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1. Introduction

In general, it can be stated that a well-developed road network
is one of the conditions for the development of any country or
region. The road network is needed to improve connections be-
tween the most important towns as well as between the most
important towns and subregional towns [1].

Various approaches are used in road route design to obtain
the route that will best meet the adopted design criteria. In re-
cent years, various design methods and optimization models
have been proposed that can be useful in the comprehensive de-
sign of horizontal as well as vertical alignment. Among others,
the studies [2–7] can be mentioned here.

Numerous studies present various approaches to design and
optimization of the vertical alignment. Among others, the
works [8–17] can be mentioned here. It is worth mentioning
that the main design criterion adopted in most of these studies
was the minimization of earthworks cost. Furthermore, various
novel methods have been used, such as, for example, linear pro-
gramming or spline techniques.

The subject of appropriate design and optimization propos-
als was also the horizontal alignment. Also, in case of hori-
zontal alignment, the use of spline techniques has been pro-
posed [18,19]. Papers [20,21] also include interesting proposals
for horizontal alignment.

Other proposals for the design and optimization of road
alignment have also been published recently [22–29]. The ar-
ticle [22] presents a design model that uses a geographical in-
formation system and allows to design highway alignment min-
imizing total cost as the objective function. In turn, in [23],
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a geometric model is proposed including horizontal transition
curves and vertical curves, and a two-stage algorithm is used for
optimizing infrastructure costs. The article [24] presents a mod-
ified motion-planning based algorithm for developing new hor-
izontal alignments with optimized costs and the proposed al-
gorithm is integrated with the GIS database. Interesting pro-
posals for the optimization of the horizontal alignment using
straight sections, circular curves and spiral curves are also pre-
sented in the article [25], where the objective function repre-
sents the cost of a specific highway course. The article [26]
deals with the problem of finding optimal corridors in which
to construct a new road, taking into account the increased ac-
curacy of cost formulation. In turn, in articles [27, 28] the au-
thors analyze various design problems related to the highway
horizontal alignment design using so-called polynomial para-
metric curve. Interesting proposals for the use of artificial intel-
ligence in highway location and alignment optimization include
a monograph [29].

Some papers describe the design of transport network or road
alignment using genetic algorithms [30,31]. It can be noted that
the methods of multi-criteria analysis may also be used in road
planning and design [1, 32–34].

Various studies in the field of design or optimization of hor-
izontal and vertical alignment concern not only the design of
roads and highways. Several papers on railway alignment op-
timization have also been published recently, among others
[35–39].

It should be noted that the above works on design and opti-
mization of horizontal and vertical alignment of road routes an-
alyzed not only traditional geometric elements (such as straight
lines, circular arcs, and transition curves), but also various un-
conventional elements used in spline techniques. This includes,
among others, a so-called polynomial alignment.

The polynomial alignment is an example of a total depar-
ture from the traditional road route consisting of straight lines,
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circular curves and transition curves, (usually clothoids). The
polynomial approach involves describing road routes by poly-
nomial spline functions.

The road route, consisting of successive segments in the
form of algebraic polynomials of the n-th degree, is completely
curvilinear and characterized by a variable value of curvature.
The idea of polynomial alignment has been developed primar-
ily for easier fitting of the route to the constraints found, for
example, in mountainous or urban areas. In mountainous areas
fitting the route to the terrain configuration is required in order
to reduce construction outlays. However, in urban areas it is of-
ten necessary to carry out a route so that the process does not
interfere with existing objects. It is generally accepted that it is
much easier to deal with the above problems using polynomial
spline functions rather than create a route using conventional
geometric elements in the form of straight lines, circular arcs
and clothoids. Similar problems must also be solved when re-
constructing existing road routes.

This article proposes original solutions for the polynomial
approach, which are based in the use of so-called general tran-
sition curves. General transition curves have been presented by
the author in his earlier works [40–42].

The following sections of the paper present the general
principles of polynomial alignment and give general equa-
tions of transition curves that can be used as geometric ele-
ments forming the planned route. Further sections describe spe-
cific/suitable appropriate procedures to design routes with the
use of these curves.

2. Principles of polynomial alignment

Pioneering description of the polynomial alignment was pre-
sented in the paper by Calogero [18]. This concept involves
route formation by means of polynomials defined by the fol-
lowing equation:

y = y′0x+
1
2

y′′0x2 +a3x3 +a4x4 + . . .+anxn , (1)

where y′0 and y′′0 represent respectively the first and second
derivative of the start point of the i-th polynomial. They should
be consistent with the corresponding derivatives at the end point
of the preceding polynomial. According to Calogero‘s con-
cept [18], the degree of polynomial (n) and subsequent coef-
ficients ai (wherein i = 3,4, . . . ,n) are determined iteratively
using a suitable computer program. Computational procedures
ensure the control of preset minimum values of curvature radii
as well as deviations from the direction points on a predeter-
mined position by a pair of X and Y coordinates. This is done
by taking certain route distance D from the direction point and
assigning appropriate weights Wi to particular route points. The
maximum permissible deviation of the route from any direction
point is then equal to D/Wi.

The weight Wi for each direction point is determined by tak-
ing into account the importance of this point and required closer
route to the point.

The theoretical basis of the polynomial alignment presented
by Calogero was an impetus to take up this topic by a number
of other researchers. The subject matter concerning polynomial
alignment was discussed, among others, in papers [43–45], and
more recently in [19].

Generally speaking, the concept of polynomial alignment in-
volves the formation of a route using polynomial elements of
the n-th degree in the form of:

yi = f (xi) = a0 +a1xi +a2x2
i + . . .+anxn

i . (2)

The polynomial route is composed of an appropriate number
of polynomials whose boundaries are limited by points x̄k−1 and
x̄k, wherein k = 1,2, . . . ,n. In order to ensure a smooth transi-
tion of the route, relevant conditions of regularity at the connec-
tion points of each of the polynomials must be fulfilled. These
conditions include the following:

f j (x̄ j) = f j+1 (x̄ j) , (3)

f ′j (x̄ j) = f ′j+1 (x̄ j) , (4)

f ′′j (x̄ j) = f ′′j+1 (x̄ j) . (5)

Conditions (3), (4) and (5) ensure the continuity of the route,
including the compatibility of tangent positions and curvature
values at subsequent connections of the polynomials.

As a rule, practical implementation of polynomial alignment
involves preliminary determination of the so-called direction
points through or close to which the route should run. Then the
coefficients of subsequent polynomials constituting the polyno-
mial route are determined. Generally, this is affected by the least
squares method with respect to the route deviation from the pre-
set direction points. These coefficients are selected so that the
deviation of the designed route from the preset direction points
remain within the accepted limit. It is not always necessary to
draw the route exactly through the direction points. Due to the
above, a distinction is made here between the so-called strict di-
rection points (where the route is expected to pass through the
points) and the so-called relative direction points (where the
route should run in the defined vicinity of the points). A special
case can also arise here involving the so-called direction points
with tangent, which – apart from the location – also includes
the tangent direction to the route.

The Introduction section contains an overview of publica-
tions that present a wide variety of approaches to designing and
optimizing of road routes. All approaches are aimed at achiev-
ing the lowest possible construction costs of road routes. One
of the factors that influences it directly is the adjustment of the
route to specific terrain restrictions, such as topography, inten-
sive land use, etc. While no work has been published on polyno-
mial alignment in recent years, it should be noted that polyno-
mial alignment is a way to achieve such adjustment. In [18, 19]
and [43–45] approaches to polynomial alignment with the use
of spline functions have been presented. The author of this arti-
cle expresses the opinion that the general transition curves pre-
sented in his works [40–42] can also be used in the polynomial
approach. This is due to the general characteristics of the gen-
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eral transition curves (which are described in Section 3), thanks
to which general transition curves can be a very useful design
tool in engineering practice.

In practical applications of various polynomial alignment
methods, it is required to cope with the problems related to the
occurrence of undesirable extremes of curvature within individ-
ual polynomials forming the route. As a result, there are diffi-
culties with maintaining the required distance of visibility and
appropriate conditions for traffic safety. However, according to
the author of this paper, these problems could be avoided by
implementing the idea of polynomial alignment using special
geometry solutions in the form of general transition curves.

3. Polynomial solutions of general transition
curves

General transition curves can be defined as geometric elements
that make it possible to describe, with a single equation, a curvi-
linear transition between two straight line sections. In such
a case, the curvature within the general transition curve in-
creases from zero at the start point to reach a specified maxi-
mum value, and then falls again to zero at the endpoint.

The subject matter concerning general transition curves was
investigated by Kobryń [40–42]. The solutions of general tran-
sition curves presented in these papers can be used, among oth-
ers, in polynomial alignment. The solutions were determined
on the basis of a polynomial function of the form:

y =
i=n

∑
i=0

aixi (6)

with i = 4,5,6 and 7.
According to [40], the first one of the solutions set of general

transition curves is:

y = xK (G0 tanα +G1 tanuP +G2 tanuK) , (7)

where

G0 = 35t4 −84t5 +70t6 −20t7 ,

G1 = t −20t4 +45t5 −36t6 +10t7 ,

G2 =−15t4 +39t5 −34t6 +10t7 ,

whereby: t = x/xK , t ∈< 0;1 > and (Fig. 1):

xK – abscissa of point K in the local coordinates system of
the curve,

tanuP – tangent inclination at start point P,
tanuK – tangent inclination at end point K,
tanα – inclination of the main chord connecting points P

and K.
According to [40], curve (7) has a desirable curvature distri-

bution if:
tanα = G1/0 tanuP +G2/0 tanuK , (8)

wherein G1/0 ∈ 〈3/7; 4/7〉, G2/0 ∈ 〈3/7; 4/7〉.
The second solution proposed in paper [40] takes the form of:

y = xK (F1 tanuP +F2 tanuK) , (9)

where

F1 = t − 5
2

t4 +3t5 − t6 ,

F2 =
5
2

t4 −3t5 + t6 .

The analysis of solution (9) carried out in [40] shows that –
regardless of the mutual relationships between xK , tanuP and
tanuK – solution (9) has a curvature distribution that is charac-
teristic of general transition curves.

The third solution presented in [40] has the form shown be-
low:

y = xK (M0 tanα +M1 tanuP +M2 tanuK) , (10)

Fig. 1. The general transition curve in the local coordinate system
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where

M0 = 10t3 −15t4 +6t5,

M1 = t −6t3 +8t4 −3t5,

M2 =−4t3 +7t4 −3t5.

According to [38], in the case of curves (10) we are dealing
with curve distribution typical of general transition curves, if:

tanα = M1/0 tanuP +M2/0 tanuK , (11)

wherein: M1/0 ∈ 〈2/5; 3/5〉, M2/0 ∈ 〈2/5; 3/5〉.
The last one of the solutions by Kobryń [41] takes the form:

y = xK (N1 tanuP +N2 tanuK) , (12)

where

N1 = t − t3 +
1
2

t4,

N2 = t3 − 1
2

t4.

According to [41], analyses of solution (12) have shown that
curves (12), just like curves (9), have curvature distribution that
is typical of general transition curves regardless of the mutual
relationships between xK , tanuP and tanuK .

At this point, attention should be paid to special cases of solu-
tions (7) and (10) that result from Eqs. (7) and (10) after taking
tanα = 0 in them. The first case follows from (7) and has the
form:

y = xK (G1 tanuP +G2 tanuK) . (13)

The desired curvature distribution within curves (13) can be ob-
tained if:

− 4
3
≤ tanuP

tanuK
≤−3

4
. (14)

While the second special case arises from (10) and has the form:

y = xK (M1 tanuP +M2 tanuK) . (15)

The equivalent of condition (14) is the following inequality for
curves (15):

− 3
2
≤ tanuP

tanuK
≤−2

3
. (16)

4. Proposed approach to the polynomial
alignment using general transition curves

4.1. General principles. First, a properly designed polyno-
mial route should above all meet the regularity conditions (3),
(4) and (5) at the joining points between subsequent curves, as
well as ensure that the acceptable radii of curvature are not ex-
ceeded in order to keep the required distance visibility.

In the case of a polynomial route created by general transi-
tion curves, condition (3) is fulfilled by locating the beginning
of the subsequent curve at the end point of the preceding curve
(Fig. 2). The only exception to this can be one of the two fol-
lowing situations:
• joining the end of the designed curve to the so-called direc-

tion point with the tangent;
• joining the end of the designed curve to a the planned und

of the route with a given location or at the same time a given
location and a given tangent direction (this case is described
later on).

Fig. 2. Polynomial route created by general transition curves

4 Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137195

Polynomial alignment using general transition curves

The coordinates of the points lying within consecutive curves
are expressed in the superordinated coordinate system XY as:

X ( j)
i = X ( j−1)

K + x( j)
i , (17)

Y ( j)
i = Y ( j−1)

K + y( j)
i , (18)

wherein:
X ( j)

i , Y ( j)
i – coordinates of the i-th point of the j-th curve

in the XY superordinated coordinate system,

x( j)
i , y( j)

i – coordinates of the i-th point of the j-th curve
in its local coordinate system, i.e. x( j)

i =

X ( j)
i − X ( j−1)

K , whereas y( j)
i is the value ex-

pressed for x( j)
i by an appropriate equation

of curve (7), (9), (10) or (12) wherein X ( j)
i ∈

〈X ( j−1)
K ;X ( j)

K 〉,
X ( j−1)

K , Y ( j−1)
K – coordinates of the end of curve K preceding

( j−1) in the XY superordinated coordinate
system.

It should be added that abscissa xK of the end of the j-th
curve in its local coordinate system results from values X ( j−1)

K

and X ( j)
K . It is as follows:

xK = x( j)
K = X ( j)

K −X ( j−1)
K . (19)

It should also be noted that appropriate ordinates yK of the
ends of the curves in the local coordinate systems result from
the equations of individual curves. These ordinates are:
• for curves (7) and (10)

yK = xK tanα , (20)

• for curves (9) and (12)

yK =
1
2

xK (tanuP + tanuK) . (21)

Another condition of regularity, i.e., condition (4) is satisfied
automatically if, in the design of subsequent curves, it is as-
sumed that

tanu( j)
P = tanu( j−1)

K . (22)

As can be seen, value tanu( j)
K is essential for proper design of

subsequent curves.
In the case of curves (7) and (10), it is necessary to take into

account conditions (8) and (11) which give:
• for curves (7)

tanu( j)
K =

1
G2/0

tanα( j)−
G1/0

G2/0
tanu( j)

P . (23)

• for curves (10)

tanu( j)
K =

1
M2/0

tanα( j)−
M1/0

M2/0
tanu( j)

P . (24)

In further considerations, it should be taken into account that:

tanα( j) =
y( j)

K

x( j)
K

, (25)

wherein:

y( j)
K = Y ( j)

K −Y ( j−1)
K ,

x( j)
K = X ( j)

K −X ( j−1)
K .

(26)

After positioning the end of the j-th curve, it is necessary to
determine value tanu( j)

K using (23) or (24), so that it is possi-
ble to obtain a proper curvature distribution typical of general
transition curves.

However, from (21) and (25), in the case of curves (9) and
(12), it follows that:

tanu( j)
K = 2tanα( j)− tanu( j)

P . (27)

Having assumed the location of the end of the j-th curve, val-
ues y( j)

K and x( j)
K determine – just like for curves (7) and (10) –

the inclination of the main chord tanα( j) and consequently the
tangent inclination at the end point of the curve.

Similarly to condition (3), condition (4) requires a distinct
treatment in the situation regarding the connecting of the end of
the designed curve to the so called tangent direction point or the
route’s end with preset tangent direction. As already mentioned,
this case will be described later on.

The last one of the regularity conditions that must be met in
polynomial alignment is condition (5). Using general transition
curves, this condition is satisfied by definition, since the charac-
teristic feature of these curves is zero curvature value and hence
zero value of the second derivative at the extreme points. In the
proposed methodology of polynomial alignment these points
also constitute the joining points of consecutive elements of the
route.

When using curves (7) and (10), we may have to deal with
such a position of the support points of individual curves that
will result in large inclinations of the main chords joining ex-
treme points of successive curves. Due to the limited interval
of permissible values G1/0, G2/0 for curves (7) or M1/0, M2/0
for curves (10), it may be more convenient to use Eqs. (13) or
(15), which are special cases of solutions (7) and (10) after as-
suming in their tanα = 0. In this case, however, it is necessary
to transform rectangular coordinates of individual points of the
curve from the local coordinate system xy into the local coordi-
nate system x′y′, whose axes are parallel to the respective axes
of superordinated coordinate system XY (Fig. 3).

Regardless of the concavity/convexity of the arc, the trans-
formation can be accomplished by the following equations:

x′i = xi cosβ − yi sinβ , (28)

y′i = xi sinβ + yi cosβ . (29)

Angle β is a directional angle fulfilling the following condi-
tions: β > 0 if YK > YP and β < 0 if YK < YP, where YP, YK are
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The coordinates of the points lying within consecutive curves
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i = X ( j−1)
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i = Y ( j−1)
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i , (18)
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i − X ( j−1)
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K ;X ( j)
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X ( j−1)
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( j−1) in the XY superordinated coordinate
system.
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curve in its local coordinate system results from values X ( j−1)

K

and X ( j)
K . It is as follows:
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K −X ( j−1)
K . (19)
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1
2
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K . (22)
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• for curves (7)

tanu( j)
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1
G2/0

tanα( j)−
G1/0

G2/0
tanu( j)

P . (23)
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tanu( j)
K =

1
M2/0

tanα( j)−
M1/0

M2/0
tanu( j)

P . (24)

In further considerations, it should be taken into account that:

tanα( j) =
y( j)

K

x( j)
K

, (25)

wherein:

y( j)
K = Y ( j)

K −Y ( j−1)
K ,

x( j)
K = X ( j)

K −X ( j−1)
K .

(26)

After positioning the end of the j-th curve, it is necessary to
determine value tanu( j)

K using (23) or (24), so that it is possi-
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transition curves.
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tanu( j)
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P . (27)

Having assumed the location of the end of the j-th curve, val-
ues y( j)

K and x( j)
K determine – just like for curves (7) and (10) –

the inclination of the main chord tanα( j) and consequently the
tangent inclination at the end point of the curve.

Similarly to condition (3), condition (4) requires a distinct
treatment in the situation regarding the connecting of the end of
the designed curve to the so called tangent direction point or the
route’s end with preset tangent direction. As already mentioned,
this case will be described later on.

The last one of the regularity conditions that must be met in
polynomial alignment is condition (5). Using general transition
curves, this condition is satisfied by definition, since the charac-
teristic feature of these curves is zero curvature value and hence
zero value of the second derivative at the extreme points. In the
proposed methodology of polynomial alignment these points
also constitute the joining points of consecutive elements of the
route.

When using curves (7) and (10), we may have to deal with
such a position of the support points of individual curves that
will result in large inclinations of the main chords joining ex-
treme points of successive curves. Due to the limited interval
of permissible values G1/0, G2/0 for curves (7) or M1/0, M2/0
for curves (10), it may be more convenient to use Eqs. (13) or
(15), which are special cases of solutions (7) and (10) after as-
suming in their tanα = 0. In this case, however, it is necessary
to transform rectangular coordinates of individual points of the
curve from the local coordinate system xy into the local coordi-
nate system x′y′, whose axes are parallel to the respective axes
of superordinated coordinate system XY (Fig. 3).

Regardless of the concavity/convexity of the arc, the trans-
formation can be accomplished by the following equations:

x′i = xi cosβ − yi sinβ , (28)

y′i = xi sinβ + yi cosβ . (29)

Angle β is a directional angle fulfilling the following condi-
tions: β > 0 if YK > YP and β < 0 if YK < YP, where YP, YK are
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Fig. 3. Transformation of curve coordinates from the local system xy to the local system x′y′

the ordinates of both the start and end of the curve in the super-
ordinated coordinate system. The transformed coordinates of
successive points of the curve in the superordinated coordinate
system ultimately amount to:

Xi = XP + xi cosβ − yi sinβ , (30)

Yi = YP + xi sinβ + yi cosβ , (31)

wherein XP, YP are the coordinates of the start point P of the
curve in the superordinated coordinate system.

4.2. Special cases. This section analyzes the case referred to
earlier, concerning the connection of the end of the designed
curve with the tangent direction point or the end of the route

with a preset tangent direction. This special case requires the
use of a road system consisting of two general transition curves.
As shown in Fig. 4, the case involves setting the start position
(P) of the first curve and the end of the second curve (Q).

Also, tangential directions tanu( j−1)
P and tanu( j)

K are set at
these points. For simplicity’s sake, in further analyzes, these
points are denoted in accordance with Fig. 4, as tanuP and
tanuK . In order to achieve a smooth route transition, it is essen-
tial in this case to determine the location of point W to connect
the curves in such a way as to satisfy conditions (3) and (4).

Computational procedure for curves (7) and (10)

First, the problem is analyzed with respect to curves (7) and
(10). This is illustrated using curves (7). As shown in Fig. 4,

Fig. 4. A connection the end of the designed curve to the direction point with tangent or the end point of the route with a given tangent direction
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the inclination of the main chord (connecting the end points of
the first curve) is denoted as tanαPW . On the other hand, the
inclination of the main chord of the second curve is denoted
as tanαWK.

According to condition (8), these inclinations can be de-
scribed by the following equations:

tanαPW = G(P)
1/0 tanuP +G(P)

2/0 tanuW (32)

and
tanαWK = G(K)

1/0 tanuW +G(K)
2/0 tanuK , (33)

wherein G(P)
1/0, G(P)

2/0 and G(K)
1/0, G(K)

2/0 are the values selected from
the permissible intervals respectively for the first and for the
second curve.

Based on the above equations, value tanuW can be expressed
as follows:

tanuW =
1

G(P)
2/0

(
tanαPW −G(P)

1/0 tanuP

)
(34)

and

tanuW =
1

G(K)
1/0

(
tanαWK −G(K)

2/0 tanuK

)
. (35)

In order to ensure a smooth route transition at point W, values
tanuW resulting from the above two equations must, of course,
be the same. It is thus clear:

1

G(P)
2/0

(
tanαPW −G(P)

1/0 tanuP

)
=

=
1

G(K)
1/0

(
tanαWK −G(K)

2/0 tanuK

)
. (36)

Since we have:

tanαPW =
∆YPW

∆XPW
(37)

and

tanαWK =
∆YWK

∆XWK
. (38)

Hence Eq. (36) can be written in the form of:

1

G(P)
2/0

∆YPW

∆XPW
− 1

G(K)
1/0

∆YWK

∆XWK
=

G(P)
1/0

G(P)
2/0

tanuP −
G(K)

2/0

G(K)
1/0

tanuK . (39)

The coordinate increments found in the above equation also
satisfy the following conditions:

∆YWK = ∆YPK −∆YPW , (40)

∆XWK = ∆XPK −∆XPW . (41)

Considering (40) and (41) in Eq. (39) and having made the
required transformations, we have:

∆YPW =

=
∆XPW (∆XPK−∆XPW )

(
G(P)

1/0G(K)
1/0 tanuP−G(P)

2/0G(K)
2/0 tanuK

)

∆XPKG(K)
1/0 −∆XPW

(
G(K)

1/0−G(P)
2/0

) +

+
∆XPW ∆YPKG(P)

2/0

∆XPKG(K)
1/0 −∆XPW

(
G(K)

1/0 −G(P)
2/0

) . (42)

Using the above equation, it is possible to propose a proce-
dure determining point W. As can be seen, it is necessary to
assume an appropriate abscissa XW of point W. As a result, on
the basis of value ∆XPW :

∆XPW = XW −XP . (43)

Equation (42) yields the appropriate value ∆YPW , and hence:

YW = YP +∆YPW . (44)

It should be noted that after adopting G(P)
1/0 = G(P)

2/0 = G(K)
1/0 =

G(K)
2/0 = G, increment ∆YPW in this particular case can be ex-

pressed as:

∆YPW = G(tanuP − tanuK)
∆XPW

∆XPK
(∆XPK −∆XPW )+

+ ∆XPW
∆YPK

∆XPK
. (45)

The appropriate computational procedure for the use of
curves (10) would be analogous. In the respective equations,
instead of G(P)

1/0, G(P)
2/0, G(K)

1/0 and G(K)
2/0, values M(P)

1/0, M(P)
2/0, M(K)

1/0

and M(K)
2/0 should only be substituted from the permissible inter-

val of curves (10).

Computational procedure for curves (9) and (12)

A similar procedure, leading to the determination of point
W, may also be proposed for curves (9) and (12). As follows
from Eq. (21), the following condition is met in the case of the
curves:

2 tanα = tanuP + tanuK . (46)

Making use of the above equation, we can write:
• for the first curve (based on PW chord)

tanuW = 2tanαPW − tanuP ; (47)

• for the second curve (based on WK chord)

tanuW = 2tanαWK − tanuK . (48)
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the inclination of the main chord (connecting the end points of
the first curve) is denoted as tanαPW . On the other hand, the
inclination of the main chord of the second curve is denoted
as tanαWK.

According to condition (8), these inclinations can be de-
scribed by the following equations:

tanαPW = G(P)
1/0 tanuP +G(P)

2/0 tanuW (32)

and
tanαWK = G(K)

1/0 tanuW +G(K)
2/0 tanuK , (33)

wherein G(P)
1/0, G(P)

2/0 and G(K)
1/0, G(K)

2/0 are the values selected from
the permissible intervals respectively for the first and for the
second curve.

Based on the above equations, value tanuW can be expressed
as follows:

tanuW =
1

G(P)
2/0

(
tanαPW −G(P)

1/0 tanuP

)
(34)

and

tanuW =
1

G(K)
1/0

(
tanαWK −G(K)

2/0 tanuK

)
. (35)

In order to ensure a smooth route transition at point W, values
tanuW resulting from the above two equations must, of course,
be the same. It is thus clear:

1

G(P)
2/0

(
tanαPW −G(P)

1/0 tanuP

)
=

=
1

G(K)
1/0

(
tanαWK −G(K)

2/0 tanuK

)
. (36)

Since we have:

tanαPW =
∆YPW

∆XPW
(37)

and

tanαWK =
∆YWK

∆XWK
. (38)

Hence Eq. (36) can be written in the form of:

1

G(P)
2/0

∆YPW

∆XPW
− 1

G(K)
1/0

∆YWK

∆XWK
=

G(P)
1/0

G(P)
2/0

tanuP −
G(K)

2/0

G(K)
1/0

tanuK . (39)

The coordinate increments found in the above equation also
satisfy the following conditions:

∆YWK = ∆YPK −∆YPW , (40)

∆XWK = ∆XPK −∆XPW . (41)

Considering (40) and (41) in Eq. (39) and having made the
required transformations, we have:

∆YPW =

=
∆XPW (∆XPK−∆XPW )

(
G(P)

1/0G(K)
1/0 tanuP−G(P)

2/0G(K)
2/0 tanuK

)

∆XPKG(K)
1/0 −∆XPW

(
G(K)

1/0−G(P)
2/0

) +

+
∆XPW ∆YPKG(P)

2/0

∆XPKG(K)
1/0 −∆XPW

(
G(K)

1/0 −G(P)
2/0

) . (42)

Using the above equation, it is possible to propose a proce-
dure determining point W. As can be seen, it is necessary to
assume an appropriate abscissa XW of point W. As a result, on
the basis of value ∆XPW :

∆XPW = XW −XP . (43)

Equation (42) yields the appropriate value ∆YPW , and hence:

YW = YP +∆YPW . (44)

It should be noted that after adopting G(P)
1/0 = G(P)

2/0 = G(K)
1/0 =

G(K)
2/0 = G, increment ∆YPW in this particular case can be ex-

pressed as:

∆YPW = G(tanuP − tanuK)
∆XPW

∆XPK
(∆XPK −∆XPW )+

+ ∆XPW
∆YPK

∆XPK
. (45)

The appropriate computational procedure for the use of
curves (10) would be analogous. In the respective equations,
instead of G(P)

1/0, G(P)
2/0, G(K)

1/0 and G(K)
2/0, values M(P)

1/0, M(P)
2/0, M(K)

1/0

and M(K)
2/0 should only be substituted from the permissible inter-

val of curves (10).

Computational procedure for curves (9) and (12)

A similar procedure, leading to the determination of point
W, may also be proposed for curves (9) and (12). As follows
from Eq. (21), the following condition is met in the case of the
curves:

2 tanα = tanuP + tanuK . (46)

Making use of the above equation, we can write:
• for the first curve (based on PW chord)

tanuW = 2tanαPW − tanuP ; (47)

• for the second curve (based on WK chord)

tanuW = 2tanαWK − tanuK . (48)
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As mentioned before, in order to ensure a smooth route transi-
tion at point W, values tanuW resulting from both curves meet-
ing at point W must be the same. Thus, it follows from Eqs. (47)
and (48):

tanαPW − tanαWK =
1
2
(tanuP − tanuK) . (49)

Taking into account (37) and (38), the above equation can be
written as:

∆YPW

∆XPW
− ∆YWK

∆XWK
=

1
2
(tanuP − tanuK) . (50)

Considering (40) and (41) and having made the required trans-
formations, it follows from Eq. (50):

∆YPW =
1
2
(tanuP − tanuK)

∆XPW

∆XPK
(∆XPK −∆XPW )+

+∆XPW
∆YPK

∆XPK
. (51)

As a result, adopting abscissa XW of point W and using (51), it
is possible to determine the increment ∆YPW . Hence, using (44)
we have corresponding ordinate YW .

At this point, it is worth noting that Eq. (51) takes the form
identical to Eq. (45), if it assumes G = 1/2.

4.3. Fitting the curves to locations of direction points. In
polynomial alignment with general transition curves, it is pos-
sible to adopt a general principle that the support points (con-
nections) of consecutive curves coincide with direction points.
Basically, this would involve the so-called strict direction points
or tangent direction points.

In the case of the so-called relative direction points, some
divergence from the route’s initial course set by these points is
allowed. Of course, there are also no contraindications to locate
consecutive connection points in the vicinity of the direction

points belonging to this group, if the permissible deviation of
the route from a given point is taken into account. Generally,
however, the fitting process of any given route segment defined
by a general transition curve to the course of a pre-set relative
direction points, should be carried out using the least squares
method by minimizing the sum of squares of curve deviations
from these points (Fig. 5).

With a set location of both the curve’s start point and initial
tangent direction (due to the design of the preceding curve), the
problem is reduced – depending on the type of curve under con-
sideration – to determining the inclination of tanα and tanuK ,
or exclusively tanuK . Taking into account, for example, the dif-
ferences in the ordinates of individual direction points and also
in the ordinates of relevant points of the general transition curve
in the local coordinates of the curve, it is possible to create the
following function:

Fy =
i=q

∑
i=1

∆y2
i , (52)

wherein ∆yi = yi − ŷi and:

ŷi – ordinate of the i-th direction point of abscissa Xi in the
local coordinate system of the current (being fitted) curve,
i.e., ŷi = Yi −YP,

yi – ordinate of the i-th point of the curve, corresponding to
abscissa xi = Xi −XP.

Computational procedure for curves (7) and (10)

The computational procedure is exemplified using the first
family of general transition curves, i.e. (7). Their fitting to the
given direction points requires the designation of appropriate
values of tanα and tanuK . In this case, the existence of a mini-
mum of function (52) is subjected to the following conditions:

∂F
∂ (tanα)

= 0 (53)

Fig. 5. A fitting of the general transition curve to the given direction points
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and
∂F

∂ (tanuK)
= 0 . (54)

The above conditions with respect to function (52) for curves
(7) lead to the following system of equations:

∑
i

yiG
(i)
0 = ∑

i
ŷiG

(i)
0 , (55)

∑
i

yiG
(i)
2 = ∑

i
ŷiG

(i)
2 . (56)

Expressing yi by Eq. (7) and basing on (55) and (56) results in:

xK tanα ∑
i

G(i)2

0 + xK tanuK ∑
i

G(i)
0 G(i)

2 =

= ∑
i

ŷiG
(i)
0 − xK tanuP ∑

i
G(i)

0 G(i)
1 , (57)

xK tanα ∑
i

G(i)
0 G(i)

2 + xK tanuK ∑
i

G(i)2

2 =

= ∑
i

ŷiG
(i)
2 − xK tanuP ∑

i
G(i)

1 G(i)
2 . (58)

Solving Eqs. (57) and (58) yields the following:

tanα =
1

xK

∑
i

G(i)
2

2
∑

i
ŷiG

(i)
0 −∑

i
G(i)

0 G(i)
2 ∑

i
ŷiG

(i)
2

∑
i

G(i)
0

2
∑

i
G(i)

2
2
−

(
∑

i
G(i)

0 G(i)
2

)2 −

− tanuP

∑
i

G(i)
2

2
∑

i
G(i)

0 G(i)
1 −∑

i
G(i)

0 G(i)
2 ∑

i
G(i)

1 G(i)
2

∑
i

G(i)
0 ∑

i
G(i)

2
2
−

(
∑

i
G(i)

0 G(i)
2

)2 (59)

and

tanuk =
1

xK

∑
i

G(i)
0

2
∑

i
ŷiG

(i)
2 −∑

i
G(i)

0 G(i)
2 ∑

i
ŷiG

(i)
0

∑
i

G(i)
0

2
∑

i
G(i)2

2 −

(
∑

i
G(i)

0 G(i)
2

)2 −

− tanuP

∑
i

G(i)
0

2
∑

i
G(i)

1 G(i)
2 −∑

i
G(i)

0 G(i)
2 ∑

i
G(i)

0 G(i)
1

∑
i

G(i)
0 ∑

i
G(i)

2
2
−

(
∑

i
G(i)

0 G(i)
2

)2 . (60)

This procedure would apply in the case when merely the
value of the abscissa of the curve’s end was given. If, however,
both the abscissa and ordinate of the curve’s end were given,
then value tanα would be defined. At that point, only condi-
tion (54) should be taken into account, resulting in the equation

analogous to (56). Having employed value yi in Eq. (7) and
making appropriate transformations, we arrive at:

tanuK =

=
1

xK

∑
i

ŷiG
(i)
2 −xK tanα ∑

i
G(i)

0 G(i)
2 −xK tanuP ∑

i
G(i)

1 G(i)
2

∑
i

G(i)
2

2 . (61)

A similar procedure would apply also in the case of matching
the route to direction points using curve (10). Appropriate equa-
tions describing tanα and tanuK would be the same as (59),
(60) and (61) having replaced G(i)

0 , G(i)
1 and G(i)

2 with M(i)
0 , M(i)

1

and M(i)
2 in them.

Computational procedure for curves (9) and (12)

When fitting curves (9) or (12), condition (54) should be con-
sidered.

For curves (9), the following equation is used:

∑
i

yiF
(i)
2 = ∑

i
ŷiF

(i)
2 (62)

and for curves (12), the equation used is:

∑
i

yiN
(i)
2 = ∑

i
ŷiN

(i)
2 . (63)

Once expressed by Eqs. (9) and (12), and making appropriate
transformations, the equations describing value tanuK take the
following form:
• for curves (9)

tanuK =

∑
i

ŷiF
(i)
2 − xK tanuP ∑

i
F(i)

1 F(i)
2

xK ∑
i

F(i)
2

2 , (64)

• for curves (12)

tanuK =

∑
i

ŷiN
(i)
2 − xK tanuP ∑

i
N(i)

1 N(i)
2

xK ∑
i

N(i)
2

2 . (65)

Computational procedure for curves (13) and (15)

When fitting curves (13) and (15) to the given direction
points, first of all, it is required to transform the coordinates
of direction points from the local coordinate system x′y′ (with
the axes parallel to the corresponding axis of the superordi-
nated system XY) into the local coordinate system xy of curve
(Fig. 6). This can be achieved using the following equations:

�xi = x′i cosβ + y′i sinβ , (66)

�yi =−x′i sinβ + y′i cosβ . (67)
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and
∂F

∂ (tanuK)
= 0 . (54)

The above conditions with respect to function (52) for curves
(7) lead to the following system of equations:

∑
i

yiG
(i)
0 = ∑

i
ŷiG

(i)
0 , (55)

∑
i

yiG
(i)
2 = ∑

i
ŷiG

(i)
2 . (56)

Expressing yi by Eq. (7) and basing on (55) and (56) results in:

xK tanα ∑
i

G(i)2

0 + xK tanuK ∑
i

G(i)
0 G(i)

2 =

= ∑
i

ŷiG
(i)
0 − xK tanuP ∑

i
G(i)

0 G(i)
1 , (57)

xK tanα ∑
i

G(i)
0 G(i)

2 + xK tanuK ∑
i

G(i)2

2 =

= ∑
i

ŷiG
(i)
2 − xK tanuP ∑

i
G(i)

1 G(i)
2 . (58)

Solving Eqs. (57) and (58) yields the following:

tanα =
1

xK

∑
i

G(i)
2

2
∑

i
ŷiG

(i)
0 −∑

i
G(i)

0 G(i)
2 ∑

i
ŷiG

(i)
2

∑
i

G(i)
0

2
∑

i
G(i)

2
2
−

(
∑

i
G(i)

0 G(i)
2

)2 −

− tanuP

∑
i

G(i)
2

2
∑

i
G(i)

0 G(i)
1 −∑

i
G(i)

0 G(i)
2 ∑

i
G(i)

1 G(i)
2

∑
i

G(i)
0 ∑

i
G(i)

2
2
−

(
∑

i
G(i)

0 G(i)
2

)2 (59)

and

tanuk =
1

xK

∑
i

G(i)
0

2
∑

i
ŷiG

(i)
2 −∑

i
G(i)

0 G(i)
2 ∑

i
ŷiG

(i)
0

∑
i

G(i)
0

2
∑

i
G(i)2

2 −

(
∑

i
G(i)

0 G(i)
2

)2 −

− tanuP

∑
i

G(i)
0

2
∑

i
G(i)

1 G(i)
2 −∑

i
G(i)

0 G(i)
2 ∑

i
G(i)

0 G(i)
1

∑
i

G(i)
0 ∑

i
G(i)

2
2
−

(
∑

i
G(i)

0 G(i)
2

)2 . (60)

This procedure would apply in the case when merely the
value of the abscissa of the curve’s end was given. If, however,
both the abscissa and ordinate of the curve’s end were given,
then value tanα would be defined. At that point, only condi-
tion (54) should be taken into account, resulting in the equation

analogous to (56). Having employed value yi in Eq. (7) and
making appropriate transformations, we arrive at:

tanuK =

=
1

xK

∑
i

ŷiG
(i)
2 −xK tanα ∑

i
G(i)

0 G(i)
2 −xK tanuP ∑

i
G(i)

1 G(i)
2

∑
i

G(i)
2

2 . (61)

A similar procedure would apply also in the case of matching
the route to direction points using curve (10). Appropriate equa-
tions describing tanα and tanuK would be the same as (59),
(60) and (61) having replaced G(i)

0 , G(i)
1 and G(i)

2 with M(i)
0 , M(i)

1

and M(i)
2 in them.

Computational procedure for curves (9) and (12)

When fitting curves (9) or (12), condition (54) should be con-
sidered.

For curves (9), the following equation is used:

∑
i

yiF
(i)
2 = ∑

i
ŷiF

(i)
2 (62)

and for curves (12), the equation used is:

∑
i

yiN
(i)
2 = ∑

i
ŷiN

(i)
2 . (63)

Once expressed by Eqs. (9) and (12), and making appropriate
transformations, the equations describing value tanuK take the
following form:
• for curves (9)

tanuK =

∑
i

ŷiF
(i)
2 − xK tanuP ∑

i
F(i)

1 F(i)
2

xK ∑
i

F(i)
2

2 , (64)

• for curves (12)

tanuK =

∑
i

ŷiN
(i)
2 − xK tanuP ∑

i
N(i)

1 N(i)
2

xK ∑
i

N(i)
2

2 . (65)

Computational procedure for curves (13) and (15)

When fitting curves (13) and (15) to the given direction
points, first of all, it is required to transform the coordinates
of direction points from the local coordinate system x′y′ (with
the axes parallel to the corresponding axis of the superordi-
nated system XY) into the local coordinate system xy of curve
(Fig. 6). This can be achieved using the following equations:

�xi = x′i cosβ + y′i sinβ , (66)

�yi =−x′i sinβ + y′i cosβ . (67)
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Fig. 6. Transformation of curve coordinates from the local system x′y′ to the local system xy

Next condition (54) must be fulfilled, which analogically to
the way described above, yields:
• for curves (13)

tanuK =

∑
i

�yiG
(i)
2 − xK tanuP ∑

i
G(i)

1 G(i)
2

xK ∑
i

G(i)
2

2 , (68)

• for curves (15)

tanuK =

∑
i

�yiM
(i)
2 − xK tanuP ∑

i
M(i)

1 M(i)
2

xK ∑
i

M(i)
2

2 . (69)

In the above equations values G(i)
1 , G(i)

2 and M(i)
1 , M(i)

2 for

ti =
�xi
/�xK would be expressed using appropriate formulas de-

scribing G1, G2, M1 and M2.

4.4. Supplementary notes. From the point of view of the
problems connected with the formation of polynomial route
curvatures, a significant advantage of using general transition
curves is the ease of defining their design parameters in such
a way as to not exceed the maximum allowable value of curva-
ture 1/R. The only thing required here is the assumption of an
appropriate, minimal length of abscissa xK of the end point in
the local coordinate system of the curve.

Owing to this, the curves demonstrate a high suitability for
solving various design problems of in the geometrical shaping
road routes. Value xK results from the known formula describ-
ing the curvature:

k =
|y′′|

(1+ y′2)3/2 . (70)

For example, value xK for curve (7), taking into account
derivatives y′ and y′′ function (7), can be written as:

xK =

= R

∣∣G′′
0(tE) tanα+G′′

1(tE) tanuP+G′′
2(tE) tanuK

∣∣
[
1+

(
G′

0(tE) tanα+G′
1(tE) tanuP+G′

2(tE) tanuK
)2
]3/2 , (71)

wherein G′
0(tE), G′

1(tE), G′
2(tE), G′′

0(tE), G′′
1(tE), G′′

2(tE) are the
values that define respectively, the first and second derivatives
of coefficients G0, G1 and G2 for t = tE . They are as follows:

G′
0 = 140t3 −420t4 +420t5 −140t6 ,

G′
1 = 1−80t3 +225t4 −216t5 +70t6 ,

G′
2 =−60t3 +195t4 −204t5 +70t6 ,

and

G′′
0 = 420t2 −1680t3 +2100t4 −840t5 ,

G′′
1 =−240t2 +900t3 −1080t4 +420t5 ,

G′′
2 =−180t2 +780t3 −1020t4 +420t5 .

The argument t = tE that occurs in Eq. (71) is a value indicating
the position of curvature extremum. The value results from the
equation describing the prerequisite for the existence of curva-
ture extremum, whose general form is as follows:

dk
dx

=
y′′′

(
1+ y′2

)
−3y′y′′2

(1+ y′2)5/2 = 0 . (72)

In the case of the other curves, i.e. (9), (10) and (12) the re-
quired length of abscissa xK can be calculated the same way as
described above for curves (7). Appropriate formulas express-
ing derivatives y′, y′′ and y′′′ for all the curves are presented in
Tables 1 and 2.
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Table 1
Equations describing derivatives y′, y′′ and y′′′ for curves (5) and (7)

Curves Derivatives Curves Derivatives

(5) y′ = M0 tanα +M1 tanuP +M2 tanuK
where:

M′
1 = 1−18t2 +32t3 −15t4,

M′
2 =−12t2 +28t3 −15t4,

M′
3 = 30t2 −60t3 +30t4

(7) y′ = G0 tanα +G1 tanuP +G2 tanuK
where:

G′
0 = 140t3 −420t4 +420t5 −140t6,

G′
1 = 1−80t3 +225t4 −216t5 +70t6,

G′
2 =−60t3 +195t4 −204t5 +70t6

y′′ =
1

xK

(
M′′

0 tanα +M′′
1 tanuP +M′′

2 tanuK
)

where:
M′′

1 =−36t +96t2 −60t3,
M′′

2 =−24t +84t2 −60t3,
M′′

3 = 60t −180t2 +120t3

y′′ =
1

xK

(
G′′

0 tanα +G′′
1 tanuP +G′′

2 tanuK
)

where:
G′′

0 = 420t2 −1680t3 +2100t4 −840t5,

G′′
1 =−240t2 +900t3 −1080t4 +420t5,

G′′
2 =−180t2 +780t3 −1020t4 +420t5

y′′′ =
1

x2
K

(
M′′′

0 tanα +M′′′
1 tanuP +M′′′

2 tanuK
)

where:
M′′′

1 =−36+192t −180t2,
M′′′

2 =−24+168t −180t2,
M′′′

3 = 60−360t +360t2

y′′′ =
1

x2
K

(
G′′′

0 tanα +G′′′
1 tanuP +G′′′

2 tanuK
)

where:
G′′′

0 = 840t −5040t2 +8400t3 −4200t4,
G′′′

1 =−480t +2700t2 −4320t3 +2100t4,
G′′′

2 =−360t +2340t2 −4080t3 +2100t4

Table 2
Equations describing derivatives y′, y′′ and y′′′ for curves (9) and (12)

Curves Derivatives Curves Derivatives

(9) y′ = F ′
1 tanuP +F ′

2 tanuK
where:

F ′
1 = 1−10t3 +15t4 −6t5,

F2 = 10t3 −15t4 +6t5

(12) y′ = N′
1 tanuP +N′

2 tanuK
where:

N′
1 = 1−3t2 +2t3,

N′
2 = 3t2 −2t3

y′′ =
1

xK

(
F ′′

1 tanuP +F ′′
2 tanuK

)

where:
F ′′

1 =−30t2 +60t3 −30t4,
F ′′

2 = 30t2 −60t3 +30t4

y′′ =
1

xK

(
N′′

1 tanuP +N′′
2 tanuK

)

where:
N′′

1 =−6t +6t2,
N′′

2 = 6t −6t2

y′′′ =
1

x2
K

(
F ′′′

1 tanuP +F ′′′
2 tanuK

)

where:
F ′′′

1 =−60t +180t2 −120t3,
F ′′′

2 = 60t −180t2 +120t3

y′′′ =
1

x2
K

(
N′′′

1 tanuP +N′′′
2 tanuK

)

where:
N′′′

1 =−6+12t,
N′′′

2 = 6−12t

In polynomial alignment with general transition curves, it is
possible to adopt a general principle that the support points
(connections) of consecutive curves coincide with direction
points. Basically, this would involve the so-called strict direc-
tion points or tangent direction points.

5. Summary

Polynomial alignment is one possible design method of road
route geometry. This subject has been extensively discussed in
the literature, as evidenced by, among others, selected works in-
cluded in the references/bibliography. It should be noted, how-

ever, that this way of shaping the geometry of the road routes is
not widespread in practice.

It can be assumed that the reason for this has been relatively
high requirements with regard to the necessary software, which
until recently has constituted some problem.

Other problems could be related to the difficulties in the de-
sign method associated with the occurrence of unacceptable ex-
tremes of curvature within individual polynomials forming the
polynomial route. The result of this were problems with main-
taining the required distance of visibility.

It should be noted, however, that in certain conditions, such
as constructing routes in highly urbanized or mountainous ar-
eas, alignment makes it possible to find a better solution match-
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Table 1
Equations describing derivatives y′, y′′ and y′′′ for curves (5) and (7)

Curves Derivatives Curves Derivatives

(5) y′ = M0 tanα +M1 tanuP +M2 tanuK
where:

M′
1 = 1−18t2 +32t3 −15t4,

M′
2 =−12t2 +28t3 −15t4,

M′
3 = 30t2 −60t3 +30t4

(7) y′ = G0 tanα +G1 tanuP +G2 tanuK
where:

G′
0 = 140t3 −420t4 +420t5 −140t6,

G′
1 = 1−80t3 +225t4 −216t5 +70t6,

G′
2 =−60t3 +195t4 −204t5 +70t6

y′′ =
1

xK

(
M′′

0 tanα +M′′
1 tanuP +M′′

2 tanuK
)

where:
M′′

1 =−36t +96t2 −60t3,
M′′

2 =−24t +84t2 −60t3,
M′′

3 = 60t −180t2 +120t3

y′′ =
1

xK

(
G′′

0 tanα +G′′
1 tanuP +G′′

2 tanuK
)

where:
G′′

0 = 420t2 −1680t3 +2100t4 −840t5,

G′′
1 =−240t2 +900t3 −1080t4 +420t5,

G′′
2 =−180t2 +780t3 −1020t4 +420t5

y′′′ =
1

x2
K

(
M′′′

0 tanα +M′′′
1 tanuP +M′′′

2 tanuK
)

where:
M′′′

1 =−36+192t −180t2,
M′′′

2 =−24+168t −180t2,
M′′′

3 = 60−360t +360t2

y′′′ =
1

x2
K

(
G′′′

0 tanα +G′′′
1 tanuP +G′′′

2 tanuK
)

where:
G′′′

0 = 840t −5040t2 +8400t3 −4200t4,
G′′′

1 =−480t +2700t2 −4320t3 +2100t4,
G′′′

2 =−360t +2340t2 −4080t3 +2100t4

Table 2
Equations describing derivatives y′, y′′ and y′′′ for curves (9) and (12)

Curves Derivatives Curves Derivatives

(9) y′ = F ′
1 tanuP +F ′

2 tanuK
where:

F ′
1 = 1−10t3 +15t4 −6t5,

F2 = 10t3 −15t4 +6t5

(12) y′ = N′
1 tanuP +N′

2 tanuK
where:

N′
1 = 1−3t2 +2t3,

N′
2 = 3t2 −2t3

y′′ =
1

xK

(
F ′′

1 tanuP +F ′′
2 tanuK

)

where:
F ′′

1 =−30t2 +60t3 −30t4,
F ′′

2 = 30t2 −60t3 +30t4

y′′ =
1

xK

(
N′′

1 tanuP +N′′
2 tanuK

)

where:
N′′

1 =−6t +6t2,
N′′

2 = 6t −6t2

y′′′ =
1

x2
K

(
F ′′′

1 tanuP +F ′′′
2 tanuK

)

where:
F ′′′

1 =−60t +180t2 −120t3,
F ′′′

2 = 60t −180t2 +120t3

y′′′ =
1

x2
K

(
N′′′

1 tanuP +N′′′
2 tanuK

)

where:
N′′′

1 =−6+12t,
N′′′

2 = 6−12t

In polynomial alignment with general transition curves, it is
possible to adopt a general principle that the support points
(connections) of consecutive curves coincide with direction
points. Basically, this would involve the so-called strict direc-
tion points or tangent direction points.

5. Summary

Polynomial alignment is one possible design method of road
route geometry. This subject has been extensively discussed in
the literature, as evidenced by, among others, selected works in-
cluded in the references/bibliography. It should be noted, how-

ever, that this way of shaping the geometry of the road routes is
not widespread in practice.

It can be assumed that the reason for this has been relatively
high requirements with regard to the necessary software, which
until recently has constituted some problem.

Other problems could be related to the difficulties in the de-
sign method associated with the occurrence of unacceptable ex-
tremes of curvature within individual polynomials forming the
polynomial route. The result of this were problems with main-
taining the required distance of visibility.

It should be noted, however, that in certain conditions, such
as constructing routes in highly urbanized or mountainous ar-
eas, alignment makes it possible to find a better solution match-
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5.	 Summary

Polynomial alignment is one possible design method of road 
route geometry. This subject has been extensively discussed in 
the literature, as evidenced by, among others, selected works 
included in the references/bibliography. It should be noted, 

however, that this way of shaping the geometry of the road 
routes is not widespread in practice.

It can be assumed that the reason for this has been relatively 
high requirements with regard to the necessary software, which 
until recently has constituted some problem.

Other problems could be related to the difficulties in the 
design method associated with the occurrence of unacceptable 
extremes of curvature within individual polynomials forming 
the polynomial route. The result of this were problems with 
maintaining the required distance of visibility.

It should be noted, however, that in certain conditions, such 
as constructing routes in highly urbanized or mountainous areas, 
alignment makes it possible to find a better solution match-



12

A. Kobryń

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137195

ing the specific conditions than when using traditional design 
methods.

Accordingly, a new approach to polynomial alignment 
involving the use of general transition curves has been pro-
posed here. This approach makes it possible to avoid the prob-
lems mentioned above while keeping acceptable curvature 
values.

In addition, it should be noted that the methodology of 
applying general transitions curves in polynomial alignment is 
strongly algorithmic in nature allowing for a relatively simple 
implementation supported if appropriate software or computer 
systems are used for road design.

It may be added that in the design of a road route some 
constraints are mandatory, such as avoiding forbidden areas 
(for example, environmentally protected areas). Obviously, the 
proposed approach fully allows for such limitations to be taken 
into account. One might even risk the statement that it is easier 
to consider the alignment of the road route to such constraints 
with general transition curves than with traditional solutions. 
General transition curves are characterized by a wide range 
of shaping possibilities of their geometry due to their design 
conditions, which are given in section 3 for each family of 
curves.
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