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The nonlinear interaction of magnetoacoustic waves in a plasma is analytically studied. A plasma
is an open system. It is affected by the straight constant equilibrium magnetic flux density forming
constant angle with the wave vector which varies from 0 till π. The nonlinear instantaneous equation
which describes excitation of secondary wave modes in the field of intense magnetoacoustic perturbations
is derived by use of projecting. There is a diversity of nonlinear interactions of waves in view of variety
of wave modes, which may be slow or fast and may propagate in different directions. The excitation
is analysed in the physically meaningful cases, that is: harmonic and impulsive exciter, oppositely or
accordingly directed dominant and secondary wave modes.
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1. Introduction

Magnetohydrodynamic (MHD) perturbations in-
dicate physical processes in plasma, geometry of its
flow and equilibrium state. They have a key role
in transport of energy and momentum at large dis-
tances. In the case of open flows, the radiative losses
and inflow of energy in plasma may be described by
a generic heating-cooling function (Vesecky et al.,
1979; Dahlburg, Mariska, 1988; Ibáńez, Parra-
vano, 1994). It is one of the factors of non-adiabaticity
of a flow which comes to a balance with other mech-
anisms such as mechanical damping, thermal con-
duction, and electrical resistivity. The heating-cooling
function may crucially affect the wave processes and
nonlinear phenomena in a plasma’s flow, in partic-
ular, formation of discontinuity in a wave form and
nonlinear excitation of the entropy mode by intense
waves (Chin et al., 2010; Perelomova, 2018a; 2018b;
2019a). Wave processes in a plasma are very similar
to processes in other open flows (Osipov, Uvarov,
1992; Molevich, 2001) but they are much more di-
verse. Wave perturbations of small magnitudes en-
hance in the course of propagation in acoustically ac-
tive flows if they are not suppressed by irreversible
processes such as mechanical viscosity and thermal

conduction or some kind of thermodynamic relaxation
(Field, 1965; Parker, 1953). For moderate mag-
nitudes of perturbations, the nonlinear distortion of
a wave form, nonlinear attenuation at the shock fronts,
and nonlinear transfer of momentum and energy be-
tween modes go into play. MHD perturbations stand
out among the rest of wave processes in open flows
due to their complexity in view of coexistence of slow,
fast sound modes, and the Alfvén modes. Wave pro-
cesses in a plasma depend strongly on the direction
and intensity of the magnetic field and demand much
more compound matematical description. The nonlin-
ear evolution of individual wave modes in a plasma
was paid attention to with regard to simple analyti-
cal and complex cases which involve numerical simula-
tions (Anderson, 1953; Ponomarev, 1961; Sharma
et al., 1987). Nakariakov et al. (2000) analysed the
linear speed, parameter of nonlinearity, and damp-
ing of planar MHD wave perturbations depending on
the equilibrium parameters of a plasma, the heating-
cooling function, the equilibrium magnetic flux den-
sity, and angle which it forms with the wave vector
(see also (Chin et al., 2010)). The authors have de-
rived the dynamic equation governing wave perturba-
tions in a weakly nonlinear open flow of a thermocon-
ducting plasma and made some important conclusions
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concerning propagation of waves, and, in particular,
autowaves formation. The conclusions concern the dy-
namics of individual magnetoacoustic waves excluding
its nonlinear interaction with other modes.

Perturbations of infinitely-small magnitude evolute
independently, but finite-magnitude perturbations do
interact. The reason for that, apart from nonlinear-
ity, is deviation from adiabaticity due to the heating-
cooling function or some kind of an irreversible ther-
modynamic process. These two factors lead to exci-
tation of variety of modes in the flow, to scatter-
ing of waves on other waves or on thermal inho-
mogeneities and vortex bulk streams which in turn
may represent secondary modes enhancing in the wave
field (Brodin et al., 2006; Zavershinsky, Mole-
vich, 2014; Lyubchyk, Voitenko, 2014; Perelo-
mova, 2016a; 2016b; Leble, Perelomova, 2018).
Mathematical description of modes’ interactions is
much more difficult than description of nonlinear evo-
lution of an individual mode. As usual one wave mode
is treated as dominant. The distortion of the domi-
nant wave occurs due to its nonlinear self-interaction.
Nonlinear transfer of momentum and energy between
modes, which constantly takes place, leads to the non-
linear enhancement of the secondary modes, weakening
of the dominant mode, and invalidity of its individual
dynamic equation starting from some moment of evo-
lution.

The nonlinear self-interaction and nonlinear exci-
tation of the secondary magnetoacoustic modes in the
field of some intense magnetoacoustic wave are the sub-
ject of this study. We make use of the initial points and
geometry of a flow following Nakariakov et al. (2000)
(see also (Chin et al., 2010)) and consider quadrati-
cally nonlinear terms which are of major importance in
the weakly nonlinear flows. They condition corrections
in the links between specific magnetoacoustic pertur-
bations in the dominant mode making it isentropic in
the leading order (they are responsible for the self-
interaction), and nonlinear terms which are in charge
of interaction of modes. The quadratically nonlinear
“forces” in equations describing interactions between
modes may be evaluated by the method of projecting.
The method was used by the author in the studies of
nonlinear interactions of different modes in a wide va-
riety of fluid flows (Leble, Perelomova, 2018). It is
fruitful in investigations of a plasma flow and has been
applied in evaluations of heating/cooling excited by
magnetoacoustic perturbations (Perelomova, 2016a;
2016b; 2018a; 2018b).

The key issue is derivation of the system of cou-
pling equations for the interacting modes. The project-
ing method allows to derive a system of instantaneous
coupling dynamic equations describing perturbations
in all specific modes with properly distributed nonlin-
ear terms. There are no restrictions on the compara-
tive magnitudes of perturbations in interacting modes,

and the nonlinear “forces” in general contain pertur-
bations belonging to all modes. The system may be
considerably simplified if one mode (the magnetoa-
coustic one in this study) is dominant. The excitation
of the secondary wave perturbations by the dominant
wave demands resolution of two problems: description
of nonlinear distortions of the dominant perturbations
and solution of dynamic equations for the secondary
perturbations. Acoustical activity of a plasma has the
crucial impact on propagation of the dominant wave
and corresponding nonlinear phenomena. It may take
place only due to some kind of the heating-cooling
function. We do not consider mechanical and thermal
losses in a plasma and its finite electrical conductivity.
These effects introduce additional attenuation which is
well studied and contributes both to distortion of the
dominant magnetoacoustic mode and coupling of in-
teracting modes making it stronger. In this study, we
derive and analyse the instantaneous dynamic equa-
tion for excitation of the secondary magnetoacoustic
mode by the (other) dominant magnetoacoustic mode
(they both may be fast or slow). The excited pertur-
bations contain parts which propagate with the speed
of the dominant mode and their own linear speed
(Perelomova, 2019b). The results are discussed in
some physically meaningful cases of wave perturba-
tions (periodic and impulsive) and the generic heating-
cooling function. The impact of plasma’s boundaries
is not considered. This study expands the previous in-
vestigations of the author concerning nonlinear inter-
action of modes in a plasma flow.

2. Modes in the linear MHD flow

We consider perturbations in an ideal open
plasma’s flow and remind the conservation system
which contains the continuity equation, the momentum
equation, the energy balance equation, and complet-
ing electrodynamic equations (Krall, Trivelpiece,
1973; Callen, 2003):

∂ρ

∂t
+∇ ⋅ (ρv) = 0,

ρ
Dv

Dt
= −∇p + µ0(∇ ×B) ×B,

Dp

Dt
− γ p

ρ

Dρ

Dt
= (γ − 1)L(p, ρ), (1)

∂B

∂t
= ∇ × (v ×B),

∇ ⋅B = 0,

where p, ρ, v, B, are the pressure and density of
a plasma, its velocity, the magnetic flux density, and µ0

is the magnetic permeability of the free space. L(p, ρ)
designates some generic heating-cooling function which
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may lead to deviation of adiabaticity of wave pertur-
bations in a plasma (Nakariakov et al., 2000; Chin
et al., 2010). The third equation in the set (1) relates to
an ideal gas, where γ is the ratio of specific heats under
constant pressure and constant volume, γ = CP /CV .
The planar geometry of a flow is the same as in the
studies (Nakariakov et al., 2000; Chin et al., 2010).
The equilibrium magnetic density flux B0 forms a con-
stant angle θ (0 ≤ θ ≤ π) with the positive direction of
axis z, so that

B0,x = B0 sin(θ), B0,z = B0 cos(θ),

and B0,y = 0. Axis z points the direction of a pla-
nar wave propagation. All quantities are expanded in
the vicinity of the equilibrium state, and perturbations
are functions of z and t, so as f(z, t) = f0 + f ′(z, t).
The conclusion from the last equation is that B′

z = 0
and B0,z is constant. Hence the number of unknown
functions (and modes) reduces to seven. We consider
initially static plasma with zero equilibrium veloci-
ty v0 = 0 and constant unperturbed thermodynamic
parameters. The leading-order equations containing
quadratic nonlinear terms follow from Eqs (1):

∂ρ′

∂t
+ ρ0

∂vz
∂z

= −ρ′ ∂vz
∂z

− v ∂ρ
′

∂z
,

∂vx
∂t

− B0,z

ρ0µ0

∂Bx
∂z

= −vz
∂vx
∂z

− B0,z

ρ20µ0
ρ′
∂Bx
∂z

,

∂vy

∂t
− B0,z

ρ0µ0

∂By

∂z
= −vz

∂vy

∂z
− B0,z

ρ20µ0
ρ′
∂By

∂z
,

∂vz
∂t

+ 1

ρ0

∂p′

∂z
+ B0,x

ρ0µ0

∂Bx
∂z

= ρ′

ρ20

∂p′

∂z
+ B0,x

ρ20µ0
ρ′
∂Bx
∂z

− 1

ρ0

∂

∂z
(
B2
x +B2

y

2µ0
) − vz

∂vz
∂z

, (2)

∂p′

∂t
+ γp0

∂vz
∂x

− (γ − 1)(Lpp′ + Lρρ
′) =

(γ−1)(0.5Lppp′2+0.5Lρρρ
′2+Lpρp′ρ′)−γp′

∂vz
∂z

−vz
∂p′

∂z
,

∂Bx
∂t

+ ∂

∂z
(B0,xvz −B0,zvx) = −Bx

∂vz
∂z

− vz
∂Bx
∂z

,

∂By

∂t
− ∂

∂z
(B0,zvy) = −By

∂vz
∂z

− vz
∂By

∂z
,

where

Lp =
∂L

∂p
, Lρ =

∂L

∂ρ
, Lpp =

∂2L

∂p2
,

Lρρ =
∂2L

∂ρ2
, Lpρ =

∂2L

∂p∂ρ

are partial derivatives of the heating-cooling func-
tion L(p, ρ) evaluated at the equilibrium state (p0, ρ0)

(Perelomova, 2018a; 2018b). The system (2) is an
initial point for evaluations that follow which will be
undertaken with accuracy up to the first powers of the
first derivatives of L with respect to its variables. That
imposes smallness of the heating-cooling function im-
pact on the wave processes which remains weakly de-
viating from isentropic.

The preliminary conclusions may be deduced from
the linearised version (2) which describes a flow of
infinitely-small magnitudes. We consider any distur-
bance as a sum of planar waves proportional to
exp(iω(kz)t − ikzz), where kz is the wave number,
so that

f ′(z, t) =
∞

∫
−∞

f̃(kz) exp(iω(kz)t − ikzz)dkz.

The dispersion relations follow from the solvability of
the linearised version of Eqs (2) (we mean non-zero
solutions):

ωj = Cjkz + i
(γ − 1)(C2

j −C2
A)

2c20(c20 +C2
A − 2C2

j )
(c20Lp +Lρ),

ω5,6 = ±CA,zkz, ω7 =
i(γ − 1)Lρ

c20
,

(3)

where Cj is the magnetoacoustic speed (j = 1, ...,4),
one of the roots of the equation

C4
j −C2

j (c20 +C2
A) + c20C2

A,z = 0, (4)

where

CA = B0√
µ0ρ0

, c0 =
√

γp0
ρ0

designate the Alfvén speed and the acoustic speed in
unmagnetised gas in equilibrium, and

CA,z = CA cos θ.

The first four dispersion relations determine two slow
and two fast magnetoacoustic modes of different direc-
tion of propagation. The relations ω5, ω6 specify the
Alfvén waves of different direction of propagation and
ω7 specifies the non-wave entropy mode. They are out
of attention in this study but contribute to the pro-
jecting operators. We consider the small impact of the
heating-cooling function on a magnetoacoustic mode
during the wave period:

∣Cj ∣kz ≫ ∣ (γ − 1)
c20

(c20Lp +Lρ)∣ . (5)

The dispersion relations Eqs (3) and Eq. (4) have
been established by Nakariakov et al. (2000) (see
also (Chin et al., 2010)). The conditions of acoustic
(isentropic) instability are common in all non-adiabatic
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flows (not only in the presence of a magnetic field) and
sounds as (Field, 1965; Parker, 1953):

c20Lp +Lρ > 0. (6)

Every dispersion relation determines the links of per-
turbations in any individual mode. The magnetoa-
coustic branches are established by the linear links
(j = 1, ...,4) (Perelomova, 2018a):

ψlin,j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ρ′

vx

vy

vz

p′

Bx

By

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
j

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A∗

1

A∗

2

0

1

A∗

3

A∗

4

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

vz,j , (7)

where

A∗

1 = ρ0
Cj

+ ρ0(γ − 1)(C2 −C2
A)

2c20(C4
j − c20C2

A,z)
(c20Lp +Lρ)∫ dz,

A∗

2 = CA,z

CA,x
( c

2
0

C2
j

− 1)

−
(γ − 1)CA,z(C2

j − c20)
CA,xCj(C4

j − c20C2
A,z)

(c20Lp +Lρ)∫ dz,

A∗

3 = c20ρ0
Cj

−
(γ − 1)(3C2

j − 2c20 −C2
A)

2(C4
j − c20C2

A,z)

⋅(c20Lp +Lρ)∫ dz,

A∗

4 =
(C2

j − c20)B0

CjCACA,x

−
(γ − 1)(C2

j − c20)(C2
j − 2c20 −C2

A)B0

2c20CACA,x(C4
j − c20C2

A,z)

⋅(c20Lp +Lρ)∫ dz.

The integrals in the links reflect the impact of non-
adiabaticity of flow due to L. The projecting rows may
be established which distinguish an excess density in
the individual magnetoacoustic mode,

Pms,j ( ρ′ vx vy vz p′ Bx By )T = ρj ,

j = 1, ...,4.
(8)

They follow from the system of algebraic Eqs (8) in
view of that the total perturbations are sums of specific
ones:

vx =
7

∑
j=j

vx,j , vy =
7

∑
j=1

vy,j , vz =
7

∑
j=1

vz,j ,

Bx =
7

∑
j=1

Bx,j , By =
7

∑
j=1

By,j ,

p′ =
7

∑
j=1

pj , ρ′ =
7

∑
j=1

ρj

and links determined by ψj , (j = 1, ...,7). The first
four projectors take the form (Perelomova, 2018a;
2018b):

Pms,j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A∗∗

1

A∗∗

2

0

A∗∗

3

A∗∗

4

A∗∗

5

0,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T

, (9)

where

A∗∗

1 = −
(γ − 1)Cj(C2

j −C2
A)

2c20(C4
j − c20C2

A,z)
Lρ∫ dz,

A∗∗

2 = − CA,xCA,zCjρ0
2(C4

j − c20C2
A,z)

− (c20Lp +Lρ)

⋅
(γ−1)CA,xCA,z(2C6

j −3C4
jC

2
A,z+c20C4

A,z)ρ0
2(C4

j −c20C2
A,z)3

∫ dz,

A∗∗

3 =
Cj(C2

j −C2
A,z)ρ0

2(C4
j − c20C2

A,z)
+ (c20Lp +Lρ)

⋅
(γ−1)(C2

j −C2
A,z)(B∗

1)
2(C4−c20C2

A,z)3
∫ dz,

B∗

1 = C6
j +c20C2

A,zC
2
j −3C4

jC
2
A,z+c20C4

A,z,

A∗∗

4 =
C2
j −C2

A,z

2(C4
j − c20C2

A,z)

+Lρ
(γ − 1)(C2

j −C2
A,z)(B∗

2)
4Cj(C4

j − c20C2
A,z)3

∫ dz

+Lp
(γ − 1)(C2

j −C2
A,z)C3

j (B∗

3)
4(C4

j − c20C2
A,z)3

∫ dz,

B∗

2 = 3C6
j + c20C2

jC
2
A,z − 7C4

jC
2
A,z + 3c20C

4
A,z,

B∗

3 = 2c40 + 2C4
j − 5C2

jC
2
A +C4

A − 3c20(C2
j −C2

A),

A∗∗

5 =
C2
jCA,xC

2
Aρ0

2B0CA(C4
j − c20C2

A,z)
+ (c20Lp +Lρ)

⋅(γ − 1)CjCA,xCA(B∗

4)ρ0
4B0(C4

j − c20C2
A,z)3

∫ dz,

B∗

4 = 3C6
j + c20C2

jC
2
A,z − 5C4

jC
2
A,z + c20C4

A,z.
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Projectors into Alfvén specific velocity and pertur-
bation in density in the entropy mode, are

PA = (0 0
1

2
0 0 0 ∓ CA

2B0
) ,

Pent =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

−(γ − 1)CA,xρ0
CA,zc40

(c20Lp +Lρ)∫ dz

0

−(γ − 1)ρ0
c40

(c20Lp +Lρ)∫ dz

− 1

c20

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T

.

(10)

The projectors satisfy usual properties of projecting
operators. In particular,

4

∑
j=1

Pms,j + Pent = (1 0 0 0 0 0 0).

3. Nonlinear interaction of magnetoacoustic
modes

3.1. Nonlinear dynamics of an individual dominant
magnetoacoustic wave.

Excitation of multiple harmonics

We will consider one magnetoacoustic mode, say,
ordered by j = 1, fast or slow, as dominant. That means
that magnitudes of its perturbations are much bigger
than those of other modes, at least over some tempo-
ral and spatial domains. In order to properly take into
account nonlinear quadratic effects associated with the
dominant mode, it should be corrected by inclusion of
terms making it isentropic in the leading order, with-
out an impact of nonadiabaticity which is introduced
by the heating-cooling function. The corrected links
have been obtained by Perelomova (2018b):

ψ1 = ψlin,1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A∗∗∗

1

A∗∗∗

2

0

0

A∗∗∗

3

A∗∗∗

4

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

v2z,1, (11)

where

A∗∗∗

1 = (c20 +C2
1(γ − 4) −C2

A(γ − 3))ρ0
4C2

1(c20 +C2
A − 2C2

1)
,

A∗∗∗

2 = c
2
0(C2

1−c20)(c40−C2
1(2c20+(γ−1)C2

A)+γC4
1)

2C5
1(C2

1 −C2
A)(c20 +C2

A − 2C2
1)

CA,z

CA,x
,

A∗∗∗

3 = c
2
0(c40 − 3γC4

1 +C2
1(2c20(γ − 1) +C2

A(γ + 1))ρ0
4C4

1(c20 +C2
A − 2C2

1)
,

A∗∗∗

4 = B0(C2
1 − c20)(B∗

5)
4C2

1(C4
1 − c20C2

A,z)CAC3
A,x

,

B∗

5 = C6
1 −C2

1c
4
0 −C4

1(3C2
A,z + c20(γ − 3))

+ c20C2
A,z(C2

A,z(γ + 1) − c20).
The dynamic equation for excess density in dominant
magnetoacoustic wave may be obtained by applica-
tion of projector Pms,1 at the system (2). It may be
readily rearranged in the terms of longitudinal velocity
vz,1 making use of links between ρ1 and vz,1 given by
Eq. (7). All linear terms corresponding to other wave
and non-wave modes are reduced in the linear part of
the resulting equation, and only terms belonging to
the first mode are kept among the variety of quadratic
nonlinear terms. The resulting equation describes the
nonlinear self-interaction of the dominant first magne-
toacoustic mode:

∂vz,1

∂t
+C1

∂vz,1

∂z
+D1C1vz,1 + ε1vz,1

∂vz,1

∂z
= 0, (12)

with

D1 =
C1(C2

1 −C2
A)

2(C4 − c20C2
A,z)

(c20Lp +Lρ),

ε1 = −
C2

1(3c20 +C2
A(γ + 1) −C2

1(γ + 4))
2(C4 − c20C2

A,z)
.

In the absence of magnetic field and external inflow
of energy, Eq. (12) coincides with the well known
equation for velocity in the progressive planar Rie-
mann’s wave. This is the case D1 = 0, C1 = c0, ε1 =
γ+1
2

(Landau, Lifshitz, 1987; Rudenko, Soluyan,
1977). Equation (12) may be readily rearranged into
the leading-order pure nonlinear equation, if D1 ≠ 0:

∂V1
∂Z

− ε1
C2

1

V1
∂V1
∂τ

= 0, (13)

by means of new variables

V1 = vz,1 exp (D1z) , Z = 1 − e−D1z

D1
,

τ = t − z/C1.

Equation (13) may be solved by the method of charac-
teristics. Note that Z is always positive for non-ze-
ro D1. If D1 = 0, V1 = vz,1, Z = z. The exact solution to
Eq. (13), which is sinusoidal at z = 0 with the frequency
ω and amplitude v0, is well known (Landau, Lifshitz,
1987; Rudenko, Soluyan, 1977). The average over
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period kinetic energies of multiple harmonics nω (per
unit mass of a plasma) equal

En = exp(2D1z)(
2Jn(nK−1

1 (exp(D1z)−1))
nK−1

1 (exp(D1z)−1) )
2
v20
2
,

n = 1,2, ...,D1 ≠ 0,

En = (2Jn(nz/zsh,0)
nz/zsh,0

)
2
v20
2
, n = 1,2, ...,D1 = 0,

(14)

where K1 = D1C
2
1

ωε1V0
. This is valid before formation of

a discontinuity (Osipov, Uvarov, 1992; Rudenko,
Soluyan, 1977), that is, if

0 ≤ z < zsh = ln(1 +K1)D−1
1 , D1 ≠ 0,

0 ≤ z < zsh,0 =
C2

1

ωεV0
, D1 = 0.

Before formation of discontinuity, the kinetic energy
per unit mass varies with a distance from an exciter as

∞

∑
n=1

En = exp(2D1z)
v20
2

and remains constant if D1 = 0. A discontinuity always
forms in acoustically active flows with D1 > 0 at the
distance zsh (and zsh,0 if D1 = 0), and does not form
at all if K1 ≤ −1. The average kinetic energies per unit
mass of multiple harmonics after formation of discon-
tinuity, at z > πzsh/2 (this is the case K1 > −1 and
negligible curvature in the sloping parts of waveform),
equal

En = exp(2D1z)(
2

n(1 +K−1
1 (exp(D1z) − 1)))

2
v20
2
,

n = 1,2, ...,D1 ≠ 0, (15)

and, at z > πzsh,0/2,

En =
⎛
⎝

2

n(1 + z
zsh,0

)
⎞
⎠

2
v20
2
, n = 1,2, ...,D1 = 0.

At these distances, the total kinetic energy per unit
mass equals

∞

∑
n=1

En = exp(2D1z)
2π2

3(1 +K−1
1 (exp(D1z) − 1))2

v20
2
,

D1 ≠ 0, (16)

∞

∑
n=1

En = 2π2

3(1 + z
zsh,0

)2
v20
2
, D1 = 0.

The kinetic energy per unit mass gets smaller in the
course of propagation in the neutral case due to non-
linear attenuation at the shock front. The domain be-
tween zsh and πzsh/2 (zsh,0 and πzsh,0/2) is difficult

for analytical description. Figure 1 shows average ki-
netic energies per unit mass of three first harmonics as
functions of distance from an exciter before and after
formation of discontinuity in accordance to Eqs (14)
and (15) at different K1. K1 = 1 is the case of equilib-
rium between inflow of energy and nonlinear atten-
uation at the discontinuity after its formation. The
stationary saw-tooth wave forms with an amplitude
independent from the distance from a transducer.

Fig. 1. Average kinetic energies per unit mass of multi-
ple harmonics before and after formation of discontinuity.
Three first harmonics are ordered as 1, 2, 3. After formation

of discontinuity, curves for all harmonics cover.

3.2. Interaction of different magnetoacoustic modes

The dynamic equation which describes excitation
of excess density in magnetoacoustic mode ordered as
second, is the result of application of Pms,2 (Eqs (9))
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at the system (2) which eliminates all “foreign” terms
but retains the terms referring to ρ2 on the left:

∂ρ2
∂t

+C2
∂ρ2
∂z

−D2C2ρ2 = F1. (17)

Among nonlinear terms forming the magnetoacous-
tic force, only terms belonging to the dominant first
mode, are kept. The leading order term on the right of
Eq. (17), is

(C1 +C2)(C2
1 +C2

2 − c20 −C2
A)ε1

2C2
1(c20 +C2

A − 2C2
2)

vz,1
∂vz,1

∂z
.

If C1 = C2 (ε1 = ε2, vz,1 = vz,2), it equals

−ε2ρ0
C2

vz,2
∂vz,2

∂z

and reflects the self-interaction of the second mode
which has been discussed in Subsec. 3.1. For any
C2 ≠ C1, it equals zero. In this case, the quadratic non-
linear terms belonging to the first mode proportional
to the first or second derivatives of L with respect to
its arguments, form the magnetoacoustic force F1. The
impact of second order derivatives of L with respect to
its arguments is ignored. In general, the magnetoacous-
tic force takes the form

F1 = α1v
2
z,1 + α2

∂vz,1

∂z
∫ vz,1 dz, (18)

where α1, α2 depend on the equilibrium parameters
of a plasma and θ. The parts of coefficients α1, α2

proportional to Lρ and Lp are shown in Table 1 (C2 =
−C1) and Table 2 (C2 = c0CA,z

C1
) in the Appendix. The

solution to Eq. (17) satisfying zero initial conditions,
sounds as

ρ2(z, t) = exp(C2D2t)
t

∫
0

exp(−C2D2τ)F1

⋅ (z −C2(t − τ), τ)dτ. (19)

In the leading order, the magnetoacoustic force F1 is
a function of z −C1t, which yields

ρ2(z, t) = exp(C2D2t)
t

∫
0

exp(−C2D2τ)F1

⋅ (z −C2t + τ(C2 −C1))dτ. (20)

4. Excitation of the secondary wave mode
by some kinds of exciters

4.1. Periodic exciter

In particular, for the harmonic exciter

vz,1 = v0 sin(ω(t − z/C1), (21)

the leading-order solution to (17) takes the form

ρ2 = v20
(α1 − α2)

2
t

+ v20C1
(α1 + α2) sin(2ω(z −C1t)/C1)

4(C1 −C2)ω

−(α1 − α2) sin(2ω(z −C2t)/C1)
4(C1 −C2)ω

. (22)

At enough large times, the sign of ρ2 is evidently deter-
mined by the sign of α1−α2. Other perturbations speci-
fying the excited mode may be evaluated from Eqs (7),
for example, vz,2 ≈ −C2

ρ0
ρ2, p2 ≈ c20ρ2. The directivity

property is broken, that is, the excited perturbations
do not propagate with their own linear speed. This
always happens to the secondary induced perturba-
tions which are determined by the linear specific links
(Leble, Perelomova, 2018; Perelomova, 2019b).
The conclusion is that the excited perturbation con-
sists of three parts: the first one growing with time in
absolute value (this is due to constant compound of
v2z,1 for the harmonic signal), the second one propa-
gating with the speed C1, and the third one propagat-
ing with the speed C2. The enlargement in time un-
dergoes suppressing when the second mode (or other
modes which also enhance) is close to be dominant due
to nonlinear transfer of momentum and energy. The
modes may be redetermined accordingly to directivity
properties summarising parts propagating with equal
speeds (Perelomova, 2003).

Figure 2 shows α1 − α2 associating with the fast
mode with the positive linear speed C1 and the se-

a)

b)

Fig. 2. α1 −α2, case of dominant fast mode with the linear
speed C1 as functions of plasma-β and θ. C2 = −C1. Cases
of L(p) (a) and L(ρ) (b) and fast magnetoacoustic exciter.
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condary mode with C2 = −C1. Plasma-β is determi-
ned as

β = 2

γ

c20
C2
A

.

4.2. Impulsive exciter

The drafts of ρ2 excited by an impulsive signal

vz,1 = v0 exp(−(ω(t − z/C1))2) (23)

in different times are shown in the Fig. 3 (ω denotes the
characteristic inverse duration of an impulse). The per-
turbation has the fronts propagating with the speeds
C1 and C2. For impulsive signals, there is no part grow-
ing with time. It is a kind of a plateau with the constant
magnitude forms. The general conclusion is that the
reflected mono-polar wave develops. This agrees with
the conclusions about features of the reflected wave in
the Newtonian flows (Makarov, Ochmann, 1996).

a)

b)

c)

Fig. 3. (a) Drafts of ρ2 (exaggerated) excited by vz,1 =

v0 exp(−(ωt − kz)2) at three consecutive times ordered as
1, 2, 3. An exciting perturbation of density ρ1 is shown
by the dotted line. Below: dimensionless magnitude of the
plateau as a function of plasma-β and θ. Cases of L(p) (b)

and L(ρ) (c).

Figure 3 explains the general scheme of excitation
of the secondary mode and shows the dimensionless

magnitudes of a plateau for the case C2 = −C1, im-
pulsive exciter (23), fast dominant mode, and cases of
L(p) and L(ρ). The magnitude of a plateau equals

(α1 − α2)
√
π

2
√

2ω
v20 .

Hence, it is determined by the difference α1 − α2 and
reminds the plots in Fig. 2. We pay attention to the
middle range of angles θ.

5. Concluding remarks

The main result of this study is the nonlinear
instantaneous dynamic equation Eq. (17), which de-
scribes excitation of an excess density in the magnetoa-
coustic mode by other magnetoacoustic mode which is
dominant, that is, which perturbations are much larger
than that of other wave and non-wave modes. This is
the nonlinear phenomenon which takes place in the
flows with destroyed adiabaticity, for example, due to
attenuation of any kind including Newtonian one. We
consider impact of the heating-cooling function exclu-
sively. The dominance may be broken in the course of
nonlinear evolution due to transfer of energy and mo-
mentum of the dominant mode into other wave and
non-wave modes.

The impact of Newtonian attenuation and ther-
mal conduction in the context of interaction of modes
in a planar flow has been considered by Perelomova
(2019b). In particular, it has been discovered that pro-
duction of the reflected wave perturbations is deter-
mined by the total attenuation, not by mechanical
viscosity and thermal conduction individually. In con-
trast, excitation of the entropy mode depends on the
mechanical viscosity and thermal conduction individ-
ually. It turns out that the individual impact of ther-
mal conduction (in the linear part of inhomogeneous
diffusion equation) influences only weakly the shape of
excited entropy perturbations and they are determined
mainly by the total attenuation. One may expect that
taking into account the total attenuation in the plasma
flows will correct the conclusions. This would alter the
condition of acoustical activity of a flow and introduce
additional attenuation proportional to ∂2vz,1

∂z2
(which

depends on the spectrum of the dominant signal), links
of specific perturbations and magnetoacoustic forces
describing interaction of modes. Thermal conduction
and Newtonian attenuation are important in the case
of the high-frequency exciters.

The dynamic equation which governs perturbations
in the secondary wave mode, is extracted from the gen-
eral system of equations by means of projecting. The
projecting eliminates perturbations of foreign modes
in the linear part of equations and distributes the cou-
pling terms between equations for the different modes
properly. These terms form the forces responsible for
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nonlinear interaction of modes. The procedure deals
with instantaneous values and leads to the system of
instantaneous dynamic equations which may be simpli-
fied in view of dominance of some mode. Equation (17)
is a result of projecting into some magnetoacoustic
mode (ordered as second) in the case of other excit-
ing dominant magnetoacoustic mode (ordered as first).
Its right-hand side (18) represents the magnetoacous-
tic force manifesting two origins of the phenomenon,
nonlinearity and non-adiabaticity due to the heating-
cooling function. Equation (17) is valid for both pe-
riodic and aperiodic dominant magnetoacoustic wave.
The theory is limited by conditions of weak nonlineari-
ty of a flow and weak attenuation (or enhancement) of
wave modes over their characteristic duration.

There is no restriction concerning density flux of
the magnetic field in this study. The nonlinear inter-
action of MHD modes is determined by a number of
factors. These are: the equilibrium magnetic density
flux, the thermodynamic state of a gas and an angle
between the magnetic density flux and the wave vec-
tor, the kind of the heating-cooling function and the
type of the exciter. The interacting waves may be fast
or slow and may propagate in one or different direc-
tions. The longitudinal velocity in the dominant wave
which contributes to the magnetosonic force should
satisfy corresponding dynamic equation, Eq. (12), with
the nonlinear term which reflects its self-interaction.
This leads to enrichment of the spectrum of harmo-
nics at the transducer exciter with higher order har-
monics (Subsec. 3.1). Dynamics of the main and higher
order harmonics strongly depends on the kind of the

Appendix

Table 1. The components of α1, α2 (Eq. (18)) proportional to Lρ and Lp in the case C2 = −C1.

α1

Lρ

⎛

⎝

(γ−1)(2C12
1 (2C2

1+C2
A,z)+c80(6C2

1C
4
A,z−2C4

1C
2
A,z)+c20C8

1(C4
A,z(1−14γ)−C4

1(7+6γ)+2C2
1C

2
A,z(10γ−11))

16C2
1
(C4

1
−c2

0
C2

A,z
)4

+
(γ−1)(c60(2C8

1+C8
A,z(7−9γ)+C6

1C
2
A,z(2−3γ)+C4

1C
4
A,z(γ−23)+C2

1C
6
A,z(11γ−8))

16C2
1
(C4

1
−c2

0
C2

A,z
)4

+
(γ−1)c40C2

1(C2
1C

4
A,z(48−43γ)−γC6

1+9C6
A,z(3γ−2)+C4

1C
2
A,z(17γ+6))

16(C4
1
−c2

0
C2

A,z
)4

⎞

⎠

ρ0Lρ

Lp

⎛

⎝

(γ−1)C4
1(−2c80+c60(11C2

1−3C2
A)+5c20C4

1(C2
A−3C2

1)−C2
1(C2

1−C2
A)((14−5γ)C2

1C
4
A+2(γ−4)C4

1+(γ−3)C4
A))

8(C4
1
−c2

0
C2

A,z
)3

+
(γ−1)C4

1c
2
0((15−4γ)C2

1C
2
A+2(γ−1)C4

1+(2γ−9)C4
A)

8(C4
1
−c2

0
C2

A,z
)3

⎞

⎠

ρ0Lp

α2

Lρ
(γ−1)(C2

1−C2
A,z)(C4

1(2γ−1)−c20C2
A,z(γ−1)−γc20C2

1)
4C2

1
(C4

1
−c2

0
C2

A,z
)2 ρ0Lρ

Lp
(γ−1)c20(C2

A,z−C2
1)((2−3γ)C2

1+(γ−1)C2
A+(2γ−1)c20)

4(C4
1
−c2

0
C2

A,z
)2 ρ0Lp

heating-cooling function. In the studies of excited per-
turbations, we make use of solution to Eq. (12) without
accounting for nonlinearity and non-adiabaticity, that
is, the solution to a simple wave equation in a form
of the running wave. The nonlinear interactions may
be of a special interest in the plasma’s applications
since they take place in flows with finite magnitudes
of perturbations. The nonlinear effects, even weak, ac-
cumulate over time, leading to distortion of the wave
form, formation of solitary waves and shock fronts
(Geffen, 1963; Sharma et al., 1981; Petviashvili,
Pokhotelov, 1992; Ballai, 2006). The secondary
modes in turn have impact on the propagation of the
dominant waves.

The acoustical activity and wave nonlinear phe-
nomena in acoustically active media have counterparts
in many flows, among them, in flows of gases with ex-
cited vibrational degrees of molecules and chemically
reacting gases (Osipov, Uvarov, 1992; Molevich,
2001; Leble, Perelomova, 2018). That is why the
analytical methods and results may find application in
similar problems of fluid flows. The nonlinear dynam-
ics of a plasma is the most complex case in view of
presence of the magnetic field which introduces addi-
tional modes and types of intermode interactions. The
general conclusion is that the excited wave perturba-
tions include parts propagating with different speeds,
that is, with the linear speed of the dominant mode
and the own linear speed of the secondary mode. In
the case of impulsive exciters, the secondary perturba-
tions take the form of a plateu impulse with the fronts
propagating with different speeds.
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Table 2. The components of α1, α2 (Eq. (18)) proportional to Lρ and Lp in the case C2 =
c0CA,z
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.

α1

Lρ

⎛
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