – integral equality is fulfilled:∫

Ω

{
ρε (υε · ∇)ϕε · υε − µ(∇υε,∇ϕ) − λ(∇ρε · ∇)ϕ · υε

+
1
2
ρεdiv υε · (υεϕ) − λ

(
ϕ · ∇

)
ρεdiv υε − λ

(
υε · ∇

)
ϕ · ∇ρε

+ pεdiv ϕ + λ2
((

1
ρε
· ∇ρε · ∇

)
ρε

)
∇ϕ − ρε f ϕ

}
d x = 0,

3) Equations (6), (7) and the boundary conditions (8) are fulfilled almost
everywhere in the Ω where possible.

Let’s formulate the main result.

Theorem 1 If f ∈ L 6
5
(Ω), ρS ∈ W

3/2
2 (S), then with a sufficiently small λ:

λ ¬ α = min
{

M
16

m2

C1m2 + C2M2 ,
µ

M − m

}
,

there exists at least one strongly generalized solution of problems (5)–(8), where
C1, C2 are constants that depend only on the task data and do not depend on the
functions υε, ρε, pε.

Proof. The proof of the theorem consists of three stages: obtaining a priori
assessments using the Galerkin method and limit transfer.
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First, we obtain the necessary priori estimates. We multiply (6) on ∆ρε (x)
scalar in L2(Ω):

λ‖∆ρε‖2L2(Ω) =

∫
Ω

(υε · ∆)ρε · ∆ρε · d x. (9)

Integration in parts is applicable to the right side:∫
Ω

(
υε · ∇

)
ρε · ∆ρεd x = −

∫
Ω

∇
(
(υε · ∇)ρε

)
· ∇ρεd x +

∫
S

(
υε · ∇

)
ρε
∂ρε

∂n
dS =

= −

∫
Ω

(
∇υε · ∇

)
ρε · ∇ρεd x −

1
2

∫
Ω

(υε · ∇) |∆ρε |2 d x ¬ C‖υεx ‖ · ‖∇ρ
ε‖2 ¬

¬ C υεx
(ρε +max ��ρε�� · ∆ρε

)
.

From Eq. (6) according to the maximum principle we get:

∃m, M : 0 < m ¬ ρε (x) ¬ M < ∞,

Then we have the following assessment:∫ (
υε · ∇

)
ρε · ∆ρεd x ¬ ‖υεx ‖

(
C1 + C2‖∆ρ

ε‖
)
¬ δ‖∆ρε‖2 + C(δ)‖υεx ‖ + C.

We take δ =
λ

2
, then from Eq. (9) it follows:

λ

2
‖∆ρε‖2 ¬ C(λ)‖υεx ‖

2 + C. (10)

Now let’s multiply Eq. (5) on the function υε (x) scalar in space C2(Ω), we
get the assessment:

1
2

∫
Ω

(
ρευε · ∇

) ��υε��2 d x + µ υεx2
=

∫
Ω

ρε f υεd x +
∫
Ω

pεdiv υεd x+

+
λ

2

∫
Ω

(
∇ρε · ∇

) ��υε��2 d x + λ
∫
Ω

(
υε · ∇

)
∇ρε · υεd x+

+λ2
∫
Ω

(
1
ρε
· ∇ρε · ∇

)
ρε · ∇υεd x.
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From above we have:

µ υεx2
C2(Ω) +

1
ε

div υε2
C2(Ω) =

=

∫
Ω

{
−λ

(
υε · ∇

)
υε · ∇ρε + λ

(
υ2 · ∇

)
ρεdiv υε

}
d x+

+

∫
Ω

{
λ2

((
1
ρε
· ∇ρε · ∇

)
ρε

)
· ∇υε + ρε f υε

}
d x.

Further, by estimating the integral terms in the same way as in [16], we obtain:

µ υεx2
+

1
ε

div υε2 ¬
λ2

m
M ∆ρε · υεx +

λ2

m
ρε · υεx+

+ C1‖ f ‖L 6
5

(Ω) · υεx + λ
M − m

2
υεx2 .

Here we assume that the inequality µ− λ
M − m

2


M
2

is true, which implies:

λ ¬
M − m

2
.

By using Jung’s inequality repeatedly we obtain:

µ

2
υεx2

+
1
ε

div υε2 ¬ δ ‖∆ρ‖2 +
M2

m2 λ
4C(δ) ‖υx ‖

2 + δ1 ‖υx ‖
2 +

+ C (λ,m, M, δI ) +
µ

4
‖υx ‖

2 + C1(µ)‖ f ‖2L 6
5

.

Let’s choose δ = λ3, δ1 =
µ

8
and, taking into account (10), we have:

µ

2
υεx2

+
1
ε

div υε ¬ Cλ ‖υx ‖
2+λ2 ‖υx ‖

2+C2
M2

m2 +λ ‖υx ‖
2+C1(µ)‖ f ‖2L 6

5

+C.

Further let’s assume that the following conditions are held:

γ =
µ

32λ2 and γ ¬
µ

16
·

m2

C1m2 + C2M2 .

Then:
µ

32
υεx2

+
c
ε

div υε2 ¬ C1
(
µ
)
‖ f ‖2L 6

5

+ C.



THE UNIQUE SOLVABILITY OF STATIONARY AND NON-STATIONARY INCOMPRESSIBLE
MELT MODELS IN THE CASE OF THEIR LINEARIZATION 313

Thus, as a result, we obtain the assessment:

υεx2
+

1
ε

div υε2 ¬ C < ∞, (11)

with enough smallness of γ:

λ ¬ α = min
{
µ

16
·

m2

C1m2 + C2M2 ,
µ

M − m

}
. (12)

From the embedding theorems [6] it follows:

υε (x) ∈ Lp(Ω), 1 < p ¬ 6. (13)

And from (10) taking into account (11) it follows:

∆ρε2 ¬ C < ∞. (14)

By virtue of Eq. (6) we get:

ρε (x) ∈ Lp(Ω), 1 < p ¬ 6. (15)

Further, assessing similarly to [16] the pε in the negative form, we have:

pε ¬ C ∇pε < ∞. (16)

Now let’s proceed to the second stage i.e. Galerkin method for constructing
approximate solutions.

Let {ωi} be basis in a space L2(Ω) from the problem:




µ∆ωi − ∇pi = λiωi ,

εpi + divωi = 0,
ωi��S = 0.

(17)

Approximate solution υN,ε, ρN,ε, PN,ε is present in the form:

υN,ε =

N∑
i=1

ξN
k ωk , (18)

where density and pressure are the classic solution to the problem:




(
υN,ε · ∇

)
ρN,ε = λ∆ρN,ε,

ρN,ε��S = ρS (x),
(19)
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εpN,ε + div υN,ε = 0. (20)
Values of the numbers ξN

k are taken from the following system of equations:(
ρN,ε

(
υN,ε · ∇

)
υN,ε − µ∆υN,ε − λ

(
∇ρN,ε · ∇

)
υN,ε − λ

(
υN,ε · ∇

)
ρN,ε+

+λ2div
((

1
ρN,ε · ∇ρ

N,ε · ∇

)
ρN,ε

)
−

1
2
ρN,ευN,εdiv υN,ε, ωi

)
= 0, (21)

i = 1, N .

Using the Brauer Lemma, we prove the existence of a solution to the problems
(18)–(21) and show that for approximate solutions υN,ε, ρN,ε, PN,ε a priori
estimates (9), (11), (13)–(16) are true. Then from sequences {υN,ε}, {ρN,ε}, {pN,ε}

we can identify the subsequences for which the following are true:
ρN,ε → ρε ∗weakly in the L∞(Ω),

1
ρN,ε →

1
ρε

∗weakly in the L∞(Ω),

ρN,ε → ρε weakly in the W 2
2 (Ω),

ρN,ε → ρε strongly in the Lp(Ω), 1 < p ¬ 6,
υN,ε → υε weakly in the W 1

2 (Ω),
υN,ε → υε strongly in the Lp(Ω), 1 < p ¬ 6,
pN,ε → pε weakly in the L2(Ω).
By going to the limit of the selected sequences in the integral identity that

is corresponding to the integral identity in Definition 1 and in (19)–(20) we
conclude that the limit functions υε, ρε, pε are a strongly generalized solution of
the problem (5)–(8).

The Theorem 1 is proved. 2

Theorem 2 Let all conditions of Theorem 1 be fulfilled, then the strongly general-
ized solution of the problem (5)–(8) at ε → 0 converges to a strongly generalized
solution of the problem (1)–(4).

Proof. By virtue of the obtained necessary prior assessments, we have:
1
ρε
→

1
ρ

∗weakly in the L∞(Ω),

ρε → ρ ∗weakly in the L∞(Ω),
ρε → ρ weakly in the eW 2

2 (Ω),
ρε → ρ strongly in the Lp(Ω), 1 < p ¬ 6,
υε → υ weakly in the W 1

2 (Ω),
υε → υ strongly in the Lp(Ω), 1 < p ¬ 6,
εpε → 0 strongly in the L2(Ω).
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By passing to the limit at ε → 0 in the corresponding identities, it is easy
to establish that limit functions υ, p, ρ are a strongly generalized solution of the
problem (1)–(4).

The Theorem 2 is proved. 2

3. ε2 + εh2 approximation of the temperature model of nonhomogeneous melts
with given energy dissipation

The section presents a study of the initial boundary value problem for the
non-stationary Navier–Stokes equations. Let’s consider the temperature model of
nonhomogeneous melt in the area Ω ⊂ R2:

ρ

(
∂υ

∂t
+ (υ · ∇) υ

)
= µ∆υ − ∇p + eθ ρ + ρ f , (22)

∂ρ

∂t
+ (υ · ∇) ρ = 0, (23)

div υ = 0, (24)

ρ

(
∂θ

∂t
+ (υ · ∇) θ

)
= div (λ(θ)∇θ) + µσ, (25)

σ =

2∑
i, j=1

(
∂υi

∂x j
+
∂υ j

∂xi

)2
, (26)

with the initial boundary conditions:

υ��t=0 = υ0(x), ρ��t=0 = ρ0(x), θ��t=0 = θ0(x),

υ��S = 0,
∂θ

∂n
����S
= 0, t ∈ [0, T],

(27)

where σ – energy dissipation, υ(x, t) – velocities’ vector function, θ(x, t) –
temperature field, ρ(x, t) – density field, p(x, t) – pressure field, f (x, t) – mass
force vector, µ – melt viscosity, λ(θ) – thermal conductivity coefficient, n –
external normal to the boundary of S, e = {0, 1}.

(22)–(27) problem’s solvability is researched in the work [17].
The system of equations (22)–(26) is non-evolutionary, so the fractional steps

method is difficult to apply directly. In this regard, given section unveils the
research of the approximation of system (22)–(26) as an evolutionary system
type and follows the existence theorem for solving an auxiliary problem. Let the
melt move in a limited areaΩ ⊂ R2 with a fairly smooth border S. For simplicity,
we assume that the boundary S is impermeable and mass transfer between the
melt and the external environment is absent.
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Let’s consider a system of equations with a small parameter, approximating
the system of equations (22)–(26):

ρε
(
∂υε

∂t
+

(
υε · ∇

)
υε

)
= µ∆υε − ∇pε + eθε ρε + ρε f − ρε

υε

2
div υε, (28)

∂ρε

∂t
+

(
υε · ∇

)
ρε = 0, (29)

εpε + div υε = 0, (30)

ρε
(
∂θε

∂t
+

(
υε · ∇

)
θε

)
= div

(
λ

(
θε

)
∇εθε

)
+ µσε, (31)

σε =

2∑
i, j=1

*
,

∂υεi
∂x j
+
∂υεj

∂xi
+
-

2

, (32)

with the initial boundary conditions:

υε��t=0 = υ0(x), ρε��t=0 = ρ0(x), θε��t=0 = θ0(x),

υε��S = 0,
∂θε

∂n

�����S
= 0, t ∈ [0, T],

(33)

Before proceeding to the proof of the theorem, let’s formulate an important
definition.

Definition 2 A strong solution of the problem (22)–(27) is called a function(
υ, p, ρ, θ

)
, summed together with derivatives included in the system of equa-

tions (22)–(26), that are satisfying (22)–(27) almost everywhere in the possible
measure.

Definition of a problem’s strong solution is set similarly (28)–(33).

Theorem 3 Let f ∈ Lp(Q),Ω ⊂ E2,υ0(x) ∈ W 1
p (Ω), 0 < m ¬ ρ0(x) ¬ M < ∞,

λ(θ) be continuously differentiable by θ, ρ0(x) ∈ W 1
p (Ω), p > 2, λ(θ) ∼ θ2, at

θ → ∞, θ0(x) ∈ L∞(Ω), θ0 ∈ Lp(Ω), ε > 0, S ∈ C2, µ > 0.
Then there is a unique strong solution to the problem (28)–(33) and for the

solution the assessment takes place:

∂υε

∂t

Lp (0,T,Lp (Ω))
+ υεLp (0,T,W2

p (Ω)) +
1
ε

div υεLp (0,T,Lp (Ω)) +

+ ρεW1,1
p (Q) +

θεW2,1
p (Q) ¬ C < ∞,

where C – constant, independent of ε.
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The proof of the theorem consists of three stages: obtaining a priori assess-
ments, applying the Galerkin method for constructing approximate solutions and
passing to the limit.

A priori assessments. By virtue of the maximum principle, we have:

0 < m ¬ ρε0(x) ¬ M < ∞.

Let’s multiply Eq. (28) to υε (x, t) scalar in the space L2(Ω), and integrate the
result by parts. By applying Cauchy inequality we have the following:

�������

∫
Ω

ρε
(

f , υε
)

d x
�������
¬

*..
,

∫
Ω

ρε ��υε��2 d x
+//
-

1
2

*..
,

∫
Ω

ρε | f |2 d x
+//
-

1
2

,

based on embedding theorems, we have an assessment:

υεxLp (0,T,Lp (Ω)) +
1
ε

div υεLp (0,T,Lp (Ω)) ¬ C < ∞. (34)

Further, by multiplying (31) by θεt and integrating by area Ω by parts, we get:

1
2

d
dt

∫
Ω

λ
(
θε

)
θεx

2 d x +
∫
Ω

ρεθεt
2 d x =

∫
Ω

1
2

{
λ′

(
θε

)
θεx

2
· θεt

}
d x+

+

∫
Ω

µσεθεt d x −
∫
Ω

ρε
(
υε · ∇

)
θε · θεt d x.

We assess the integrals on the right-hand side and integrate them by variable t:

max
0¬t¬T

θεx2
2,Ω +

θεt 2
2,Q ¬ C.

Let us write the energy equation:

ρεθεt −
(
λ

(
θε

)
∆θε

)
= µσε − ρε

(
υε · ∇

)
θε + λ′

(
θε

)
· θεx

2

and multiply it by
1
ρ
∆θε. After integration by Ω we have:

1
2

d
dt

∫
Ω

θεx
2 d x +

∫
Ω

λ
(
θε

) 1
ρ

(
∆θε

)2 d x =

=

∫
Ω

{
ρ
(
υε · ∇

)
θε − µσ − λ′

(
θε

)
θεx

2}
·

1
ρ
∆θεd x.
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Assessing the integrals on the right side, after integrating them by variable t,
we find:

max
0¬t¬T

θεx2
2,Ω +

∆θεt 2
2,Q ¬ C.

As a result, we conclude:

θεW2,1
p (Q) ¬ C < ∞. (35)

By multiplying Eq. (29) by ∆ρε and integrating by area Ω by parts, we get:

1
2

d
dt

∇ρε2
2,Ω +

∫
Ω

(
υε · ∇

)
ρε∆ρεd x = 0.

By virtue of the maximum principle, taking into account the assessment (34)
it implies:

ρεW1,1
p (Q) ¬ C < ∞. (36)

Estimating pε according to the negative norm, as in the work [16], we have:

pε ¬ C ∇pε < ∞. (37)

It is known that if υε, pε are solution of the following Stokes linear problem:

µ∆υε − ∇pε = f ,
εpε + div υε = 0,

υε��S=0 = 0,
∂ ρε

∂n

�����S
= 0,

(38)

then under condition that f ∈ Lp(Ω) the following inequality holds:

υε
W2

p∩
0

W1
p

+ pεW1
p
¬ C‖ f ‖Lp . (39)

As a function f in the problem (38) we take the function:

f = −ρε
(
∂υε

∂t
+

(
υε · ∇

)
υε

)
− `θε ρε − ρε f − ρε

υε

2
div υε .

Let’s assess the right-hand side according to the Cauchy inequality by using
the maximum principle:

‖ f ‖2Lp (Ω) ¬ CM
*..
,

υεt 2
+

∫
Ω

(��υε��2 ��∇υε��2 + | f |2 + ` ��θε��2
)

d x
+//
-
. (40)
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With taking into account the inequality of embedding and the assessments
obtained from (34), (35), we have the following estimate:∫

Ω

��υε��2 ��∇υε��2 d x ¬ max
Ω

��υε��2
∫
Ω

��∇υε��2 d x ¬

¬ υεLp (Ω)
υε

W2
p (Ω)∩

0
W1

p (Ω)
∇υε2 ¬

¬ δ υε2

W2
p (Ω)∩

0
W1

p (Ω)
+ Cδ

υε2
0

W1
p (Ω)

. (41)

Let’s multiply Eq. (28) by scalar υε (t) in the space L2(Ω), then assess the
integrals from above in absolute value and by applying inequality of embedding
theorems, we obtain following estimate:∫

Ω

��∇υε�� ��υε�� ��υεt �� d x ¬ C ∇υεLp (Ω) max
Ω

��υε�� υεt Lp (Ω) ¬

¬ C υε
1
2
Lp (Ω)

υε
1
2

W2
p (Ω)∩

0
W1

p (Ω)

υε 0
W1

p (Ω)
υεt Lp (Ω) ¬

¬ δ υεt 2
Lp (Ω) + δ

υε2

W2
p (Ω)∩

0
W1

p (Ω)
+ Cδ

υε2
0

W1
p (Ω)

. (42)

By following the method of assessment from the work [18], at the end we get
an assessment:

υεt Lp (0,T,Lp (Ω)) +
υεLp (0,T,W2

p (Ω)) +
∇pεLp (0,T,Lp (Ω)) ¬ C < ∞, (43)

where C does not depend on the small parameter value ε.
Let us establish onemore assessment by a global time feature that is a constant

which only depends on the problem’s data. Further this assessment guarantees
compactness in the space L2(Q) of sequences of approximate solutions that are
constructed according to the Galerkin method.

Lemma 1 For any δ, such that the condition is fulfilled 0 < δ < T , the following
inequality is true:

T−δ∫
0

υε (t + δ) − υε (t)2 dt ¬ Cδ
1
2 .

Proof. Let us fix δ, t so that inequality held 0 ¬ t ¬ T − δ. Equations (28)–(32)
on the time interval τ ∈ (t, t + δ). Let’s multiply Ee. (28) by scalar on an arbitrary
function Φ in space L2(Ω).
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Then, after simple transformations, we arrive at the inequality:
d

dτ
(
ρευε,Φ

)
L2(Ω) =

(
ρε

(
υε · ∇

)
Φ, υε

)
L2(Ω) +

1
2

(
ρεdiv υε · υε,Φ

)
L2(Ω) +

+
(
ρε f ,Φ

)
L2(Ω) − `

(
θε ρε,Φ

)
L2(Ω) − µ

(
υε,Φ

)
L2(Ω) +

(
pε, divΦ

)
L2(Ω) ,

where Φ = υ(t + δ) − υ(t).
Let’s integrate obtained identity by a variable τ in the limits from t to t + δ,

and then put Φ = υε (t + δ) − υε (t).
An expression ρε (t + δ)υε (t + δ) − ρε (t)υε (t) we can write as follows

ρε (t + δ) (υε (t + δ) − υε (t)) +
(
ρε (t + δ) − ρε (t)

)
υε (t), and then the difference

between ρε (t + δ) − ρε (t) was found by integrating Eq. (29) in the limits from t
to t + δ. Obtained ratio we will integrate by a variable t from 0 to t + δ, and for
each term on the right-hand side, we can use the assessments from the work [18],
on the basis of which we derive the assessment of the Lemma 1.

Let us proceed to the construction of approximate solutions by the Galerkin
method [16, 19].

Let Ω1α = uα
∂

∂xα
I, be an orthonormal basis in the space L2(Ω) of W 2

p (Ω) ∩

0
W 1

p(Ω). And the following ratio to be true:(
φ j x, ωx

)
L2(Ω)

= λ j
(
φ j, ω j

)
L2(Ω)

.

Approximated solution υN,ε (t) we will look for in the form of:

υN,ε (t) =
N∑

k=1
CN

k (t)φk ,

where CN
k (t) ∈ C1[0, T].

Density ρN,ε (t) is a classic solution to the problem:

∂ρN,ε (t)
∂t

+
(
υN,ε (t) · ∇

)
ρN,ε (t) = 0,

ρN,ε��t=0 = ρ
M
0 (x), (44)

where ρM
0 (x) is a smooth initial function.

The sequence ρM
0 (x), M = 1, 2, . . . converges to the ρ0(x) in norms Lp(Ω),

W 1
p (Ω), ρM

0 (x) ∈ C2(Ω). The pressure pN,ε (t) is a classic solution to the problem:

div υN,ε = εpN,ε,∫
Ω

pN,εd x = 0. (45)
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The temperature θN,ε (t) is defined as a classic solution to the problem:

ρN,ε
(
∂θN,ε (t)
∂t

+
(
υN,ε (t) · ∇

)
θN,ε (t)

)
= div

(
λ

(
θN,ε (t)

)
∇θN,ε (t)

)
+ µσN,ε,

(46)

θN,ε��S=0 = θ
M
0 (x),

∂θN,ε (t)
∂n

�����S
= 0, t ∈ [0, T],

where θM
0 (x)− initial smooth function satisfying to the equation:

∂θM
0 (t)
∂n

������S
= 0, t ∈ [0, T].

Functions CN
k (t), k = 1, 2, . . . , N , are determined by a system of ordi-

nary differential equations with coefficients that are operably dependent on
ρN,ε (t), pN,ε (t):(
ρN,ε (t)

(
∂υN,ε (t)

∂t
+

(
υN,ε (t) · ∇

)
υN,ε (t) +

1
2
υN,ε (t)div υN,ε

)
− µ∆υN,ε (t)+

+∇pN,ε (t) − `θN,ε (t)ρN,ε (t) + ρN,ε (t) f , φ j
)

L2(Ω)
= 0.

Based on the Schauder principle, using the obtained a priori assessments,
there can be distinguished subsequences from sequences

{
υN,ε

}
,

{
ρN,ε

}
,

{
pN,ε

}
,{

θN,ε
}
for which we have:

υN,ε → υε weakly in the Lp
(
0,T,W 2

p (Ω)
)
,

θN,ε → θε weakly in the W 2,1
p (Q),

ρN,ε → ρε ∗weakly in the W 1,1
p (Q),

υN,ε → υε strongly in the Lp
(
0,T, Lp(Ω)

)
,

θN,ε → θε strongly in the Lp
(
0,T, Lp(Ω)

)
,

υN,ε
t → υεt weakly in the Lp

(
0,T, Lp(Ω)

)
,

pN,ε → pε weakly in the Lp
(
0,T,W 1

p (Ω)
)
.

Thus, the Theorem 3 is proved. 2

The following is true.

Theorem 4 Let all conditions of the Theorem 3 be fulfilled. Then the (28)–(33)
problem’s strong solution converges to a (22)–(27) problem’s strong solution at
ε → 0.
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Proof. By virtue of the prior assessments obtained earlier, we have:
υε → υ weakly in the Lp

(
0,T,W 2

p (Ω)
)
,

θε → θ weakly in the W 2,1
p (Q),

ρε → ρ ∗weakly in the W 1,1
p (Q),

υε → υ strongly in the Lp
(
0,T, Lp(Ω)

)
,

θε → θ strongly in the Lp
(
0,T, Lp(Ω)

)
,

υεt → υt weakly in the Lp
(
0,T, Lp(Ω)

)
,

pε → p weakly in the Lp
(
0,T,W 1

p (Ω)
)
.

By going to the limit at ε → 0 in the corresponding identities, we establish
that the limit functions υ, p, ρ, θ are a (22)–(27) problem’s strong solution.

The Theorem 4 is proved. 2

4. Finite difference method implementation for the numerical solution
hydrodynamic equations melts

There is needed a hydrodynamic equations’ numerical solution implemented
by finite difference method for computer modeling of melt’s flow. One way of
implementing numerical solutions is described in seections 2 and 3. We have
developed specific algorithms for computer programming.

Let’s consider a flat flow. Let Ω be an area of Euclidean space Rn, and
x = (x1, x2). We divide whole space Rn(x, t) on elementary cells, the area of
which will be equal to following:

xi = kih, h > 0, ki = 0,±1,±2, . . . ,

where t = k∆t; k = 1, 2, . . . , n; h is a step.
Let’s form difference ratios by xi:

υxi (x, t) =
1
h

[
υ

(
x + he j, t

)
− υ(x, t)

]
, υx̄i (x, t) =

1
h

[
υ(x, t) − υ

(
x − he j, t

)]
.

The shift by xi is defined as:

±i
υ (x, t) = υ

(
x ± he j, t

)
.

Vectors e j are the unit vectors along the axes xi by itself. According to the
work [6] velocity vectors are expressed as the ratios:

υ2
h =

n∑
i=1

υihυih , υ2
hx =

n∑
k=1

υ2
hxk =

n∑
i,k=1

(
υihxk

)2 ,
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υ2
hx̄ =

n∑
k=1

υ2
hx̄k =

n∑
i,k=1

(
υihx̄k

)2 .

Summation over i, k are conducted from 1 to 2 for two-dimensional case, and
from 1 to 3 for three-dimensional case. Then for arbitrary functions uh, υh given
on a lattice, we get the following expressions:

(uhυh)xi = uhxiυh +
+i
uh υhxi = uhxi

+i
υh +uhυhxi, (47)

(uhυh) x̄i = uhx̄iυh +
−i
uh υhx̄i = uhx̄i

−i
υh +uhυhx̄i, (48)

uk
t̄ uk =

(
uk

)2
−

(
uk−1

)2
+ (∆t)2

(
uk

t̄

)2

2∆t
, (49)

m−1∑
`=0

uhx (`)υh(`) =

−h
m∑
`=1

uh(`)υhx̄ (`) + uh(m)υh(m) + uh(0)υh(0)

h
. (50)

Above it is assumed that:

uk
t̄ =

1
∆t

(
uk − uk−1

)
, uhx (`) =

1
h

[uh(` + 1) − uh(`)] ,

uhx̄ (`) =
1
h

[uh(`) − uh(` − 1)] .

Thus, formulas (47)–(50) are a difference analogues of the product differen-
tiation and interpolation formulas uh, given on a lattice. To demonstrate given
method after appropriate transformations, let’s rewrite Eq. (22) in the form:

∂υ

∂t
+

n∑
k=1

Zk (υ) −
1
ε
∇div υ = f , (51)

where:

Zk (w) = −γ
∂2w

∂x2
k

+ υk
∂w

∂xk
+

1
2
∂υk

∂xk
w.

For simplicity, let’s consider the case when n = 2. In order to do this, it is
obvious that we need to divide time interval [0, T] pointwise:

tm = m∆t, tm−1/2 =

(
m −

1
2

)
∆t,

where m = 1, 2, . . . , N .
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The above will allow us to consider layers tm and tm−1. Denote the indices so
that υ, and also p are pointed to the layer’s number on which they are calculated.
There are various approximations of difference operator Zk . Let’s take he operator
in the form proposed in [20, 21]:

Zm
k (w) = −γwxk x̄k +

1
2
+k
υ

m− k
2

k wxk +
1
2
υ

m− k
2

k wx̄k +
1
2
υ

m− k
2

k xk
wxk .

Then Eq. (51) can be represented by the following difference scheme:

1
∆t

(
υ

m− 1
2

1 − υm−1
1

)
+ τm

2

(
υ

m− 1
2

1

)
=

1
2

f
m− 1

2
1 , (52)

1
∆t

(
υm

1 − υ
m− 1

2
1

)
+ τm

1

(
υm

1

)
−

1
ε

(
υm

1x1
+ υ

m− 1
2

2x2

)
x̄1
=

1
2

f m
1 , (53)

1
∆t

(
υ

m− 1
2

2 − υm
2

)
+ τm

2

(
υ

m− 1
2

2

)
−

1
ε

(
υm−1

1x1
+ υ

m− 1
2

2x2

)
x̄2
=

1
2

f
m− 1

2
2 , (54)

1
∆t

(
υm

2 − υ
m− 1

2
2

)
+ τm

1

(
υm

2

)
=

1
2

f m
2 , (55)

where m = 1, 2, . . . , N .
To complete construction of the difference scheme, the initial and boundary

conditions should be added to presented equations. Without deriving formulas
for boundary conditions, we will deduce:

υ
m− 1

2
1


2
−

υ
m−1
1


2
+

υ
m− 1

2
1 − υm−1

1


2
+2γ∆t

υ
m− 1

2
1x2


2
= ∆t

(
f

m− 1
2

1 , υ
m− 1

2
1

)
, (56)

υ
m
1


2
−

υ
m− 1

2
1


2
+

υ
m
1 − υ

m− 1
2

1


2
+ 2γ∆t υ

m
1x1


2

+
2∆t
ε

[υ
m
1x1


2
+

(
υm

1x1
, υ

m− 1
2

2x2

)]
= ∆t

(
f m
1 , υ

m
1

)
, (57)

υ
m− 1

2
2


2
−

υ
m−1
2


2
+

υ
m− 1

2
2 − υm−1

2


2
+ 2γ∆t

υ
m− 1

2
2x2


2

+
2∆t
ε

[υ
m− 1

2
2x2


2
+

(
υm−1

1x1
, υ

m− 1
2

2x2

)]
= ∆t

(
f

m− 1
2

2 , υ
m− 1

2
2

)
, (58)

υ
m
2


2
−

υ
m− 1

2
2


2
+

υ
m
2 − υ

m− 1
2

2


2
+ 2γ∆t υ

m
2x1


2
= ∆t

(
f m
2 , υ

m
2

)
. (59)
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Thus, we will obtain Eqs. (52)–(55) that are solved separately. The result allows
to write machine programs for the numerical finite-difference methods imple-
mentation.

At this point it is suitable to consider application of proposed method on
Dirichlet problem’s example for the Poisson equation given in [22]. Integration
is performed in a rectangular lattice in accordance with Fig. 1. Asterisk indicates
internal nodes, boundary nodes are denoted by ◦.

Figure 1: Integration area

According to the reference data, the solution of the Poisson equation is given
in Table 1.

Table 1: First Dirichlet boundary value problem’s solution for the Poisson equation from
reference sources

Y
X

0.00 0.40 0.80 1.20 1.60 2.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.20 0.08 0.32 0.51 0.72 0.99 0.84

0.40 0.32 0.72 1.07 1.41 1.78 1.76

0.60 0.72 1.23 1.68 2.12 2.56 2.76

0.80 1.28 1.82 2.65 3.22 3.82 3.84

1.00 2.00 2.44 2.96 3.56 4.24 5.00
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For the control example in Table 2 we gave the Dirichlet problem’s solution
already with different boundary conditions from same reference sources. By
comparing first and second Dirichlet boundary value problems’ solutions from
reference sources presented in Tables 1 and 2 with program results for solving
boundary value problems presented in Tables 3 and 4, we obtain a satisfactory
coincidence of solutions for a given accuracy ε = 10−1.

Table 2: Second Dirichlet boundary value problem’s solution for the Poisson equation
from reference sources

Y
X

0.00 0.40 0.80 1.20 1.60 2.00

0.00 1.00 1.40 1.80 2.20 2.60 3.00

0.20 2.00 1.05 0.95 1.08 1.44 2.96

0.40 2.00 1.02 0.60 0.59 0.93 2.84

0.60 4.00 1.36 0.78 0.63 0.93 2.64

0.80 5.00 2.78 2.12 1.81 1.64 2.36

1.00 6.00 5.84 5.36 4.56 3.44 2.00

Table 3: First Dirichlet boundary value problem’s solution for the Poisson equation with
a given accuracy ε = 10−1.

Y
X

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 1.800 2.000

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.2 0.080 0.241 0.262 0.264 0.266 0.269 0.272 0.276 0.280 0.330 0.840

0.4 0.320 0.303 0.301 0.303 0.305 0.308 0.311 0.315 0.320 0.447 1.760

0.6 0.720 0.356 0.305 0.306 0.308 0.310 0.314 0.318 0.323 0.538 2.760

0.8 1.280 0.429 0.310 0.308 0.310 0.313 0.316 0.320 0.325 0.636 3.840

1.0 2.000 0.523 0.315 0.311 0.313 0.315 0.319 0.323 0.329 0.741 5.000

1.2 2.880 0.639 0.322 0.314 0.316 0.319 0.322 0.326 0.332 0.854 6.240

1.4 3.920 0.776 0.330 0.318 0.320 0.323 0.326 0.330 0.337 0.974 7.560

1.6 5.120 0.935 0.341 0.323 0.326 0.329 0.332 0.336 0.343 1.105 8.960

1.8 6.480 1.248 0.581 0.613 0.674 0.744 0.821 0.906 1.002 1.946 10.44

2.0 2.000 2.440 2.960 3.560 4.240 5.000 5.840 6.760 7.760 8.840 10.00
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And when the accuracy increases to ε = 10−4 our results presented in Table 5,
in fact, coincide with the standard reference data results.

Table 4: Second Dirichlet boundary value problem’s solution for the Poisson equation
with a given accuracy ε = 10−1

Y
X

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 1.800 2.000

0.0 1.000 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000

0.2 2.000 1.109 1.011 1.012 1.016 1.019 1.023 1.026 1.029 1.138 2.960

0.4 3.000 1.215 1.004 0.997 0.996 0.994 0.992 0.990 0.988 1.087 2.840

0.6 4.000 1.325 1.007 0.997 0.995 0.993 0.991 0.988 0.985 1.074 2.640

0.8 5.000 1.436 1.009 0.996 0.994 0.992 0.989 0.986 0.983 1.057 2.360

1.0 6.000 1.546 1.012 0.995 0.993 0.990 0.987 0.984 0.981 1.035 2.000

1.2 7.000 1.656 1.015 0.994 0.992 0.989 0.986 0.983 0.979 1.008 1.560

1.4 8.000 1.767 1.017 0.994 0.991 0.988 0.984 0.981 0.977 0.977 1.040

1.6 9.000 1.877 1.020 0.993 0.990 0.986 0.983 0.979 0.975 0.942 0.440

1.8 10.00 2.018 1.059 1.027 1.022 1.016 1.009 1.000 0.992 0.917 -0.24

2.0 6.000 5.960 5.840 5.640 5.360 5.000 4.560 4.040 3.440 2.760 2.000

Table 5: First Dirichlet boundary value problem’s solution for the Poisson equation with
a given accuracy ε = 10−4

Y
X

0.000 0.400 0.800 1.200 1.600 2.000

0.00 0.000 0.000 0.000 0.000 0.000 0.000

0.20 0.080 0.301 0.508 0.750 1.001 0.800

0.40 0.320 0.730 1.055 1.430 1.851 1.710

0.60 0.720 1.221 1.666 2.101 2.590 2.732

0.80 1.280 1.790 2.599 3.202 3.798 3.884

1.00 2.000 2.490 2.981 3.549 4.290 5.001

Obtained results show compiled program’s correctness, as well as correctness
of the stated boundary value problems for hydrodynamic equations that were
considered by us above.

For clarity, let’s present isolines and surfaces of solutions obtained in corre-
spondence with Fig. 2 and Fig. 3.
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Figure 2: Isolines and surface for the first Dirichlet boundary value problem
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Figure 3: Isolines and surface for the second Dirichlet boundary value problem
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5. Conclusion

The problems under consideration determine the set of interrelated differential
and integral conditions necessary for successful numerical solution of Navier–
Stokes equations.

This article is intended to acquaint both mathematicians and hydromechanics
with what has been done so far respectively the study of the questions related
to solvability and stability of boundary value problems for the Navier–Stokes
equations. The article is based on the latest scientific results in the melts structure
field, their movement mechanics and the use of modern hydrodynamics methods.

The article proposes a solution to the hydrodynamics equations. For computer
modeling ofmelt’s flow, a numerical solution to the equations is needed to be done
by the finite difference method. The authors considered application of proposed
method on Dirichlet problem’s example for the Poisson equation. The results
show the correctness of the program as well as the correctness of the boundary
value problems for the hydrodynamic equations we considered above.
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