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Interval-valued dual hesitant fuzzy prioritized
aggregation operators based on Archimedean t-conorm

and t-norm and their applications to multi-criteria
decision making

Arun SARKAR and Animesh BISWAS

Multi-criteria decision making (MCDM) technique and approach have been a trending
topic in decision making and systems engineering to choosing the probable optimal options.
The primary purpose of this article is to develop prioritized operators to multi-criteria de-
cision making (MCDM) based on Archimedean t-conorm and t-norms (At-CN&t-Ns) under
interval-valued dual hesitant fuzzy (IVDHF) environment. A new score function is defined for
finding the rank of alternatives in MCDM problems with IVDHF information based on priority
levels of criteria imposed by the decision maker. This paper introduces two aggregation opera-
tors: At-CN&t-N-based IVDHF prioritized weighted averaging (AIVDHFPWA), and weighted
geometric (AIVDHFPWG) aggregation operators. Some of their desirable properties are also
investigated in details. A methodology for prioritization-based MCDM is derived under IVDHF
information. An illustrative example concerning MCDM problem about a Chinese university
for appointing outstanding oversea teachers to strengthen academic education is considered.
The method is also applicable for solving other real-life MCDM problems having IVDHF
information.

Key words: multi-criteria decision-making, interval-valued dual hesitant fuzzy ele-
ments, Archimedean t-conorm and t-norm, prioritized weighted averaging operator, prioritized
weighted geometric operator

1. Introduction

The ambiguity of information is becoming an unalterable situation due to
the rising complexity of our lifestyle rapidly. Multi-criteria decision making
(MCDM) methods are a handy tool to grip this type of situation. Therefore,
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MCDM has been an inexorable process to assess an object precisely. Besides the
prior several decades, various methods have been proposed for solving differ-
ent MCDM problems. Decision-maker (DM) can give their opinion by hesitant
fuzzy (HF) set (HFS) [1,2] to defeat any hesitations. Generally, aggregation oper-
ators are essential tools for dealing with such MCDM problems. Xia and Xu [3]
proposed a series of weighted averaging (WA) and weighted geometric (WG) ag-
gregation operators based on HF environment viz., HF WA, HF ordered WA and
their geometric operators. Based on Einstein operation, Zhou and Li [4] defined
HF Einstein WG, and HF Einstein ordered WG operators and established the
connections between the proposed operators. Zhang [5] proposed a method for
deriving the weights of DMs and solved a multi-criteria group decision making
(MCGDM) problem under HF information. Based onHamacher t-conorm (t-CN)
and t-norms (t-Ns), Son et al. [6] introduced some new HF power aggregation
operators. Inspired by the concept of intuitionistic fuzzy (IF) set (IFS) and HFS,
Zhu et al. [7] introduced dual HF (DHF) set (DHFS) by considering possible
membership degrees and non-membership degrees with the condition that sum
of maximum membership and non-membership degrees is less or equal to one.
Under the DHF context, Wang et al. [8] defined some WA and WG aggregation
operators: DHF WA, DHF WG, DHF ordered WA and DHF ordered WG op-
erators. With Hamacher operations, Ju et al. [9] developed several aggregation
operators viz., DHF Hamacher WA, DHF Hamacher WG, DHF Hamacher or-
dered WA, DHF Hamacher ordered WG operators, etc. Yu et al. [10] introduced
the aggregation operators for aggregating DHF elements (DHFEs) and described
these operators’ properties. Zhao et al. [11] proposed some arithmetic operations
of DHFEs based on Einstein t-CN and t-N, and some DHF aggregation operators
are also introduced. Tang et al. [12] proposed the generalized rules of DHFS
based on Frank t-CN and t-N, and used to construct the aggregation operators on
DHF assessments in the context of MCDM.

However, in several real-life MCDMmodels, due to insufficiency in available
information, DM are unable to exert their opinion with a crisp number but are
comfortable to putting the decision values by interval numbers within [0, 1]. To
address this situation, Ju et al. [13] introduced the concept of interval-valued
DHF (IVDHF) sets (IVDHFSs), which takes the hesitant membership and non-
membership degrees in the form of interval-valued fuzzy numbers. It should be
noted that when both the membership degree and non-membership degree of
each element to a given set have single interval value, the IVDHFS reduces to
the interval-valued IFS [14] and when the upper and lower limits of interval
values are identical, IVDHFS becomes DHFS [7]. Thus, it is clear that IVDHFS
is a more generalized form than other extensions of fuzzy sets. To aggregate the
IVDHF elements (IVDHFEs), Ju et al. [13] developed IVDHF WA aggregation
operator. Further, Zhang et al. [15] imposed Einstein t-CN and t-N on IVDHF
environment to develop IVDHF EinsteinWA and IVDHF EinsteinWG operators.
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During the aggregation process, the selection of appropriate operational laws is a
crucial phase. The Archimedean t-CN and t-N (At-CN&t-N) provides a general
rule of operational laws and more choices for DM. Different classes of t-CNs
and t-Ns can be derived from At-CN&t-N [16, 17], such as t-CNs and t-Ns of
the Algebraic, Einstein, Hamacher, Frank, and so on. Based on At-CN&t-N, Xia
et al. [18] introduced At-CN&t-N-based IF WA and WG operators. Zhang and
Wu [19] developed several At-CN&t-N-based interval-valued HF (IVHF) WA
and WG aggregation operators. On DHF environment, Yu [20] proposed DHF
WA and WG aggregation operators based on At-CN&t-N operations. Recently,
Sarkar and Biswas [21] introduced At-CN&t-N operations on Pythagorean HF
sets and defined a class of At-CN&t-N-based Pythagorean HF WA and WG
operators. Again Sarkar and Biswas [22] applied At-CN&t-N on the IVDHF
information and introduced a class of aggregation operators.

The above methods are all used under the premise that all criteria are in the
same priority level. Most applications involve selecting or ordering of a group of
alternatives based upon their satisfaction to a collection of criteria. To deal with
this issue, Yager [23] developed prioritized average (PA) operators by modelling
the criteria priority on the weights associated with criteria, which are dependent
on the satisfaction of higher priority criteria. Yager [24] further focused on PA
operators and proposed two methods for formulating this type of aggregation
process. It is well known that the PA operator has many advantages over other
operators. On HF environment, Yu [25] developed a family of aggregation oper-
ators based on Einstein t-CN and t-N, such as HF Einstein prioritized WA, WG
and power WA operators. Wei [26] developed two prioritized aggregation opera-
tors for aggregating HFEs: HF prioritizedWA (HFPWA), and HF prioritizedWG
(HFPWG) operators. Chen [27] introduced interval-valued IF prioritized aggrega-
tion operator and illustrated the proposed methodology by solving the watershed
site selection problem. Liang et al. [28] derived generalized intuitionistic trape-
zoidal fuzzy prioritized WA and WG operators, also construct an approach for
MCGDM under intuitionistic trapezoidal fuzzy environment. Under the IVHF
context, Ye [29] proposed IVHF prioritized WA andWG operators and presented
some properties of the proposed aggregation operators. Jin et al. [30] introduced
Einstein operational laws on IVHF sets, and also developed two prioritized ag-
gregation operators: IVHF Einstein prioritized WA (IVHFEPWA) and IVHF
Einstein prioritized WG (IVHFEPWG) operators. Ren and Wei [31] proposed a
prioritized multi-attribute decision-making method to solve decision problems
under DHF environment. Recently, Biswas and Sarkar [32] introduced Einstein
operations-based DHF prioritized WA (DHFPWA), and WG (DHFPWG) opera-
tors and constructed an approach for MCGDM. However, prioritized aggregation
operators are applied in various contexts viz., IF, HF, IVHF, DHF for MCDM.
But many prioritized-based MCDM problems can not be solved which are de-
signed on IVDHF environment. And to overcome such situation, a methodology
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is proposed for IVDHF prioritized MCDM, which is the main motivation of this
article. To do this at first define two prioritized aggregation operators based on
At-CN&t-Ns under IVDHF information.

This article is organized as follows. Some preliminary concepts on DHFS,
IVDHFS, At-CN&t-Ns and At-CN&t-Ns-based operations on IVDHFEs are
studied in Section 2. A new score function of IVDHFE is defined in Section 3. In
Section 4, At-CN&t-Ns-based IVDHF prioritizedWA (AIVDHFPWA), andWG
(AIVDHFPWG) aggregation operators are proposed to aggregate the IVDHFEs.
After that classification of the proposed operators is made for different types of
decreasing functions. Some desired properties and special cases of the proposed
operators are also investigated. Section 5 gives an approach to MCDM under
IVDHF environment. In Section 6, an illustrative example is solved using the
proposed method, and sensitivity analysis is performed by varying the parameter.
Finally, conclusion and scope for future studies have been described in Section 7.

2. Preliminaries

This section briefly reviews some basic concepts of DHFS, IVDHFS, At-
CN&t-Ns and prioritized aggregation operators.

2.1. DHFS

Definition 1 [7] The concept of DHFS was presented by Zhu et al. [7]. Let X be
a fixed set. Then a DHFS is defined as

P =
{
〈x, hP(x), gP(x)〉 �� x ∈ X

}
, (1)

where
{
µ�� µ ∈ hP(x)

}
and

{
ν�� ν ∈ gP(x)

}
denote the set of possible membership

and non-membership degrees, respectively, of the element x ∈ X to the set P,
satisfying the conditions:

0 ¬ µ, ν ¬ 1, 0 ¬ max{µ} + max{ν} ¬ 0, for all x ∈ X . For convenience,
〈hP(x), gP(x)〉 is called the DHF element (DHFE) and denoted by p = 〈h, g〉.

To compare among the DHFEs, Zhu et al. [7] derived the following compari-
son formula.
Definition 2 [7] Let p = 〈h, g〉 be a DHFE. Then the score function S(p) and
accuracy function A(p) of p is defined by

S(p) = ĥ − ĝ and A(p) = ĥ + ĝ,

where ĥ =
1
#h

∑
µ∈h

µ and ĝ =
1
#g

∑
ν∈g

ν, and #h and #g denote the number of

elements in h and g, respectively.
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For any two DHFEs p1 and p2, if S(p1) > S(p2) then p1 � p2.
To computeDMs’ preference values by an interval numberwithin [0, 1] instead

of crisp numbers, Ju et al. [13] defined the concept of IVDHFSs.

Definition 3 [13] Let X be a given set, then an IVDHFS Ã on X is described as:

Ã =
{〈

x, h̃Ã(x), g̃Ã(x)
〉 �� x ∈ X

}
, (2)

in which h̃Ã(x) =
⋃

[γl,γu]∈h̃(x)

{ [
γl, γu

] }
and g̃Ã(x) =

⋃
[ηl,ηu]∈g̃(x)

{ [
ηl, ηu

] }
are

two sets of interval values in [0, 1], representing the possible membership degree
and non-membership degree of the element x ∈ X to the set Ã, respectively,
with

[
γl, γu

] [
ηl, ηu

]
⊂ [0, 1] and 0 ¬ max {γu} + max {ηu} ¬ 1, for all x ∈ X .

For convenience, Ju et al. [13] called the pair α̃(x) =
(
h̃(x), g̃(x)

)
an IVDHF

element (IVDHFE) and denoted by α̃ =
(
h̃, g̃

)
.

To compare the IVDHFEs, Ju et al. [13] defined the score function and
accuracy function in the following manner.

Definition 4 [13] Score function of IVDHFE α̃ =
(
h̃, g̃

)
is defined as

H
(
α̃
)
=

1
2

*..
,

1
∆h̃

∑
[γl,γu]∈h̃

(
γl + γu

)
−

1
∆g̃

∑
[ηl,ηu]∈g̃

(
ηl + ηu

)+//
-
, (3)

and accuracy function of IVDHFE α̃ =
(
h̃, g̃

)
is defined as

A
(
α̃
)
=

1
2

*..
,

1
∆h̃

∑
[γl,γu]∈h̃

(
γl + γu

)
+

1
∆g̃

∑
[ηl,ηu]∈g̃

(
ηl + ηu

)+//
-
, (4)

where ∆h̃ and ∆g̃ is the number of intervals in h̃ and g̃ respectively.

Definition 5 Let α̃1 and α̃2 be any two IVDHFEs,

(i) If H
(
α̃1

)
> H

(
α̃2

)
then α̃1 > α̃2;

(ii) If H
(
α̃1

)
= H

(
α̃2

)
then if A

(
α̃1

)
> A

(
α̃2

)
then α̃1 > α̃2; if A

(
α̃1

)
=

A
(
α̃2

)
then α̃1 = α̃2.
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2.2. A t-CN&t-Ns

In this section, the definition of At-CN&t-Ns is displayed.

Definition 6 [16, 17] A function U : [0, 1] × [0, 1] → [0, 1] is called a t-CN if
it satisfies associativity, symmetricity, non-decreasing and U (x, 0) = x for all
x ∈ [0, 1]. If a binary operation I : [0, 1] × [0, 1] → [0, 1] satisfies associativity,
symmetricity, non-decreasing and I (x, 1) = x for all x ∈ [0, 1] then I is known
as a t-N.

Archimedean t-CN (At-CN) and Archimedean t-N (At-N) operations are
expressed as follows:
Definition 7 [33] An At-CN U is formulated using increasing function g as

U (x, y) = g(−1) (
g(x) + g(y)

)
, (5)

similarly, using decreasing function f , an At-N I is represented as

I (x, y) = f (−1) (
f (x) + f (y)

)
with g(t) = f (1−t) for all x, y, t ∈ [0, 1]. (6)

Several t-CNs and t-Ns are derived byKlement andMesiar [32] using different
forms of increasing and decreasing functions; and using these functions Sarkar
and Biswas [22] defined some operational rules for IVDHFEs based on algebraic,
Einstein, Hamacher, and Frank classes of t-CN and t-Ns.

Definition 8 [22] Let α̃i =
(
h̃i, g̃i

)
(i = 1, 2) and α̃ =

(
h̃, g̃

)
be any three

IVDHFEs, λ > 0 be any scalar. At-CN&t-Ns-based operational laws for the
IVDHFEs are presented bellow.
(1) α̃1 ⊕A α̃2 =

*.....
,

⋃
[γli,γ

u
i ]∈h̃i

,i=1,2

{ [
U

(
γl

1, γ
l
2

)
,U

(
γu

1, γ
u
2

)] }
,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2

{ [
I
(
ηl

1, η
l
2

)
, I

(
ηu

1, η
u
2

)] }+/////
-

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2

{ [
g−1

(
g

(
γl

1

)
+ g

(
γl

2

))
, g−1

(
g

(
γu

1

)
+ g

(
γu

2

))] }
,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2

{ [
f −1

(
f
(
ηl

1

)
+ f

(
ηl

2

))
, f −1

(
f
(
ηu

1

)
+ f

(
ηu

2

))] }+/////
-

;
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(2) α̃1 ⊗A α̃2 =

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2

{ [
I
(
γl

1, γ
l
2

)
, I

(
γu

1, γ
u
2

)] }
,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2

{ [
U

(
ηl

1, η
l
2

)
,U

(
, ηu

1, η
u
2

)] }+/////
-

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2

{ [
f −1

(
f
(
γl

1

)
+ f

(
γl

2

))
, f −1

(
f
(
γu

1

)
+ f

(
γu

2

))] }
,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2

{ [
g−1

(
g

(
ηl

1

)
+ g

(
ηl

2

))
, g−1

(
g

(
ηu

1

)
+ g

(
ηu

2

))] }+/////
-

;

(3) λα̃ =

*..
,

⋃
[γl,γu]∈h̃

{ [
g−1

(
λg

(
γl

))
, g−1 (

λg
(
γu))] }

,

⋃
[ηl,ηu]∈g̃

{ [
f −1

(
λ f

(
ηl

))
, f −1 (

λ f
(
ηu))] }+/

-
;

(4) α̃λ =

*..
,

⋃
[γl,γu]∈h̃

{ [
f −1

(
λ f

(
γl

))
, f −1 (

λ f
(
γu))] }

,

⋃
[ηl,ηu]∈g̃

{ [
g−1

(
λg

(
ηl

))
, g−1 (

λg
(
ηu))] }+/

-
.

2.3. PA Operator

PA operator for MCDM problems was introduced by Yager [23], which is
defined in the following manner:
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Definition 9 [23] Let {Ci} (i = 1, 2, . . . , n) be a collection of criteria, and their
priority is expressed by the linear ordering C1 � C2 � . . . � Cn. This ordering
indicates criteria Cj has a higher priority than Ck if j < k. The value Cj (z) is the
performance of any alternative z under criteria Cj , and satisfies Cj (z) ∈ [0, 1].

If PA
(
Cj (z)

)
=

n∑
j=1

w jCj (z), where w j =
Tj

n∑
j=1

Tj

, Tj =

j−1∏
k=1

Ck (z)

( j = 2, . . . , n), T1 = 1. Then PA is called the PA operator.

In the following section, a new score function of IVDHFEs is introduced. The
drawback of score function defined by Ju et al. [9] is that the score value may be
negative.

3. Score value of IVDHFE

Definition 10 Score function of IVDHFE α̃ =
(
h̃, g̃

)
is defined as

S
(
α̃
)
=

*.
,

*.
,

1
2

*.
,

1
∆h̃

*.
,

∑
[γl,γu]∈h

(
γl + γu

)+/
-
−

1
∆g̃

*.
,

∑
[ηl,ηu]∈g

(
ηl + ηu

)+/
-

+/
-

+/
-
+ 1+/

-

/
2, (7)

where ∆h̃ and ∆g̃ denote the number of intervals in h̃ and g̃, respectively.

To compare among the IVDHFEs, a comparative rule is presented as follows:

Definition 11 Let α̃1 and α̃2 be any two IVDHFEs, then
If S

(
α̃1

)
> S

(
α̃2

)
then α̃1 > α̃2.

4. Development of At-CN&t-Ns-based IVDHF prioritized weighted
aggregation operators

In this section, the IVDFEs are fused with PA operator based on At-CN&t-Ns
and proposed the AIVDHFPWA and AIVDHFPWG operators.

Definition 12 Let α̃i =
(
h̃i, g̃i

)
(i = 1, 2, . . . , n) be a collection of IVDHFEs and

let ω = (ω1, ω2, . . . , ωn) be the weight vectors of α̃i with ωi ∈ [0, 1], where

wi =
Ti

n∑
i=1

Ti

, Ti =

i−1∏
k=1

S
(
α̃k

)
(i = 2, . . . , n)), T1 = 1 and S

(
α̃i

)
is the score of α̃i.
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Then, AIVDHFPWA operator is a mapping Ω̃n → Ω̃, where

AIVDHFPWA
(
α̃1, α̃2, . . . , α̃n

)
=

n⊕
A

i=1

*....
,

Ti
n∑

i=1
Ti

α̃i

+////
-

.

⊕
A conveys the meaning as described in Definition 8.

Theorem 1 Let α̃i =
(
h̃i, g̃i

)
(i = 1, 2, . . . , n) be a collection of IVDHFEs, then

the aggregated value by using AIVDHFPWA operator is also an IVDHFE and

AIVDHFPWA
(
α̃1, α̃2, . . . , α̃n

)
=

n⊕
A

i=1

*....
,

Ti
n∑

i=1
Ti

α̃i

+////
-

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n






g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

, g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-






,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n






f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

, f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-






+/////
-

. (8)

Proof. The theorem will be proved using the mathematical induction method.
The theorem is obvious for n = 1.
Assume that theorem is valid for n = p, it will prove that it is also valid for

n = p + 1.
when n = p,

AIV DHFPW A
(
α̃1, α̃2, . . . , α̃p

)
=

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,p






g−1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

, g−1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-






,
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⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,p






f −1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

, f −1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-






+/////
-

.

Now when n = p + 1,

AIV DHFPW A
(
α̃1, α̃2, . . . , α̃p, α̃p+1

)
=

= AIV DHFPW A
(
α̃1, α̃2, . . . , α̃p

) ⊕
A

*....
,

Tp+1
n∑

i=1
Ti

α̃p+1

+////
-

,

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,p






g−1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

, g−1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-






,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,p






f −1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

, f −1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-






+/////
-

⊕
A

*....
,

⋃
[γl

p+1,γ
u
p+1]∈h̃p+1






g−1
*....
,

Tp+1
n∑

i=1
Ti

g
(
γl

p+1

)+////
-

, g−1
*....
,

Tp+1
n∑

i=1
Ti

g
(
γu

p+1

)+////
-






,

⋃
[ηl

p+1,η
u
p+1]∈g̃p+1






f −1
*....
,

Tp+1
n∑

i=1
Ti

f
(
ηl

p+1

)+////
-

, f −1
*....
,

Tp+1
n∑

i=1
Ti

f
(
ηu

p+1

)+////
-






+////
-

,

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,p,p+1






g−1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)
+ f racTp+1

n∑
i=1

Tig
(
γl

p+1

)+////
-

,

g−1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)
+

Tp+1
n∑

i=1
Ti

g
(
γu

p+1

)+////
-





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⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,p,p+1






f −1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)
+

Tp+1
n∑

i=1
Ti

f
(
ηl

p+1

)+////
-

,

f −1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)
+

Tp+1
n∑

i=1
Ti

f
(
ηl

p+1

)+////
-






+////
-

,

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,p,p+1






g−1
*....
,

p+1∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

, g−1
*....
,

p+1∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-






,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,p,p+1






f −1
*....
,

p+1∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

, f −1
*....
,

p+1∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-






+/////
-

,

=

p+1⊕
A

i=1

*....
,

Ti
n∑

i=1
Ti

α̃i

+////
-

= AIV DHFPW A
(
α̃1, α̃2, . . . , α̃p, α̃p+1

)
.

Hence the theorem is proved for p + 1 and thus true for all n.
Hence AIV DHFPW A

(
α̃1, α̃2, . . . , α̃n

)
is an IVDHFE.

This completes the proof.

Theorem 2 (Boundary) Let α̃i =
(
h̃i, g̃i

)
(i = 1, 2, . . . , n) be a collection of

IVDHFEs, and let for all i = 1, 2, . . . , n.

γl
min = min




min
[γli,γ

u
i ]∈h̃i

{
γl

i

}

, γu

min = min



min
[γli,γ

u
i ]∈h̃i

{
γu

i

}

,

γl
max = max




max
[γli,γ

u
i ]∈h̃i

{
γl

i

}

, γu

max = max



max
[γli,γ

u
i ]∈h̃i

{
γu

i

}

,

ηl
min = min




min
[ηli,η

u
i ]∈g̃i

{
ηl

i

}

, ηu

min = min



min
[ηli,η

u
i ]∈g̃i

{
ηu

i

}

,

ηl
max = max




max
[ηli,η

u
i ]∈g̃i

{
ηl

i

}

, ηu

max = max



max
[ηli,η

u
i ]∈g̃i

{
ηu

i

}

.
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Then if α̃− =
( [
γl

min, γ
u
min

]
,

[
ηl

max, η
u
max

] )
and α̃+ =

( [
γl

max, γ
u
max

]
,

[
ηl

min, η
u
min

] )
,

α̃− ¬ AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
¬ α̃+ . (9)

Proof. . For any i = 1, 2, . . . , n, it is clear that γl
min ¬ γ

l
i ¬ γ

l
max and γu

min ¬ γ
u
i ¬

γu
max. Since g(t) (t ∈ [0, 1]) is a monotonic increasing function,

g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

min

)+////
-

¬ g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

¬ g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

max
)+////

-

,

which implies that

γl
min ¬ g−1

*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

¬ γl
max . (10)

Similarly, find that

γu
min ¬ g−1

*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-

¬ γu
max , (11)

for any i = 1, 2, . . . , n, ηl
min ¬ η

l
i ¬ η

l
max.

Since f (t) (t ∈ [0, 1]) is a decreasing function,

f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

max
)+////

-

¬ f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

¬ f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

min

)+////
-

,

which implies that

ηl
max ¬ f −1

*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

¬ ηl
min . (12)

Similarly,

ηu
max ¬ f −1

*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-

¬ ηu
min . (13)
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From (10) and (12), it is obtained that

γl
min − η

l
min ¬ g−1

*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

− f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

¬ γl
max − η

l
max .

Also, from (11) and (13), it is found that

γu
min − η

u
min ¬ g−1

*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-

− f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-

¬ γu
max − η

u
max ,

i.e., S
(
α̃−

)
¬ S

(
AIV DHFPW A

(
α̃1, α̃2, . . . , α̃n

))
¬ S

(
α̃+

)
.

Therefore, α̃− ¬ AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
¬ α̃+.

Theorem 3 Let α̃i (i = 1, 2, . . . , n be a collection of IVDHFEs, ωi =
Ti

n∑
i=1

Ti

(i = 1, 2, . . . , n) be their corresponding weight vectors, if α̃ be an IVDHFE, then

AIV DHFPW A
(
α̃1 ⊕A α̃, α̃2 ⊕A α̃, . . . , α̃n ⊕A α̃

)
=

= AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
⊕A α̃.

Proof.

α̃i ⊕A α̃ =

*.........
,

⋃
[γli,γ

u
i ]∈h̃i,

[γl,γu]∈h̃
(i=1,2,...,n)

{ [
g−1

(
g

(
γl

i

)
+ g

(
γl

))
, g−1

(
g

(
γu

i

)
+ g

(
γu))] }

,

⋃
[ηli,η

u
i ]∈g̃i,

[ηl,ηu]∈g̃
(i=1,2,...,n)

{ [
f −1

(
f
(
ηl

i

)
+ f

(
ηl

))
, f −1

(
f
(
ηu

i

)
+ f

(
ηu))] }

+/////////
-

.

So,
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AIV DHFPW A
(
α̃1 ⊕A α̃, α̃2 ⊕A α̃, . . . , α̃n ⊕A α̃

)

=

*.........
,

⋃
[γli,γ

u
i ]∈h̃i,

[γl,γu]∈h̃
(i=1,2,...,n)






g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
g−1

(
g

(
γl

i

)
+ g

(
γl

)))+////
-

,

g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
g−1

(
g

(
γu

i

)
+ g

(
γu)))+////

-




⋃
[ηli,η

u
i ]∈g̃i,

[ηl,ηu]∈g̃
(i=1,2,...,n)






f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(

f −1
(

f
(
ηl

i

)
+ f

(
ηl

)))+////
-

+/////////
-

f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(

f −1
(

f
(
ηl

i

)
+ f

(
ηl

)))+////
-






+////
-

,

=

*.........
,

⋃
[γli,γ

u
i ]∈h̃i,

[γl,γu]∈h̃
(i=1,2,...,n)






g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)
+ g

(
γl

)+////
-

,

g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)
+ g

(
γu)+////

-






⋃
[ηli,η

u
i ]∈g̃i,

[ηl,ηu]∈g̃
(i=1,2,...,n)






f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)
+ f

(
ηl

)+////
-

f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)
+ f

(
ηu)+////

-






+////
-

.
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Now,

AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
⊕A α̃ =

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i

(i=1,2,...,n)






g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

, g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-






,

⋃
[ηli,η

u
i ]∈g̃i

(i=1,2,...,n)






f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

, f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-






+/////
-

⊕A
({ [

γl, γu
] }
,

{ [
ηl, ηu

] })

=

*.........
,

⋃
[γli,γ

u
i ]∈h̃i,

[γl,γu]∈h̃
(i=1,2,...,n)






g−1
*....
,

g

*....
,

g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

+////
-

+ g
(
γl

)+////
-

,

g−1
*....
,

g

*....
,

g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-

+////
-

+ g
(
γu)+////

-






,

⋃
[ηli,η

u
i ]∈g̃i,

[ηl,ηu]∈g̃
(i=1,2,...,n)






f −1
*....
,

f
*....
,

f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

+////
-

+ f
(
ηl

)+////
-

,

f −1
*....
,

f
*....
,

f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-

+////
-

+ f
(
ηu)+////

-






+////
-

,

=

*.........
,

⋃
[γli,γ

u
i ]∈h̃i,

[γl,γu]∈h̃
(i=1,2,...,n)






g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)
+g

(
γl

)+////
-

, g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)
+g

(
γu)+////

-





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⋃
[ηli,η

u
i ]∈g̃i,

[ηl,ηu]∈g̃
(i=1,2,...,n)






f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)
+ f

(
ηl

)+////
-

, f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)
+ f

(
ηu)+////

-






+////
-

.

Therefore,

AIV DHFPW A
(
α̃1 ⊕A α̃, α̃2 ⊕A α̃, . . . , α̃n ⊕A α̃

)
=

= AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
⊕A α̃.

Hence the theorem is proved.

Theorem 4 (Idempotency) If all α̃i (i = 1, 2, . . . , n) are equal and let α̃i =({ [
γl, γu

] }
,

{ [
ηl, ηu

] })
for all (i = 1, 2, . . . , n), then

AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
=

({ [
γl, γu

] }
,

{ [
ηl, ηu

] })
.

Proof.

AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.....
,

⋃
[γl,γu]∈h̃i,
i=1,2,...,n






g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

, g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-






,

⋃
[ηl,ηu]∈g̃i,
i=1,2,...,n






f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

, f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-






+////
-

.

Now, since α̃i =
({ [

γl, γu
] }
,

{ [
ηl, ηu

] })
for all (i = 1, 2, . . . , n), γl

i = γl ,
γu

i = γ
u, ηl

i = η
l and ηu

i = η
u for all (i = 1, 2, . . . , n).

Therefore,

AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.....
,

⋃
[γl,γu]∈h̃i,
i=1,2,...,n






g−1
*....
,

g
(
γl

) n∑
i=1

Ti
n∑

i=1
Ti

+////
-

, g−1
*....
,

g
(
γu) n∑

i=1

Ti
n∑

i=1
Ti

+////
-






,
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⋃
[ηl,ηu]∈g̃i,
i=1,2,...,n






f −1
*....
,

f
(
ηl

) n∑
i=1

Ti
n∑

i=1
Ti

+////
-

, f −1
*....
,

f
(
ηu) n∑

i=1

Ti
n∑

i=1
Ti

+////
-






+////
-

=

*.....
,

⋃
[γl,γu]∈h̃i
i=1,2,...,n

{ [
γl, γu

] }
,

⋃
[ηl,ηu]∈g̃i
i=1,2,...,n

{ [
ηl, ηu

] } +/////
-

,

=
({ [

γl, γu
] }
,

{ [
ηl, ηu

] })
.

Hence the theorem is proved.
At-CN&t-N-based IVDHF prioritized WG (AIVDHFPWG) operator is de-

fined as follows.

Definition 13 Let α̃i =
(
h̃i, g̃i

)
(i = 1, 2, . . . , n) be a collection of IVDHFEs and

Ti
n∑

i=1
Ti

indicates preference degree of α̃i, where Ti =

i−1∏
k=1

S
(
α̃k

)
(i = 2, . . . , n),

T1 = 1 and S
(
α̃i

)
is the score value of α̃i. If

AIV DHFPWG
(
α̃1, α̃2, . . . , α̃n

)
=

n⊗
A

i=1

*....
,

Ti
n∑

i=1
Ti

α̃i

+////
-

,

then AIV DHFPWG is called the IVDHF prioritized WG (AIVDHFPWG) oper-
ator.

⊗A conveys the meaning as described in Definition 8.

Theorem 5 Let α̃i =
(
h̃i, g̃i

)
(i = 1, 2, . . . , n) be a collection of IVDHFEs, then

the aggregated value using AIVDHFPWG operator is also an IVDHFE and

AIV DHFPWG
(
α̃1, α̃2, . . . , α̃n

)
=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n






f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
γl

i

)+////
-

, f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
γu

i

)+////
-






,
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⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n






g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
ηl

i

)+////
-

, g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
ηu

i

)+////
-






+/////
-

. (14)

Proof. The proof is similar to Theorem 1.
The proposed AIVDHFPWA and AIVDHFPWG operators provide a general

expression with the generators f (x) and g(x). Some particular cases of the
proposed PA operators are presented as follows:

Case 1 If f (x) = − log x is considered, then the AIVDHFPWA and AIVD-
HFPWG operators reduced to the IVDHF prioritizedWA (IVDHFPWA) andWG
(IVDHFPWG) operators, respectively, which are shown as follows:

IV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n





1 −

n∏
i=1

(
1 − γl

i

) Ti
n∑
i=1

Ti
, 1 −

n∏
i=1

(
1 − γu

i

) Ti
n∑
i=1

Ti





,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n






n∏
i=1

(
ηl

i

) Ti
n∑
i=1

Ti
,

n∏
i=1

(
ηu

i

) Ti
n∑
i=1

Ti






+/////
-

, (15)

and

IV DHFPWG
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n






n∏
i=1

(
γl

i

) Ti
n∑
i=1

Ti
,

n∏
i=1

(
γu

i

) Ti
n∑
i=1

Ti





,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n





1 −

n∏
i=1

(
1 − ηl

i

) Ti
n∑
i=1

Ti
,1 −

n∏
i=1

(
1 − ηu

i

) Ti
n∑
i=1

Ti






+/////
-

. (16)

Case 2 For adopting the Einstein operations, the AIVDHFPWA operator
turned to the IVDHF prioritized Einstein WA (IVDHFPEWA), and IVDHF pri-
oritized Einstein WG (IVDHFPEWG) operators, sequentially, defined as:
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IV DHFPEW A
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.......
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n






n∏
i=1

(
1 + γl

i

) Ti
n∑
i=1

Ti
−

n∏
i=1

(
1 − γl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + γl

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
1 − γl

i

) Ti
n∑
i=1

Ti

,

n∏
i=1

(
1 + γu

i

) Ti
n∑
i=1

Ti
−

n∏
i=1

(
1 − γu

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + γu

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
1 − γu

i

) Ti
n∑
i=1

Ti






,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n






2
n∏

i=1

(
ηl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
2 − ηl

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
ηl

i

) Ti
n∑
i=1

Ti

,

2
n∏

i=1

(
ηl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
2 − ηl

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
ηl

i

) Ti
n∑
i=1

Ti






+///////
-

, (17)

and

IV DHFEPWG
(
α̃1, α̃2, . . . , α̃n

)
=

*.......
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n






2
n∏

i=1

(
γl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
2 − γl

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
γl

i

) Ti
n∑
i=1

Ti

,

2
n∏

i=1

(
γu

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
2 − γu

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
γu

i

) Ti
n∑
i=1

Ti






,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n






n∏
i=1

(
1 + ηl

i

) Ti
n∑
i=1

Ti
−

n∏
i=1

(
1 − ηl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + ηl

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
1 − ηl

i

) Ti
n∑
i=1

Ti

,

n∏
i=1

(
1 + ηu

i

) Ti
n∑
i=1

Ti
−

n∏
i=1

(
1 − ηu

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + ηu

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
1 − ηu

i

) Ti
n∑
i=1

Ti






+///////
-

. (18)
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Case 3 When putting f (x) = log
(
σ + (1 − σ)x

x

)
, σ > 0, i.e., for con-

sideration of Hamacher operations, the AIVDHFPWA and AIVDHFPWA op-
erators converted, respectively, to the IVDHF prioritized Hamacher WA (IVD-
HFPHWA), and IVDHF prioritized Hamacher WG (IVDHFPHWG) operators,
which are described as:

IV DHFPHW A
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.......
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n






n∏
i=1

(
1 + (σ − 1) γl

i

) Ti
n∑
i=1

Ti
−

n∏
i=1

(
1 − γl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + (σ − 1) γl

i

) Ti
n∑
i=1

Ti
+ (σ − 1)

n∏
i=1

(
1 − γl

i

) Ti
n∑
i=1

Ti

,

n∏
i=1

(
1 + (σ − 1) γu

i

) Ti
n∑
i=1
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, (19)

and,

IV DHFHPWG
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.......
,
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


+///////
-

. (20)

Case 4 The AIVDHFPWA and AIVDHFPWG operators switched to the
IVDHF prioritized Frank WA (IVDHFPFWA), and IVDHF prioritized Frank
WG (IVDHFPFWG) operators for calculating with the Frank t-CN and t-N,

f (x) = log
(
τ − 1
τx − 1

)
, τ > 1, respectively, which are expressed as:

IV DHFPFW A
(
α̃1, α̃2, . . . , α̃n

)
=

*.......
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,...,n



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+///////
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*.......
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+///////
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
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
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+///////
-

, (21)

and
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IV DHFFPWG
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*.......
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


+///////
-

. (22)

AIVDHFPWG operator also obeys the above properties as like AIVDHFPWA
operator.

In the following sections, the methodological development of the MCDM
method is incorporated and are described subsequently.

5. An approach to MCDM with the prioritization under IVDHF environment

In this section, the proposed AIVDHFPWA and AIVDHFPWG operators are
applied on MCDM with IVDHFEs, in which the criteria are in different priority
level. Let {z1, z2, . . . , zm} be a set of alternatives, {C1,C2, . . . ,Cn} be a set of
criteria, and there prioritization relationship is C1 � C2 � . . . � Cn. Suppose that
D̃ =

[
α̃i j

]
m×n

be an IVDHF decision matrix (IVDHFDM), where α̃i j =
(
h̃i j, g̃i j

)
is provided by the DM for the alternative zi satisfying the criteria c j . Then, the
proposed AIVDHFPWA (or AIVDHFPWG) operators are used to develop an
approach for solving MCDM problems in IVDHF environment. The proposed
methodology is described through the following steps:

Step 1. In general, criteria are categorized into two types: one is benefit
criteria, and the other one is cost criteria. If the IVDHFDM possesses cost
type criteria, the matrix D̃ =

[
α̃i j

]
m×n

can be converted into the normalized
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IVDHFDM form as R̃ =
(
r̃i j

)
m×n

in the following way,

r̃i j =



α̃i j for benefit criteria Cj ,

α̃c
i j for cost criteria Cj ,

(23)

i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Where α̃c
i j is the complement α̃i j .

Step 2. Calculate the values of Ti j (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) based on
the following equations,

Ti j =

j−1∏
k=1

S
(
r̃ik

)
(i = 1, 2, . . . ,m; j = 2, . . . , n); (24)

Ti1 = 1, i = 1, 2, . . . ,m. (25)

Step 3. Aggregate the IVDHFEs r̃i j (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) for each
alternative zi using the IVDHFPHWA (or IVDHFPHWG) or IVDHFPFWA (or
IVDHFPFWG) operator as follows:
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+/////////
-

, (26)

or utilizing the proposed operator IVDHFPHWG, which is presented above by
Eq. (16), aggregate the IVDHFEs elements as:

r̃i = IV DHFPHWG
(
r̃i1, r̃i2, . . . , r̃in
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+/////////
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,

or aggregating the IVDHFEs using IVDHFPFWG operator already shown by
Eq. (17).

Step 4. Using the proposed score function as in Definition 11, the rank of all
alternatives are evaluated.
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6. Illustrative example

In this section, an academic field related problem, adapted from an example
previously studied by Jin et al. [30], is considered to illustrate the application of
the proposedmethod and demonstrate its feasibility and effectiveness in a realistic
scenario. For strengthening the academic environment of a Chinese university,
the best alternative is to select among five alternatives, {A1, A2, A3, A4, A5}, by
considering four criteria: C1: morality; C2: research capability; C3: teaching skill;
and C4: education background. The prioritization relationship for the criteria is
C1 � C2 � C3 � C4. The alternatives are evaluated by the expert on the basis
of the criteria under IVDHF environment, and the IVDHFDM is constructed as
given in Table 1.

Table 1: IVDHFDM

C1 C2

A1 ({[0.3, 0.4], [0.5, 0.8]} , {[0.17, 0.2]}) ({[0.3, 0.4], [0.4, 0.7]} , {[0.2, 0.3]})

A2 ({[0.3, 0.5]} , {[0.3, 0.4]}) ({[0.2, 0.3], [0.4, 0.5]} , {[0.3, 0.4], [0.4, 0.5]})

A3 ({[0.3, 0.4], [0.5, 0.7]} , {[0.05, 0.1], [0.1, 0.2]}) ({[0.3, 0.5]} , {[0.1, 0.2]})

A4 ({[0.3, 0.4], [0.4, 0.5], [0.5, 0.6]} , {[0.01, 0.1]}) ({[0.5, 0.7]} , {[0.05, 0.1], [0.1, 0.15]})

A5 [{[0.3, 0.6], [0.7, 0.9]} , {[0.05, 0.1]}] ({[0.4, 0.6]} , {[0.01, 0.1], [0.1, 0.15]})

C3 C4

A1 ({[0.6, 0.8]} , {[0.05, 0.1]}) ({[0.3, 0.4], [0.5, 0.6]} , {[0.2, 0.3], [0.3, 0.4]})

A2 {[0.5, 0.6], [0.7, 0.8]} , {[0.15, 0.2]} ({[0.4, 0.5]} , {[0.1, 0.2], [0.2, 0.3], [0.3, 0.4]})

A3 ({[0.7, 0.8], [0.8, 0.9]} , {[0.02, 0.1]}) ({[0.6, 0.7]} , {[0.05, 0.1], [0.1, 0.2]})

A4 ({[0.3, 0.5], [0.6, 0.8]} , {[0.06, 0.1], [0.1, 0.2]}) ({[0.8, 0.9]} , {[0.04, 0.1]})

A5 ({[0.5, 0.7], [0.8, 0.9]} , {[0.01, 0.06]}) ({[0.7, 0.8]} , {[0.01, 0.1], [0.1, 0.2]})

To obtain the ranking results among the alternative(s), the developed AIVD-
HFPWA and AIVDHFPWG operators are used, and step by step execution of
the proposed method is described below. In this context, it is to be noted here
that three types of At-CN&t-N, viz., Hamacher, Dombi and Frank Classes are
considered. Algebraic and Einstein classes can be derived as particular cases of
Hamacher class of t-CN&t-Ns.

Step 1. Since all the criteria Cj ( j = 1, 2, 3, 4) are of the benefit type, then the
criteria values do not need normalization and take

[
r̃i j

]
m×n
=

[
α̃i j

]
m×n

.
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Step 2. Calculating the values of Ti j (i = 1, 2, . . . , 5; j = 1, 2, 3, 4)) based on
the Eqs. (24) and (25) as follows:

Ti j =



1 0.6575 0.3945 0.3205
1 0.5250 0.2494 0.1839
1 0.6821 0.4263 0.3709
1 0.6975 0.5231 0.3753
1 0.7750 0.5464 0.4617



.

Step 3. Utilizing the IVDHPFWA, IVDHPFEWA, IVDHFPHWA, and IVD-
HFPFWA operators, to aggregate all the preference values r̃i j , and get the overall
preference values r̃i, which are shown in Tables 2–5.

Table 2: Overall preference values of r̃i utilizing IVDHFPWA operator

r̃1 =
({
[0.3622,0.5002], [.3905,.5268], [.3889,.5875], [.4160,.6095], [0.4465,0.6854],

[0.4711,0.7022], [0.4697,0.7404], [0.4932,0.7542]
}
,
{
[0.1483,0.2107],

[0.1567,0.2190]
})

r̃2 =
({
[0.3149,0.4681], [.3581,.5131], [.3658,.5140], [.4057,.5551]

}
,
{
[.2477,.3431],

[0.2644,0.3564], [0.2747,0.3662], [0.2676,0.3643], [0.2856,0.3784], [0.2967,0.3888]
})

r̃3 =
({
[0.4435,0.5741], [0.4810,0.6220], [0.51410.6780], [0.5468,0.7142]

}
,{

[0.0684,0.1600], [0.0758,0.1775], [0.0904,0.1885], [0.1003,0.2091]
})

r̃4 =
({
[0.4664,0.6295], [.5233,.6919], [.4972,.6546], [.5508,.7128], [0.5313,0.6831],

[0.5813,0.7365]
}
,
{
[0.0656,0.1306], [0.0727,0.1502], [0.0790,0.1573],

[0.0876,0.1809]
})

r̃5 =
({
[0.4546,0.6630], [0.5444,0.7284], [0.5977,0.7952], [0.6640,0.8350]

}
,{

[0.0178,0.0905], [0.0261,0.1015], [0.0339,0.1013], [0.0496,0.1136]
})

Table 3: Overall preference values of r̃i utilizing IVDHFPEWA operator

r̃1 =
({
[0.3569,0.4899], [.3848,.517], [.3842,.5776], [.4114,0.6013], [0.4417,0.6753],

[0.4674,0.6946], [0.4668,0.7367], [0.4918,0.753]
}
,
{
[0.1494,0.2123],

[0.1583,0.2214]
})

r̃2 =
({
[0.3114,0.4647], [.3475,.5042], [.3639,.5136], [.3985,.5506]

}
,
{
[.2497,.3457],

[0.2654,0.3583], [0.2756,0.3680], [0.2708,0.3683], [0.2877,0.3815], [0.2986,0.3917]
})

r̃3 =
({
[0.4324,0.5653], [0.4642,0.6075], [0.5076,0.6748], [0.5366,0.7083]

}
,

[0.0687,0.1607], [0.0762,0.1780], [0.0918,0.1905], [0.1017,0.2107]
})

r̃4 =
({
[0.4527,0.6168], [.5119,.6807], [.4869,.6459], [.5436,0.7059], [0.5230,0.677],

[0.5768,0.7326]
}
,
{
[0.0657,0.1312], [0.0729,0.1509], [0.0792,0.1580],

[0.0878,0.1814]
})

r̃5 =
({
[0.4470,0.6610], [0.5290,0.7227], [0.5924,0.7912], [0.6579,0.8316]

}
,{

[0.0179,0.0905], [0.0263,0.1019], [0.0341,0.1015], [0.0500,0.1142]
})
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Table 4: Overall preference values of r̃i utilizing IVDHFPHWA operator

r̃1 =
({
[0.3541,0.4853], [.3818,.5126], [.3817,0.5729], [0.409,0.5975], [.4391,.6704],

[0.4654,0.691], [0.4653,.735], [0.491,0.7524]
}
,
{
[0.1498,0.2129], [0.1589,0.2223]

})
r̃2 =

({
[0.3094,0.4629], [.3422,.5], [.3629,.5134], [.395,.5487]

}
,
{
[.2505,.3467],

[0.2659,0.359], [0.276,0.3687], [0.2721,0.37], [0.2885,0.3828], [0.2993,0.3929]
})

r̃3 =
({
[0.4267,0.5613], [0.4560,0.6011], [0.5043,0.6734], [0.5316,0.7059]

}
,{

[0.0689,0.1610], [0.0764,0.1782], [0.0923,0.1913], [0.1022,0.2113]
})

r̃4 =
({
[0.446,.6111], [.5063,0.6756], [.4821,.6422], [.5404,.7029], [0.519,0.6745],

[0.5749,0.731]
}
,
{
[0.0658,0.1314], [0.073,0.1511], [0.0793,0.1583], [0.0878,0.1815]

})
r̃5 =

({
[0.4432,0.6602], [0.5215,0.7205], [0.5898,0.7895], [0.655,0.8302]

}
,{

[0.0179,0.0906], [0.0264,0.102], [0.0342,0.1016], [0.0501,0.1144]
})

Table 5: Overall preference values of r̃i utilizing IVDHFPFWA operator

r̃1 =
({
[0.3584,0.4919], [.3865,.5190], [.3855,0.5795], [0.4128,0.6029], [.4431,.677],

[0.4685,0.6958], [0.4676,.7373], [0.4921,0.7531]
}
,
{
[0.1494,0.2122],

[0.1583,0.2212]
})

r̃2 =
({
[0.3127,0.4657], [.3506,.5062], [.3645,.5137], [.4004,.5514]

}
,
{
[.2496,.3453],

[0.2654,0.3580], [0.2755,0.3677], [0.2706,0.3677], [0.2875,0.3810], [0.2984,0.3912]
})

r̃3 =
({
[0.4353,0.5670], [0.4681,0.6097], [0.5093,0.6753], [0.5388,0.7090]

}
,{

[0.0687,0.1607], [0.0763,0.1780], [0.0918,0.1905], [0.1017,0.2106]
})

r̃4 =
({
[0.4559,.6187], [.5145,0.6824], [.4891,.6470], [.5450,.7067], [0.5247,0.6777],

[0.5776,0.7329]
}
,
{
[0.0657,0.1312], [0.0729,0.1509], [0.0792,0.158],

[0.0878,0.1814]
})

r̃5 =
({
[0.4489,0.6613], [0.5324,0.7232], [0.5935,0.7914], [0.6590,0.8318]

}
,{

[0.0179,0.0905], [0.0263,0.1019], [0.0341,0.1015], [0.0500,0.1142]
})

Step 4. Calculating the score functions S
(
r̃i
)
of the overall IVDHFEs.

Step 5.Rank all the candidates Ai (i = 1, 2, . . . , 5) in accordancewith the score
values S

(
r̃i
)
of the overall IVDHFEs. From the Fig. 1–4, it is clear that when

IVDHFPHWA, IVDHFPHWG, IVDHFPFWA and IVDHFPFWG operators are
utilized, the same ordering of the candidates is obtained, and the most desirable
candidate is A5.

The overall IVDHFvalues r̃i (i = 1, 2, . . . , 5 of the candidates Ai are derived by
aggregating IVDHFEs r̃i j ( j = 1, 2, . . . , 5)) for all i with prioritized aggregation
operator IVDHFPWA, and is presented in Table 2, whereas Table 3 represents
the aggregating values of each candidate Ai using Einstein-based aggregation
operator IVDHFPEWA instead of IVDHFPWA.

Subsequently, Hamacher (σ = 3) and Frank (τ = 3) based aggregation opera-
tors IVDHFPHWA and IVDHFPFWA are utilized to aggregate the performance
values of the alternatives Ai and is demonstrated in Tables 4 and 5, respectively.
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The score values and the ranking results by varying parameters, σ and τ, in
the IVDHFPHWA, IVDHFPHWG, IVDHFPFWA and IVDHFPFWG operators,
are shown in Tables 6–9, respectively.

Table 6: Ranking results for different parameters of the IVDHFPHWA operator

Parameter S(z1) S(z2) S(z3) S(z4) S(z5) Ordering
σ = 1 0.6752 0.5587 0.7190 0.7447 0.7968 A5 � A4 � A3 � A1 � A1

σ = 2 0.6714 0.5550 0.7136 0.7401 0.7935 A5 � A4 � A3 � A1 � A1

σ = 3 0.6696 0.5533 0.7112 0.7381 0.7920 A5 � A4 � A3 � A1 � A1

Table 7: Ranking results for different parameters of the IVDHFPHWA operator

Parameter S(z1) S(z2) S(z3) S(z4) S(z5) Ordering
σ = 1 0.6462 0.5370 0.6812 0.7039 0.7687 A5 � A4 � A3 � A1 � A1

σ = 2 0.6502 0.5398 0.6858 0.7090 0.7724 A5 � A4 � A3 � A1 � A1

σ = 3 0.6526 0.5414 0.6886 0.7121 0.7747 A5 � A4 � A3 � A1 � A1

Table 8: Ranking results for different parameters of the IVDHFPFWA operator

Parameter S(z1) S(z2) S(z3) S(z4) S(z5) Ordering
τ = 2 0.6732 0.5568 0.7162 0.7422 0.7950 A5 � A4 � A3 � A1 � A1

τ = 3 0.6721 0.5558 0.7146 0.7409 0.7941 A5 � A4 � A3 � A1 � A1

τ = 4 0.6714 0.5552 0.7136 0.7400 0.7934 A5 � A4 � A3 � A1 � A1

Table 9: RRanking results for different parameters of the IVDHFPFWG operator

Parameter S(z1) S(z2) S(z3) S(z4) S(z5) Ordering
τ = 2 0.6479 0.5383 0.6833 0.7151 0.7703 A5 � A4 � A3 � A1 � A1

τ = 3 0.6489 0.5390 0.6844 0.7160 0.7712 A5 � A4 � A3 � A1 � A1

τ = 4 0.6495 0.5394 0.6851 0.7167 0.7717 A5 � A4 � A3 � A1 � A1

Now, based on the DMs’ preferences, the parameter can take different values.
Based on the Hamacher (or Frank) parameter σ (or τ) between 0 to 20 (or 1 to
20), the score values and ranking of the five alternatives are shown in Fig. 1–4.

From Fig. 1, when the given problem is solved with IVDHFPHWA operator,
it is perceived that the ordering of the alternatives does not change. Still, with
varying the Hamacher parameter σ the score value of the alternatives decreases
monotonically.
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Figure 1: Changes of the score values applying

Similarly, if IVPHFHWG operator is used, the score value of alternatives are
computed by varying the Hamacher parameter σ ∈ [0, 20], the obtained results
are advertised in the following Fig. 2. It is to be noted here that the ranking of

Figure 2: Changes of the score values applying IVDHFPHWG
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alternatives does not modify as like using IVDHFPHWA operator. But the score
value of the alternatives increases monotonically.

If IVDHFPFWAand IVDHFPFWGoperators are used for the Frank parameter
τ between 1 to 20, individually, the score values are presented in Fig. 3 and
Fig. 4, respectively. As like the above cases, the equivalent observations are seen
corresponding to averaging and geometric operators.

Figure 3: Changes of the score values applying IVDHFPFWA

It is decent tomention here that no changes in the ranking of the alternatives Ai
(i = 1, 2, . . . , 5) are found while making the decision using different PA operators.
Thus it persists that the suggested methodology has a durable consistency.

It is worthy tomention here that, same ranking results of alternatives are found
using the proposed method and which also covers the result of Jin et al. [30].
The technique developed by Jin et al. [30] is based on Einstein operation under
DHF environment, whereas the proposed approach is based on At-CN&t-Ns
under IVDHF information. Because IFS, and DHFS are the particular cases of
IVDHFS and also At-CN&t-Ns contains an adjustable parameter. So it is claimed
that the approach of Jin et al. [30] is a special case of the proposed method. Thus,
the proposed methodology is more consistent than the technique developed by
Jin et al. [30].
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Figure 4: Changes of the score values applying IVDHFPFWG

7. Conclusion

The main contributions of this article is to define a score function of IVD-
HFE and to propose two prioritized aggregation operators AIVDHFPWA and
AIVDHFPWG based on At-CN&t-Ns under the IVDHF context. Most of the
prioritized-based aggregation operators can be constructed from AIVDHFPWA
and AIVDHFPWG operators. Some desirable properties, such as idempotency,
monotonicity, and boundedness of the proposed operators, are investigated. An
approach for solving MCDM problem is presented in which the criteria are in
different preference level. Through the illustrative example, it has been estab-
lished the fact that the proposed method not only captures the existing Einstein
operation based aggregation operators for IVHFEs [30] but also extends the scope
of using aggregation operators in IVDHF environment. In future, the proposed
operators may be extended to other domains, viz., q-rung orthopair fuzzy [34],
Neutrosophic set [35,36], cubic bipolar fuzzy [37] and Pythagorean fuzzy [38–42]
environments. Several types of AOs based on Schweizer-Sklar [43], Yager [44]
and many other classes of t-CN&t-Ns can also be developed in IVDHF contexts.
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