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Nonlinear double-beam system dynamics
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Abstract: Double-beam model is considered in many investigations both theoretical and typically engineering 

ones. One can find different studies concerning analysis of such structures behaviour, especially in the cases where 

the system is subjected to dynamic excitations. This kind of model is successfully considered as a reliable 

representation of railway track. Inclusion of nonlinear physical and geometrical properties of rail track components 

has been justified by various computational studies and theoretical analyses. In order to properly describe 

behaviour of real structures their nonlinear properties cannot be omitted. Therefore a necessity to search 

appropriate analytical nonlinear models is recognized and highlighted in published literature. This paper presents

essential extension of previously carried out double-beam system analysis. Two nonlinear factors are taken into 

account and parametrical analysis of the semi-analytical solution is undertaken with special emphasis on different 

range of parameters describing nonlinear stiffness of foundation and layer between beams. This study is extended 

by preliminary discussion regarding the dynamic effects produced by a series of loads moving along the upper 

beam. A new solution for the case of several forces acting on the upper beam with different frequencies of their 

variations in time is presented and briefly discussed.
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1. Introduction

The double-beam model is used in modelling of various structures. One of them is a rail track which 

can be represented as a two-layer system [1-3]. In this system, the first layer represents rails and the 

second one describes sleepers, both mathematically modelled by coupled and modified Euler-

Bernoulli beam equations. This infinitely long two-layer model has been already used in the analysis 

of rail track dynamics in the case of nonlinear foundation. Results for vertical vibrations generated 

by moving train, obtained by using the Fourier transform combined with Adomian’s decomposition 

[4-6] and analytical wavelet based approximation [7-9], are validated by comparison with 

experimental measurements done on real railway track [2, 10].

The method of solution was also validated for various systems, including a one-layer model of rail 

track, described by the Euler-Bernoulli beam representing rails resting on viscoelastic foundation 

with nonlinear stiffness [10]. Due to hybrid character of this heuristic method and overlapping 

analytical approximations one should carefully consider conditions for correctness and convergence

of solution depending on particular application [9, 11, 12]. These issues were also discussed in past 

papers. On the other hand, classical approaches are insufficient to obtain nonlinear solution exact 

enough. The system can be solved by using semi-numerical tools, e.g. FEM, but these are burden 

with uncontrolled errors and, in addition, are recognized as computationally and time consuming 

methods, mainly due to a need of calculations repetition for each change of the system physical 

parameters.

The mentioned difficulties lead to a necessity of seeking more reliable models and solution methods, 

especially in the area of analytical approaches, with possibility of control over solution correctness 

and applicability of built systems. Therefore a detailed study of the double-beam system possessing 

two nonlinear factors must be undertaken in order to recognize its all important features before 

application to realistic engineering structures analysis [12-14]. The infinitely long double-beam 

model discussed in this paper was previously analytically solved in linear case [15]. The linear system 

was next extended by assumption describing viscoelastic foundation as nonlinear one [13]. After that, 

nonlinear factor was included in the layer between beams, with the system resting on linear 

viscoelastic foundation, which corresponds to properties of fastening systems in rail track [14]. The

applied nonlinearity was represented by cubic function [16, 17]. The Adomian’s decomposition 

combined with wavelet based approximation allowed obtaining reliable solution with controlled 

accuracy which could be directly used in the analysis of rail track behaviour. In recently published 

paper, the double-beam system with two nonlinearities included both in foundation and in viscoelastic 
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layer connecting beams was successfully solved [12]. Modified convergence conditions for 

approximate wavelet based solution were also proposed to control an accuracy of results. However, 

a detailed parametrical analysis was left as an open problem.

In this paper, the formulated and solved previously nonlinear infinitely long double-beam system is 

studied in details with regard to parameters describing nonlinear stiffness of foundation and layer 

between beams. This study can be recognized as a first step towards the model applicability analysis 

and it is an essential extension of already published results. Preliminary discussion concerning the 

dynamic response of the system to a series of loads moving along upper beam leads to recognition of 

possibilities to represent real rail track behaviour, where track bed and fastening systems possess 

nonlinear stiffness. The main novelty of present paper is a solution for the case with several forces 

moving along the upper beam and distributed on some interval, among which some can vary in time 

with different frequency. Reliable solution in this case makes the model ready to apply directly in 

railway engineering, where the whole train with loads coming from the vehicle axles must be taken 

into account. This fact, along with a source of nonlinearities arising from laboratory investigations 

(stiffness of rail track foundation and fastening systems) makes the developed model and its solution 

a good tool for the track dynamics analysis.

One should underline that vertical vibrations are the main goal chosen during initial studies 

concerning railway track dynamic behaviour. Other characteristics are out of scope of the 

investigation presented in this paper and need different way of modelling. However, the vertical 

vibrations of rail track are the main factor deciding about its stability and safety. The analysed models 

give also possibility to calculate, besides the beams dynamic deflection, vibration velocity and 

acceleration which leads to direct comparison with experimental measurements.

2. Model formulation

The theoretical model analysed in this paper, called a double-beam system, is composed of two 

infinitely long beams connected by nonlinear viscoelastic layer [12-14]. This system lays on 

foundation which is also nonlinear and viscoelastic (Fig. 1). A set of distributed and harmonically 

changing in time forces is moving along upper beam generating vibrations that might cause instability 

of the system.
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Fig. 1. Nonlinear double-beam model.

Linear case of this structure was already studied and its solution can be obtained quite easily by using 

classical analytical methods. Inclusion of two nonlinear factors makes it however relatively complex 

and several approximations must be applied in order to solve partial differential equations. For this 

purpose, an analytical wavelet approximation using coiflet filters (Eqs. 2.1-2.2) combined with 

Adomian’s decomposition (Eqs. 2.3-2.5) can be used [8, 9, 13]. The following formula defines 

approximated inverse Fourier transform of the transformed function in the physical domain [9]:

(2.1)

(2.2)

where and N is a degree of accuracy for applied wavelet filter Adomian’s 

decomposition allows to avoid difficulties related to nonlinearities. It assumes that solution of the 

problem can be found as an infinite series [18]:

(2.3)

where the first term is a solution of linear problem and others can be represented by so called Adomian 

polynomials

(2.4)

 

 

 

 

 

Vt 

Q(x,t) 

nonlinear viscoelastic foundation 

nonlinear viscoelastic layer between beams 

upper infinite beam (u) 

lower infinite beam (w) 
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(2.5) , ( .).

The consecutive terms of the series (2.3) can be controlled by the “error index” allowing a proper 

choice of the approximation with assumed level of accuracy [12-14, 19]. However, the stability of 

solution with regard to various systems of changing parameters and coefficients appearing in wavelet 

formulas remains the only reliable criterion for a proper solution (Eqs. 2.1-2.2).

The double-beam model considered in this paper can be mathematically formulated as a system of 

coupled partial differential equations describing two Euler-Bernoulli beams as follows:

(2.6)

(2.7) .

The following standard notations are used:

[m] and [m] – vertical vibrations of upper and lower beam, respectively;

[Nm2], [kg/m] – bending stiffness and unit mass of upper beam;

[Nm2], [kg/m] – bending stiffness and unit mass of lower beam;

[N/m4], [N/m2], [Ns/m2] – nonlinear part of stiffness, linear stiffness and viscous 

damping of the layer connecting beams;

[N/m4], [N/m2], [Ns/m2] – nonlinear part of stiffness, linear stiffness and viscous 

damping of the foundation;

[N/m] – a load moving uniformly along upper beam.

The load can be composed of various terms such as quasi-static stationary constant in time 

part generated e.g. by the weight of vehicle in real scenario, dynamic part arising from vertical 

irregularities of contact surface between upper beam and force (e.g. regular imperfections of rail head 

rolling surface) or regular changes of layers or beams stiffness. One can also consider random factors 

that cannot be described by regular functions [20, 21]. These are related to unpredictable geometrical 

and physical properties of the whole double-beam structure.

In this paper, the load is represented by a set of 3 identical forces moving at constant distance one 

from another. The forces are distributed on some interval and change harmonically in time with 

constant frequency:
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(2.8)

where x [m] is a space variable along the beam, t [s] is a time variable, H(.) is the Heaviside step 

function and 2r [m] is the span of each force. The set of forces moves with constant velocity V [m/s]

and frequency (the value of is fixed for the parametrical analysis, except of 

examples in section 5).

The solution of this system is not a new result. It was solved recently but only some computational 

examples were provided in order to present possibilities of the developed method in the dynamical 

analysis of structures based on double-beam systems [12]. In these examples, it was assumed that 

nonlinear terms for both viscoelastic layers were identical. In reality, these parameters vary depending 

on local conditions. This observation was confirmed by experimental measurements in the case of 

railway track (i.e. for track bed and fastening system). Therefore detailed parametrical analysis of the 

theoretical system and its extensive investigations towards the evaluation of applicability domain 

must be done. Due to advanced technique of solution, involving several approximations supported by 

heuristic ideas, a short discussion regarding difficulties appearing in computations should be 

presented. Some crucial remarks are given in the next section.

3. Remarks on hybrid semi-analytical solution

Computational complexity of the analysed system requires an application of sophisticated tools 

different from classical ones based on closed-form solutions obtained by integration over contour or 

Fourier series. Because the main goal of this study remains an estimation of the model applicability, 

one must have possibility of efficient parametrical analysis with convergence conditions securing 

mathematically proper solution. The method applied in this paper combines a few approximation 

approaches, including mentioned before Adomian’s decomposition applied to nonlinear terms of the 

layers’ stiffness. The whole procedure can be divided into the following stages:

1. Application of the moving coordinate system.

2. Decoupling of the differential equations system.

3. Decomposition of nonlinear terms into Adomian series.

4. Applying the Fourier transform in its classical form, besides the Adomian polynomials which 

cannot be calculated directly.

5. According to 4., using a coiflet based approximation to calculate Adomian series.
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6. Re-transformation of the obtained solution in the transform domain. Once again, the wavelet 

based semi-analytical method is applied, leading to results in the physical domain.

All these approximations make the procedure relatively complex and due to several overlapping 

approximations make possible an unacceptable error level highly probable. Convergence conditions 

for the solution of the investigated model were formulated and discussed in previously published 

papers [12-14]. However, the main criterion, i.e. the solution stabilization with regard to a set of 

parameters used in calculations, must be checked separately, being individual feature for particular 

cases.

The developed hybrid method [9] is already recognized by researchers as an efficient approach giving 

new solutions in subjects of nonlinear and stochastic modelling [22, 23].

Figure 2 shows subsequent approximations of beams vertical vibrations for 3 forces moving along 

the upper beam (Eqs. 2.6-2.7) with constant velocity and the distance between them 

equal to 10 m, with an assumption of identical nonlinear characteristics of both layers: between beams 

and supporting the structure.
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Fig. 2. Successive wavelet approximations (2.1-2.2) of double-beam system vertical vibrations generated by 

a set of 3 forces acting on upper beam.

The system of other parameters is taken close to previously considered in published papers [11-14]:
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, , , , ,

, , , , ,

, . As before, this is done on purpose, to better compare various 

cases of similar models with nonlinearities, i.e. the system with nonlinear foundation and linear 

stiffness of beams connection, the system with linear foundation stiffness and nonlinear layer 

connecting beams, and the entirely linear model. One can see that the desired order of wavelet 

approximation is relatively high. The sixth order of approximation is used in further calculations. One 

can observe specific nature of this approximation which can be treated as a shape estimation, instead 

of point convergence [9]. The point convergence is obtained at the final stage, when the shape of 

function is already stabilized according to the “stabilization condition”.

4. Parametrical analysis

In this section, a load composed of 3 forces varying in time with the same frequency of 10 Hz is 

assumed. Each of these forces is distributed on some interval with a length 2r = 0.02 m and with 

density defined by Eq. 2.8. The load moves with constant velocity along upper beam.

Figure 3 shows the vertical vibrations of double-beam in the case of stronger nonlinearity appearing 

in the layer between beams, compared to foundation nonlinear stiffness. One can observe strong 

influence of nonlinearity on behaviour of upper beam. The nonlinear amplitude is much higher than 

for linear solution. At the same time, nonlinear solution for a lower beam vibrations only slightly 

differs from linear one. Because nonlinear solution is difficult to interpret, very often its complex 

modulus is analysed leading to the “system sensitivity” investigation in terms of its “maximal 

response”. This kind of visualisation gives more precise conclusions regarding the effect of various 

parameters on the system reaction (or the model stability – solution convergence) but also about 

behaviour of real structures when applied in practical case. This feature can be confirmed by Figs. 

3b, 3d and 4b, 4d.

Because the distance between consecutive forces is relatively big and their speed is quite low, the 

obtained results are easy to analyse, e.g. the response for 3 separated forces is clearly visible, which 

might be different when shorter distance between forces or higher velocity of moving load are 

assumed.
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Fig. 3. Vertical vibrations of double-beam system in the case of , and

: linear – dashed, nonlinear – solid.

Fig. 4. Vertical vibrations of double-beam system in the case of , and

: linear – dashed, nonlinear – solid.
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Fig. 5. System sensitivity (linear – dashed, nonlinear – solid): (a) , ;

(b)  , ; (c)  , ; (d)  
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Much weaker influence of nonlinearities can be observed when the nonlinear factor in supporting 

layer is stronger than in the layer connecting two beams (Fig. 4). This observation is valid for a wide 

set of parameters and confirms the necessity of fastening systems analysis under assumptions of their 

nonlinear characteristics. These nonlinear properties of fastening systems, being in use in operational 

railway tracks, are confirmed experimentally, while their influence on the rail track dynamics was 

not studied so far, mainly due to a lack of reliable analytical models and solution possibilities. The 

model developed and analysed in present paper can be used in such an analysis with a modification 

of a lower layer, by assumption of a zero bending stiffness of a lower beam. This modification makes 

it a rigid body which can characterize sleepers in the case of conventional railway track [1-3].

Additional examples of the system sensitivity characterization (the maximal response) can be found 

in Fig. 5. They confirm conclusions made above. In addition, one should underline that in the case of 

higher values of parameter , compared to , stability of the lower beam can be lost only for a 

relatively strong nonlinearity of foundation stiffness. Therefore, the analysis of the upper beam and 

properties of the layer connecting beams seems to be crucial for stability and convergence study, and, 

consequently, for the model applicability when applied to railway engineering problems. In that case, 

characteristics of rails and fastening systems must be carefully checked.

5. Forces with varying frequencies

In reality, each axle of train vibrates with different frequency. Even more, these frequencies are 

varying during a passage of vehicle. Frequencies coming from some regular imperfections can be 

modelled, more or less, as periodical phenomena, e.g. corrugations or stiffness changes generated by 

sleepers spacing. Others are difficult to describe, e.g. those coming from vehicle structure.

The model described in this section is a first attempt to the analysis of real rail track behaviour. It is 

assumed that two boundary forces in the considered sequence forming a moving load vibrate with 

frequency different than the middle force. As a further work, an assumption of frequency changing 

in time is considered. This, however, as well as other details making the model possible to apply in 

railway engineering, needs additional studies yet.

Figure 6 shows the system response (vertical vibrations) to a load consisting of 3 forces: the first one 

and the third one are varying with frequency , while the middle one with frequency 

.
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Fig. 6. Vertical vibrations of double-beam system (linear – dashed, nonlinear – solid) in the case of 

, , and different distances between forces: (a) ; (b) .

Fig. 7. Double-beam system sensitivity (linear – dashed, nonlinear – solid) in the case of ,

, and different distances between forces: (a) ; (b) .
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Figure 7 presents the maximal response in the same situation. One can see that the decreasing distance 

between forces leads to accumulation of nonlinear effects (stronger response in terms of vibrations 

amplitude and the maximal response), in the case of stronger nonlinearity between beams. The 

considered form of the load reflects stronger effect on the system behaviour compared to uniform 

forces, so it can have essential influence on solutions and system stability. This situation appears 

when the layer between beams possesses stronger nonlinearity. When the nonlinearity in foundation 

becomes stronger in relation to the layer between beams, the nonlinear part of solution is relatively 

small and the influence of nonlinearities can be practically neglected. Figure 8 shows the second 

terms of Adomian series (Eq. 2.3), which are responsible for nonlinear solution of the system 2.6-2.7

(see also Fig. 5c). One can see their marginal values in the considered cases. They can be of course 

higher for other systems of parameters and this issue is left for further analysis.

Fig. 8. Second term of Adomian series (Eq. 2.3) ( , , ) for

different distances between forces: (a) ; (b) .

Figure 7 shows also a good example of better representation of the nonlinear system response by the

complex modulus. One can clearly see 3 separated forces acting on upper beam (comp. Fig. 6b and 

Fig. 7b). This effect vanishes for a lower beam and appears again along with increasing distance 

between forces (Fig. 7a).
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6. Conclusions

Theoretical continuous infinitely long double-beam system with two nonlinearities included in the 

layer connecting beams and foundation is considered. Semi-analytical solution based on Adomian’s 

decomposition and wavelet based approximation is used for parametrical study of the developed 

model. Vertical vibrations and complex modulus (the maximal response) are analysed for several 

cases and a wide range of parameters. Particularly, an influence of differences between values of 

parameters describing nonlinear stiffness of two layers (the foundation layer and the layer between 

beams) on the system response is investigated. Additional assumption about varying frequencies of 

several forces forming the moving load is introduced making the model closer to practical 

applications in railway engineering. The study done in this paper makes another step towards 

evaluation of the model applicability supported by stability and solution convergence analysis.
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Dynamika nieliniowego układu belki podwójnej

Słowa kluczowe: belka podwójna, dynamika nieliniowa, rozwiązanie semi-analityczne, metoda hybrydowa, inżynieria 

kolejowa

Streszczenie:
Model belki podwójnej jest często wykorzystywany w budowie układów wielowarstwowych opisujących zjawiska 

związane z ruchomymi obciążeniami. Nieliniowe i stochastyczne właściwości tych układów wpływają znacząco na ich 

dynamiczne zachowania, co zostało potwierdzone zarówno eksperymentalnie, jak i w wyniku badań teoretycznych. 

Dlatego wskazana jest szczegółowa analiza czułości rozważanych modeli na różne parametry, przed ich zastosowaniem 

do badania rzeczywistych konstrukcji.

W artykule rozważany jest problem odpowiedzi układu belki podwójnej na system sił poruszających się wzdłuż górnej 

belki ze stałą prędkością i różnymi częstotliwościami, przy założeniu różnych wartości parametrów opisujących 

nieliniową sztywność dwóch warstw: podłoża i warstwy łączącej belki. Otrzymane semi-analityczne rozwiązanie dla 

opisanego przypadku jest znaczącym rozszerzeniem poprzednio opublikowanych rezultatów. Założenie dotyczące 

występowania dwóch nieliniowości prowadzi do konieczności zastosowania szeregu analitycznych aproksymacji, 

włączając dekompozycję Adomiana i falkową estymację szukanego rozwiązania. Te nakładające się przybliżenia czynią 

całą procedurę bardziej skomplikowaną i dlatego kontrolowanie zbieżności rozwiązań jest trudniejsze niż w przypadku 

poprzednio rozważanych uproszczonych modeli.

Analiza parametryczna, wykonana dla szerokiego zakresu różnych parametrów, pokazuje, że nieliniowość warstwy 

pomiędzy belkami wpływa bardziej znacząco na zachowanie układu, w porównaniu do podobnego założenia dotyczącego

podłoża. Analiza przedstawiona w artykule może być traktowana jako kolejny etap określenia zakresu stosowalności 

modelu i zbadania możliwości jego zastosowania w inżynierii kolejowej, w odniesieniu do dwuwarstwowego modelu
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toru kolejowego, opartego na układzie belki podwójnej, w którym pierwsza warstwa opisuje szyny, a druga modeluje 

warstwę podkładów. Takie podejście do modelowania drogi szynowej zostało już wcześniej poddane walidacji razem z 

hybrydową semi-analityczną metodą rozwiązania opartą o aproksymacje wykorzystujące filtry falkowe typu „coiflet”.

Rozszerzenie tego modelu o wprowadzenie dodatkowej nieliniowości, stanowi ważny element badań w zakresie analizy

dynamiki dróg szynowych.
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