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Fractional discrete-continuous model
of heat transfer process

Krzysztof OPRZEDKIEWICZ and Klaudia DZIEDZIC

The paper proposes a new, state space, finite dimensional, fractional order model of a
heat transfer in one dimensional body. The time derivative is described by Caputo operator. The
second order central difference describes the derivative along the length. The analytical formulae
of the model responses are proved. The stability, convergence, and positivity of the model are
also discussed. Theoretical results are verified by experiments.
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1. Introduction

Fractional Order (FO) models for different physical systems and phenomena
have been presented by various Authors. For example FO chaotic systems are
presented in [3], the FO model of a diffusion process is given for example in [7]
and [34]. A number of interesting examples can be also found in [4, 6] and [30].
Positive fractional systems are presented for example in [8, 10].

Heat processes can be also described using fractional order approach. Exam-
ples are given among others in [1,5, 11, 12]. New fractional operators: Caputo-
Fabrizio or Atangana-Baleanu are here employed too. For example [33] presents
the use of Caputo-Fabrizio operator in modeling of heat transfer, an applica-
tion of operators with the non singular kernel to modeling of thermal processes
was deeply analysed in paper [2]. The fractional model of one dimensional heat
transfer process using Caputo-Fabrizio operator is presented in [19,27]. The same
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process described with the use of Atangana-Baleanu operator is presented in [20].
The fully discrete, fractional order model using Griinwald-Letnikov operator to
express both derivatives along time and length is proposed in the paper [22].

In this paper we propose and analyse a new, finite dimensional, state-space
model of the one dimensional, experimental heat plant. The proposed model is
analogical to the models of the RC ladder network discussed e.g. in [13, 14].

The paper is organized as follows. Preliminaries recall elementary ideas from
fractional calculus as well as the heat transfer equation with fractional derivative
along time and second order derivative along the length. Next the proposed
fractional, discrete-continuous model is presented. The analytical formulae of the
step and impulse responses are proved. The stability, positivity, and convergence
are also discussed. Finally the proposed results are experimentally verified using
experimental data.

2. Preliminaries

A presentation of elementary ideas is started with a definition of a non integer-
order, integro-differential operator. It was given for example by [4,9,10,30]:

Definition 1 (The elementary non integer order operator) The non integer-order
integro-differential operator is defined as follows:

4 £(1)
TR a >0,
b = ()’
D fy =170 ¢ 0

t
ff(T)(dT)“, a <0,

where a and t denote time limits for operator calculation, a € R denotes the non
integer order of the operation.

Next an idea of Gamma Euler function will be remembered (see for example [10]):

Definition 2 (The Gamma function)

[(x) = f *letds. )
0

An idea of Mittag-Leffler function needs to be given next. It is a non-integer
order generalization of exponential function e and it plays crucial role in the
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solution of fractional order (FO) state equation. The one parameter Mittag-Leffler
function is defined as underneath:

Definition 3 (The one parameter Mittag-Leffler function)
k

= X
Ey(x) = ;m- 3)

and the two parameter Mittag-Lefller function is defined as:
Definition 4 (The two parameters Mittag-Leffler function)

b k
X
Eos = L Tt B “

For 8 = 1 the two parameter function (4) turns to one parameter function (3).

The integro-differential operator can be described by different definitions,
given by Griinwald and Letnikov (GL definition), Riemann and Liouville (RL
definition) and Caputo (C definition). In this paper the C definition is applied (see
for example [4,9, 10, 30]):

Definition 5 (The Caputo definition of the FO operator)

o f FOD (1)
§D1 10 =t | e 5)
0

where M — 1 < a < M denotes the non integer order of operation and I'(..) is
the Gamma function (2).

For the Caputo operator the Laplace transform can be defined (e.g. [10]):
Definition 6 (The Laplace transform for Caputo operator)
LEDEf®) =5"F(s), a<0,
M-1
LEDf@) = 5"F(s) = . 5" oDf £(0), (©6)
k=0
a>0 M-l<a<MEeZ.

Consequently, the inverse Laplace transform for non integer order function is
expressed as follows ( [10]):

M-1 k-1
—Ir . _ a 4 k) ot
L7 F(s)]—thf(t)+kZ:(:)r(k_a+1)f 0", -

M-1<a<M, MEeZ.
In (7) I'(..) is the Gamma function (2).
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A fractional linear state equation takes the following form:
oDy x(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

where a € (0, 1) is the fractional order of the state equation, x(¢) € R, u(t) € RE,
y(t) € R? are the state, control and output vectors respectively, A, B, C are the
state, control, and output matrices, respectively, [0;¢] is the considered time
interval.

Finally, the fundamental stability condition of the time-continuous, FO system
described by the state equation needs to be recalled. It is formulated by the
Matignon theorem (see for example [3], p. 22, Theorem 1.3).

(8)

Theorem 1 (The stability of FO system described by state equation) The FO
system described by the state equation (8) is stable if the following condition is
satisfied:

|Arg(eig(A))] > ag, )

where 0 < a < 2 is the fractional order of the system, eig(A) are the eigenvalues
of the state matrix A.

3. The experimental system and its non integer order, state space model
using Caputo operator

The simplified scheme of the considered heat plant is shown in Fig. 1. It is
a thin copper rod heated by an electric heater located at one end of the rod. The
temperature is measured using miniature RTD sensors Pt-100.

| utt Fye
Sensor

0“W—/ X1 ———'X> 1
XU XS

Figure 1: The simplified scheme of the experimental system

To simplify the further considerations assume that the length of the rod equals
to 1.0. Consequently the heater is 0.0 < x,, < 1.0 long, sensors are x; long and
they are attached in points: 0.29, 0.50 and 0.73 of rod length. More details about
the construction of the whole system are given in the section “Experimental
Results”.
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The basic mathematical model describing the heat transfer in the rod is the
partial differential equation of the parabolic type. Due to fact that the both frontal
surfaces of rod are much smaller than its side surface, we assume the homogeneous
Neumann boundary conditions at the both ends. The heat exchange along the
length needs to be considered. The control and observation are distributed because
the size of heater and sensors should be included in model. Such a model with
integer orders of both differentiations has been considered in papers [16—18]. The
non integer order model with respect to time, employing the Caputo operator was
given in [24], its properties were analyzed also in [28]. It takes the following form:

2
DO = 4, 250 - RO 1) + b,
00(0,1) §
dx = O, t> 05
00(1,1)
R =0, t>0, (10)

Q(x,0)=0Qo, O<x<l,

1
¥(t) = ko f 0(x.0e(x)dx.
0

In (10) « is the non integer order of the system, a,, > 0, R, > 0 denote coeflicients
of heat conduction and heat exchange, k is a steady-state gain of the model, Q¢
is the initial spatial temperature distribution in the rod, b(x) and c(x) are heater
and sensor functions. They take the following, simple form:

b( ) _ 1’ X € [0’ xu]’ (11)
Y700 x 2 [0.x;
L xelxpxl

e = {0, x ¢ [x1, x2]. (12

4. The proposed discrete-continuous FO model of the plant

1
Divide the rod into N short sections Ax = — long. Consequently, the first

and second derivative along length in Eq. (10) can be approximated by 1’st order
forward difference and 2’nd order central difference, analogically, as it was done

in [15,31]:
00(x,1)  O(x+Ax,1) — Q(x,1)
ox Ax

+ 0(Ax), (13)
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9%Q(x, 1) _O(x+Ax,1) —20(x,1) + Q(x — Ax, 1)
x> Ax?
where o(..) is the spatial truncation error, depending on the mesh spacing de-
scribed by N (see [31], Eq. (14)). Next, introduce the following notation:

+o(Ax?), (14

0.(t) = Q(nAx,t), n=0,1,...,N. (15)

Using the above convention the functions of heater and sensor (11) and (12) are
expressed as:

1, nAx € [0, x,],

b, = n=01,...,N; (16)
0’ nAx g [09 xu],

1’ E b 9
cn:{ x € v, xl n=0.1....N. (17)

0, nAx ¢ [x1,x2],

Using the approximations (13), (14) with notation (15) with neglecting o(Ax),
o(Ax?), and using (16), (17) to heat equations (10) we obtain:

Qo(1) = 01(2),

On+1(1) = 20,(1) + Qp-1(2)
Ax?
n=1...,N—-1,

gDzaQn(t) =day

= R0, (1) + bpu(t),

(18)

On-1(t) = On(D),
0,0=0, n=0,1...,N,

N
¥(6) = koAx D On(t)cy.
n=0

Equation (18) can be expressed as the following, fractional order, finite dimen-
sional state equation:

{ngQ(t) = AQ(1) + Bu(1), (19)

y(1) = CQOn(),

where Q(t) = [Q1(?) ... 0,(1)]" € RV is the state vector, u(¢) € R is the control,
y(t) € R is the output. Next the state, control and output matrices A, B, and C
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are defined as follows:

-1-R 1 e 0
a=a| Lo TR o 0 @
0 1 -1-R |\ N
where:
R = RC,A—XZ,
awaw 21)
d= E;
B = [bo, b1, ...,by]". (22)
In (22) b, is defined by (16).
C =|cp,cC1,...,cN]. (23)
In (23) ¢, is defined by (17).
4.1. The Jordan form of the model
The eigenvalues of the state matrix A are as follows ( [13]):
An=d[-2(1 —=cos(¢y) —R], n=1,...,N (24)
or equivalently:
A, =2a,N? (cos(¢n) —1) - R,, n=1,...,N, (25)
where: -
¢n:m, n=1,...,N. (26)

The matrix P transforming the system to the Jordan canonical form takes the
following form (see [13], Egs. (6)—(11)):

sing; sin2¢; ... sinN¢
_ 2 singp sin2¢; ... sinN¢»

VN1 @7

singy sin2¢y ... sSinNén [,y

It can be checked that P> = I <= P~! = P. Then the Jordan canonical form of
the state equation (19) is as follows:

{SD?Q*(t) = A*Q*(t) + B*u(t),

(28)
y(1) = C*Q, (1),
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where:
A" =PAP=d 2 diag{1 An}
= = ia ey ,
N +1 141 N
2 T
B*=PB = by,....by| .,
C :CP: m[CI’CZ’C?ﬁ] )

* * *
Cj = [cjl,...,ch].

With respect to (16), (17) and (29) elements of matrices B* and C* are as follows:

Np

by= Y sinmg, n=1...N. (30)
m=1
NC2

c;fm: Z sinm¢,, m=1,...,N. (31)
n=Nci

Using results presented in [32], Eq. (5) elements (30) and (31) can be presented
without sum:

Npoy sin (Np + D)y

sin
b = ’ 32
' sin Pn (32)
2
sin Neafm sin (oo ; Don_ in NC12¢m sin (Nex _2 Dém
Cim = 2 5 R
sin -

The indices Njp, N.1 and N, describe elements of B and C matrices different
from zero. They are determined by the construction of the plant:

Np = Int(Nx,,),
Nq1 = Int(Nxp), (34)
Ny = Int(Nxj).

In (34) Int(..) denotes the nearest integer value.
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4.2. The step and impulse responses

Assume the homogenous initial condition Q,(0) = 0,n = 1,..., N and the
control being the Heaviside function: u(¢) = 1(¢). Then the step response is as
follows:

1
y(t) = L7H=C*(s"T - A)7'B"). (35)
s
Using results given in [24] we obtain:

y(t) =C*Q*(1)B, (36)

where B* and C* are expressed by (29),
Q% (1) = diag{Qy, ..., O} and O, (?) is as follows:

E,(,1) — 1
An

In (37) E,(..) denotes the one parameter Mittag-Lefller function (3).

The equation (36) can be applied to modeling of the considered heat system.
This will be illustrated by the example.

The impulse response of the considered model can be computed as the fol-
lowing inverse Laplace transform:

Q, () = , n=1.,N. (37)

g(t) = L7HC*(s%T - A" B*). (38)
The equation (38) takes the following form:
g(1) =C*G*(1)B", (39)

where: G*(¢) = diag{Gj(?), ..., Gy (t)}. The n-th component G, (¢) can be cal-
culated using formula of the impulse response for the elementary FO transfer
function given in [3], p. 10, Eq. (1.31):

Gi(t) = t" "Eqo(A,6™%), n=1,.,N. (40)
In (40) E, (..) is the two-parameter Mittag-Lefller function (4).

4.3. The stability

The stability of the proposed FO model will be discussed using Matignon
Theorem (9). The spectrum of the model is expressed by (24), (25). The eigenval-
ues are purely real, single and separated. For a,, > 0 and R, > 0 each eigenvalue
lies between —R,, and —4a,, N> — R,. This denotes that:

|Arg(eig(A))|=n VYn=0,...,N. 41)

This means that the proposed model is asymptotically stable for each N > 0 and
each fractional order 0.0 < a < 2.0.
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4.4. The convergence

The Rate of Convergence (ROC) in the considered case is defined as the rate of
the steady-state response of the system for two consecutive, increasing dimensions
of the state equation N. Denote the steady state response of the model by y(N).
It is equal:

yss(N) = =Cy(A}) ™' By . (42)
In (42) lower index y denotes the size of model, A, B and C describe the system
with respect to (29). Consequently the exactly defined ROC,, is as follows:

Yss(N + 1)
Vss(N) .

The ROC,,(N) is a discrete function of model order N. For N — oo itis expected
to go to 0.0. The ROC,,(N) as a function of N is irregular (see Fig. 2), however
its exponential envelope is visible. This allows to deduce that it can be estimated
using discrete exponential function.

ROC,(N) = ‘1 - (43)

Output 1
2 T T T T p T T T T
1r + 1
* + + +
0 S O (O S s SO SR RPN c =
10 20 30 40 50 60 70 80 90 100
] l Output 2
+
0.5 + + 4
+ + * + +
+ F + + 4+
0 I I 1 + I + 1 + I
10 20 30 40 50 60 70 80 90 100
] Output 3
0.5} + 1
+ + t o4 )
+ + +
R —— . T ! t o+ + o+ +

10 20 30 40 50 60 70 80 90 100

Figure 2: The exact values of ROC,(N) for all outputs, N = 10, ...,100

The exact analytical formula expressing (43) with the use of (25) and (29) is
too complicated to compute the order N assuring the predefined value of ROC.
That’s why the exponential estimation of ROC is proposed and discussed below.

The trend of ROC,,(N) shown in Fig. 2 can be esimated by the discrete, expo-
nentially damped sine function or the exponential function (see for example [29],
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p- 2, Eq. (1.2) and p. 7, Eq. (1.8) respectively). The estimation using exponential
function is as follows:

ROC,5(N) = ke N =Nmin), (44)

In (44) k and a are constants applied to fit the estimation to exact data ROC,,(N),
Nnin is the minimum value of the considered N. This approximation can be used
to estimate the order N, assuring the predefined value p of ROC. It is given by
the proposition given underneath.

Proposition 1 (The size of model N, assuring the predefined value of ROC)

Consider the model of one dimensional heat transfer (18)—(23). Assume that
the required, predefined value is: ROC,5 = p, 0 < p < 1. The dimension N, of
the model, assuring keeping the predefined value p is equal:

In (1—)) + aAxNmin
N, = Int

alAx 45)

In (45) Int(..) denotes the nearest integer value, Npin is the minimum value of
order N considered in calculations.

Proof. The fixed value p is expressed as follows:
p= ke_“Ax(N_Nmi“). (46)

By logarithmized both sides of (46) we obtain:
In (%) = aAx (N = Nyin) . 47)

The nearest integer from solution of (47) relative to N gives directly (45) and the
proof is completed. a

The above condition will be verified using experimental results in the next
section.

4.5. The positivity

Remember that the necessary and sufficient condition of the internal positivity
(see for example [10], p. 18) is that the state matrix A is required to be a Metzler
matrix and matrices B, C must contain only nonnegative entries.

Next recall the considered base model before transformation to the Jordan
form, described by the equation (8) with matrices A, B and C described by
(20)-(23) and their elements described by (11) and (12) respectively. It can be
noted that:

¢ the state matrix A is the Metzler matrix,
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* all entries of B and C matrices, defined by (11) and (12) are equal O or 1.
This means that they are nonnegative.

This means that the model before transformation to Jordan form is internally
positive and consequently, externally positive.

The situation turns to be a little bit more complicated for Jordan canonical
form due to the change of state space model. Matrix A* is still being Metzler
matrix, but matrices B* and C* (29) do not have only non negative entries. This
implies that the internal positivity is lost. However, the external positivity is still
being kept due to the fact that the impulse responses of the systems before and
after transformation to the Jordan form are the same.

This can be also proved using external positivity condition given in the paper
[21]. The system having diagonal state operator is externally postive iff:

C*B* > 0. (48)
With respect to (29) the condition (48) takes the following form:
C*B* =CPP'B=CB.

The B and C matrices have only nonnegative entries (see (16), (17), (22), (23)).
Additionally if N, < N, then CB = 0. This implies that the condition (48) is
met for each plant parameters and fractional order a.

The above considerations will be illustrated by the example.

5. Experimental results

The laboratory plant employed to experiments is shown in Fig. 3. The rod is
260 [mm] long. The control is given as the standard current 0—20 [mA] by the
analog output of the PLC. This current is amplified to the range 0—1.5 [A] and
given to the heater. The temperature is measured using RTD sensors Pt-100. In
the considered case the size and location of sensors are as follows:

x=029: x; =026, x,=0.32,
x=050: x; =047, xp,=0.53,
x=073: x1=0.70, xp,=0.76.

The temperature is directly read by analog inputs of the PLC in Celsius
degrees. Data acquisition is done by PLC cooperating with SCADA. The whole
system is connected via PROFINET. The step response of the plant as a function
of time and length is illustrated by Fig. 4. It was tested between 0 and 7y = 300[s]
with sample time 4 = 1 [s]. This relatively long sample time is sufficient.
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SCADA
—
PROFINET

PLC configuration software

u(t) = 0- 20 [mA]

0-15A
T | [ | | | [ ]
heater Pt100 { Pt100 | { Pt100 |
Axy Ax & Ax
Sensor 1 Sensor 2 Sensor 3

Figure 3: The construction of the experimental system

140

120

_
o
(=]

(o2}
o

Temperature °C]
[e2]
o

200

. 0 50
time [s] length [mm]

Figure 4: The step response of the plant as a function of time and length
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The quality of the model we deal with was estimated using typical Mean
Square Error (MSE) cost function:

1 & & + 02
MSE = 3KS;k=1 (v, k) = yF )" (49)

K

A

In (49) K, denotes the number of collected samples for one sensor, y:j (k) and
y;.“(k) are step responses of plant and model in k-th time step.

The parameters of the model: a,,, R, and @ were estimated via minimization
of the cost function (49) using MATLAB function fminsearch. Results are given
in Table 1 and illustrated by Fig. 5.

Table 1: Parameters of the model

N a ay, R, MSE

22 0.9212 0.0003 0.0362 0.0369
130 T | T . T

120 1

110

100

90

y(), vy, [°C]

70r .

50 F §

40 [

30 1 1 1 1 1
0 50 100 150 200 250 300

time [s]

Figure 5: Comparison of the proposed model to experiment for N = 22 (red line-
experiment, black line-model)
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Next the convergence of the proposed model was examined using condition
(45). The parameters of the model are given in 1, the parameters of approximation
(44) assuring the fitting the estimate to real dependence are following: k = 1.2,
a = 0.005. Assume that the expected value of ROC is equal p = 0.2. Using
condition (45) we obtain N, = 82. This result is illustrated by Fig. 6.

Output 1
15 . . P

1+

051

0 20 40 60 80 100 120

0 20 40 60 80 100 120

Figure 6: The exact ROC (43) (crosses), its estimate (44) (solid line) and threshold value
of p (the dotted line) for all outputs, N = 10,...,120

Finally, the positivity of the model was tested. With respect to (48) we calculate
CB. Using (22), (23) and model parameters from Table 1 we obtain:

BC = [0;0;0]".

This result is compliant to (48). It confirms the external positivity of the system.
As an additional illustration, the impulse response of the system is shown in
Fig. 7.
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g(t), [°C]

_0-5 1 1 1 1 1
0 50 100 150 200 250 300

time [s]

Figure 7: The impulse response (38) of the system for all sensors. (sensor 1: blue, sensor
2: orange, sensor 3: yellow)

6. Final conclusions

The first final conclusion from the paper is that the proposed discrete-
continuous model well describes the heat transfer in one dimensional Plant.
The proposed model is asymptotically stable for each discretization step + and
each fractional order 0.0 < a < 2.0.

Next, the model is externally positive and its external positivity does not
depend on its size and fractional order.

The convergence of the model can be estimated using a simple exponential
estimator, proposed by authors. The use of this estimator allows to analytically
compute the model size N assuring its predefined rate of convergence.

The comparison of the presented model to infinite dimensional models pre-
viously proposed in papers: [24,28] is in the press.

It is important to note that the proposed one dimensional model can be
emploeyd to analyse heat transfer in 3D homogenous bodies, e.g. in modeling of
thermal insulation of a wall.

The future investigation of the presented problems will cover the comparing of
the proposed model to models with diagonal state matrix, using different fractional

N
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operators and presented in papers [20,23-27]. The model with triangular state
matrix proposed in the paper [22] needs also to be compared to others. The
models will be compared in the sense of accuracy, convergence and numerical
complexity.

An another interesting issue recently analyzed by authors is the generalization
of the proposed model to 2D case, to modeling dynamics of temperature fields
measured with the use of thermal camera.
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