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The algorithm of adaptive determination
of amplification of the PD filter estimating object state
on the basis of signal measurable on-line

Tadeusz KWATER, Przemystaw HAWRO, Jacek BARTMAN, Damian MAZUR

The article presents the algorithm that enables adaptive determination of the amplification
coeflicient in the filter equation provided by Kalman. The method makes use of an estimation
error, which was defined for this purpose, and its derivative to determine the direction of correc-
tion changes of the gain vector. This eliminates the necessity to solve Riccati equation, which
causes reduction of the method computational complexity. The experimental studies carried out
using the proposed approach relate to the estimation of state coordinates describing river pollu-
tion using the BOD (biochemical oxygen demand) and DO (dissolved oxygen) indicators).The
acquired results indicate that the suggested method does better estimations than the Kalman
filter. Two indicators were used to measure the quality of estimates: the Root Mean Squared
Error (RMSE) and the Mean Percentage Error (MPE).
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1. Introduction

The knowledge of full state vector is a necessary condition for solving a se-
ries of problems that occur during exploitation of dynamic systems, including
monitoring, diagnosis or control types. In real conditions observation of all the
parameters is often not possible in the on-line mode, as measurement of some
of them may be time-consuming (e.g. the necessary laboratory service or ob-
servation of the biological process), or even impossible (due to technological
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reasons). An example of this type of situation is determination of the biochem-
ical pollution level of a river, which requires BOD measurement (biochemical
oxygen demand), as well as DO (dissolved oxygen) measurement. While the
DO measurement is instant, the BOD measurement requires 5, 7 or 20 days of
laboratory service [15]. Similar situation occurs in the case of temperature mea-
surement and the measurement of solution concentration in a chemical reactor
— the temperature measurement is instant, while the concentration measurement
requires laboratory work [8]. In such situations, estimation of one coordinate of
the state vector (the measurement of which is time-consuming) may be done by
using the measurement of the second coordinate and other informations. The
issues of state vector estimation are broadly discussed in references; in order
to perform it the authors make use of different tools: the Kalman filter and its
variations [1,2,5,7,10, 14, 16, 18], artificial neural networks [6, 7, 17], statistical
methods [4,6,17,22], hybrid methods [26]. The Kalman filter and its derivatives
seem to be the most popular tool for state estimation. Some of their features,
however, seem problematic: the classic Kalman filter requires object linearity
and derive of the Kalmans filter require the knowledge of covariations of inter-
ferences [13,25]. Determination of covariance requires numerous studies that
encompass statistical measurements and analyses, which in situations dependent
for example on weather, are unreliable. The artificial intelligence methods require
selection of a representative dataset [21], which is a very difficult task in the case
of processes of unobvious dependencies between the features. Very frequently,
in order to find an appropriate set that comprises an unambiguous process state
signature it is essential to gather extra amount of data and to apply the method of
feature selection.

The article makes use of Kalman equations for estimation of the object/process
state vector, determining adaptively the amplification coefficient that occurs in
it. In the original Kalman method determination of the amplification coefficient
requires the Riccati equation. The proposed method frees us from the necessity
to know covariance of system and measurement interferences that are required
in the Riccati equation. The effectiveness of the proposed approach was studied
in the monitoring process of river biochemical pollution- on the basis of the dis-
solved oxygen (DO) measurement the biochemical oxygen demand (BOD) was
estimated. The issue of water region pollution is an extremely important and
difficult problem. The difficulty consists in the impossibility of instant measure-
ment of the parameters that are required to determine water pollution; thus, it is
necessary to estimate the signals that are difficult to measure.

The Kalman filter (KF) determines optimal state estimation for stationary,
linear systems, on the basis of measurements interfered with white Gaussian
noise [13]. These requirements pose serious limitations as most systems are non-
linear and measurements/observations are burdened with Levy’s noise. The first
known and commonly adapted method of the Kalman filter relied on approxi-
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mation,by means of Taylor series, the non-linearity of system dynamics by the
model linearized around the last state estimation. This method was called Ex-
tended Kalman Filter (EKF). A key operation performed in the Kalman filter
is propagation of the Gaussian random variable by system dynamics. In [12]
Julier and Uhlman solved this problem by applying a deterministic approach to
sampling, which enables to avoid the errors made by EKF. State distribution is
approximated by the Gaussian variable, but in this method, also known as Un-
scented Kalman Filter (UKF), it is represented by a minimum set of carefully
selected samples. These samples fully represent the average and the covariance
of the Gaussian random variable to the third order (extended Taylor series) for
any non-linearity. The EKF, on the other hand, reaches only the first order accu-
racy. Another alternative variant of the non-linear Kalman filter is the Divided
Difference Kalman Filter (DDKF), presented in [19,20]. An advantage of DDKF
over EKF is the fact that it does not require determination of Jacobian non-linear
derivatives of dynamic and measurement equations, but it makes use of interpo-
lation with Stirling polynomial, while an advantage over UKF is the fact that it
does not have to use the parameters strongly determining estimation accuracy.
A solution similar to DDKF is the Central Difference Kalman Filter (CDKF),
published by Ito in [11]. In [24] the authors present modification of the Kalman
filter, which enables us to apply the method in linear systems with non-Gaussian
Levy’s filter of non-finite variance. As the non-Gaussian Levy’s noise with in-
finite variance occurs commonly [23], the proposed method seems interesting.
Its drawback, however, is the computation cost which exceeds high computation
cost of the Kalman filter. An extension of the Kalman filter to the Levy’s noise
was also proposed by Applebaum and Blackwood in [3]. The main result is that
the components of the observation noise that have infinite variance make no
contribution to the filtering equations.

Further structure of the paper is as follows: the second part presents the
proposed algorithm of adaptive determination of the PD filter, which is proceeded
by a brief summary of the equations proposed by Kalman. The third part includes
the model of the object used in experimental studies, while the fourth part presents
the experiments that compare the estimation quality by means of an adaptive PD
filter and the Kalman filter.

2. Determination of the amplification coefficient in the estimation equation

2.1. Kalman filter

The method of state estimation proposed by Kalman requires solving two
differential equations [13]:

£=A%+Kp[y-Cz], 20, (1)
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d
EP:AP+PAT—PCTV‘1CP+DWDT, 2)

where: A — state matrix (the parameters that determine object/process dynamics),
KF — vector of amplification coeflicients P — estimation error covariance matrix C
—measurement matrix, D — matrix of system interference influence V — covariance
matrix of measurement noise W — covariance matrix of system noise.
The measurements y (DO) that appear in equation (1) are described by the
following relationship:
y=Cx+v, 3)

in which the value v stands for measurement noise.

The equation (1) determines the estimated state vector, while the nonlinear
Riccati equation (2) enables to determine the gain in (1) that appears in the
equation, according to the dependency:

Kp=PC'V! (4)

Optimality of estimation of the state vector determined by Kalman filter depends
on the accuracy of gain calculation (Kr), which depends mainly on the precision
of statistic estimations of covariance matrices of system interferences (W) and
measurement interferences (V).

2.2. Adaptive calculation of the amplification coefficient

The method of designating the amplification value in equation (1) that was
proposed by Kalman (4) is optimal in relation to estimation error covariance. It is
determined on the basis of the assumption that interferences have a form of white
Gaussian noise, which in reality is not always the case. In the proposed approach
determination of the filter amplification vector by means of an additive method
that does not require the knowledge of interference nature is assumed:

K1 =K; + AK;, (5)

where: K;| —new value of the filter amplification vector, AK; — correction of the
filter amplification value in i-th iteration step.

3. Object

Correction of the amplification value AK; in the proposed adaptive algorithm
was made dependant on the value of the adaptive error value &;:

=y, -C3% (6)

and its derivative.
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The equation that determines the magnitude of the amplification coefficient
correction has the form:

AKiny =z (kpsi + 12 ) )
dr

where: k, — vector of the proportional component of the amplification coeffi-

cient, Tq — vector of the differentiating component of the amplification vector

z; — adaptation coefficient determined on the basis of the current error and its

dynamics.

The values of parameters k, and Ty that appear in Eq. (7) are constant and
determined heuristically on the basis of object/process knowledge. The proposed
concept is an extension of the adaptive approach of determination the filter gain
coeflicient presented in [9]. Note that this method does not require information
about system disturbances (covariance matrix W) and measurement disturbances
(covariance matrix V), but it is based only on the observation of the error and its
trend.

Figure 1 presents a flowchart of the algorithm that is used to determine the
amplification correction value. The i}, parameter was assumed there as repre-
senting the observation period (it is the set value according with the observer’s
expectations). The algorithm is iterative and it determines, in consecutive steps,
the estimation values of signals from the filter equation.

The study assumes a mathematical model that represents quality of water
in a river, which is expressed by two indicators of water quality, i.e. the bio-
chemical oxygen demand (BOD) and dissolved oxygen (DO). The kinetics of the
oxygen dissolved in water that results from disposal of waste of high BOD level
was formulated in many mathematical models for simulations of surface water
quality. In research works there dominates the approach suggested by Streeter
and Phelps according to whom the distribution of organic substances in water
proceeds according to differential equations of the first order physiochemical re-
action kinetics. The BOD indicator that represents the pace of organic substance
distribution by oxygen microorganisms is described by the following equation:

ax

T = —kix1(t) +wi, (8)
while the deficiency of DO is characterized by the following relationship:
dx
4 = ki) = ksxa() + wa, ©)

where: x| —concentration of organic pollution expressed by the value of BOD, x;, —
concentration deficiency of the dissolved oxygen DO, k| —reaction rate coefficient
of BOD, k; — coefficient of the influence of BOD on DO, k3 — coeflicient of the
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Figure 1: Algorithm flowchart of the proportional-plus-derivative type

rate of changes of DO, w; — pollution inflow intensity (BOD interference), wy —
intensity of sampling/delivery of oxygen from/to water (DO interference).

Coefficients k1, k; and k3 that appear in Egs. (8) and (9) represent the dynamics
of the natural process of water self-purification and depend on several factors
among which the most important is temperature:

k1 = =0.2204~+ - 0.3347 [mg/1 - day],

ky = —0.1636= — 0.2049 [mg/1 - day],
k3 = —0.7100+ — 0.8100 [mg/1 - day].

In the presented considerations it is assumed that coefficients ki, k> and k3 have
constant values, as the model does not involve the influence of water temperature,
which in short time periods is quasi-constant.
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When writing down the equations (8) and (9) in the vector form we obtain:

dx
i Ax(t) + Bw(1), (10)

ki O . . X . .
where: A = [ k; k3] — matrix of coefficients x = [x; ] — state vector in which

x1 represents BOD, while x; the DO deficiency, B — diagonal matrix that sub-
. . . . w
ordinates interference signals to the coordinates of state vector, w = [w;] — the

vector of system interference.

Equation (10) describes quality of the studied water by the assumption of
environment homogeneity — which is to be understood as a reservoir of particular
volume with continuous stirring. In order to model the quality of water in the
river it is necessary to consider the changes of state variables, mainly along its
length, which leads to partial differential equations:

(@D v(:z)axg[ D _ Aahx D) + Bw, b,

IC: x(to,]), BC: x(t,1p),

(11)

where: [ — lenght, v(¢/) — diagonal matrix of river stream speed.

Solution of Eq. (11) requires knowledge of the boundary conditions, i.e. the
initial condition (IC: x(¢¢, /)) and the boundary condition BC: x(z, ).

By performing proper interpretation of the equation (11) it is possible to
obtain an ordinary differential equation. By using the method of characteristics
it is possible for considerations of the model described with partial differential
equations of the hyperbolic type to be solved by means of a set of equivalent and
simpler to solve ordinary differential equations. The idea of this method relies on
observation of the pollution distribution in a river along the characteristics in the
space-time domain. These characteristics are the curves designated by the known
speed of flow, which is illustrated in Fig. 2.

When considering the condition of the state of water pollution in a river in the
characteristics in the time of ¢ € [#(, k], fx < oo for a normalised river length [/, €
[0, 1] the partial differential equations become ordinary differential equations.
Thus, the description leads to the necessity of applying a set of characteristics
defined in the space-time.

The proposed approach comprised a transformation of partial differential
equations to a set of ordinary differential equations along the characteristics.
When knowing the river current speed it is possible to obtain solutions of the
state equation (10), both in terms of time and length.
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IC: (to,1) I b / characteristic

x1(t,1)

BC: (t, 1)

Figure 2: Exemplary characteristics for the state coordinate x| in the space-time domain

4. Experimental studies

The aim of the studies was evaluation of estimation accuracy of state variables
that represent biochemical oxygen demand (BOD) and dissolved oxygen (DO),
performed by means of an adaptive PD filter, the concept which was presented in
section 2.2.

In the first stage of studies a comparison of estimates of state variables obtained
by the Kalman filter with the estimates obtained with the PD filter was made. In
order to do that indicators that enable to asses estimation quality were defined.
Two indicators of estiamtion quality were used in the studies:

e Root Mean Squared Error (RMSE):

(12)

e the second indicator was Mean Percentage Error (MPE):

1 n
MPEj:ZZ(

i=1

Xji = Xji

) -100%, (13)

xj,i

where: e;; = x;; — X;; — estimation error of the j € {x; = BOD, x, = DO} signal
in the i-th calculations step, n — number of calculations steps.

The RMSE indicator represents the absolute error, while the MPE value is
a measure of the relative error percentage. The next stage of the study relied on
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evaluation of the influence of parameters k;, and T'q and the intensity of system and
measurement interference, respectively represented by the covariances (W, V).

The simulation experiments were done for a river described with ordinary
differential equations, according to the so-called characteristics. A hypothetical
river of the length of / = 1000 km, flowing with the speed of v = 25 km/day was
considered with three large side creeks of significant pollution. This tributaries
should be understood as forced of the BOD and DO changes (Fig. 3), not as
disturbances.
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Figure 3: Estimation illustration of state coordinates x; that represent BOD (a) and x;
that represents DO deficiency (b) with the Kalman filter, as well as the filter with PD
adaptation. The blue colour — model data, green — estimation with the Kalman filter,
black — filter estimation with PD adaptation, pink — observation results

The analysis of the conducted simulations should be started with pointing
out that the DO measurement that can be seen in Fig. 3b (pink points) is well
reflected by the state coordinate x; that represents DO in the numerical model
(blue line). The estimations of state variables presented in Fig. 3 and obtained by
means of using an adaptive PD filter (black colour) drift faster towards the values
of state variables (blue colour). It can be observed in particular in the case of the
non-measured state variable x| that represents BOD (Fig. 3a). This indicates that
the adaptive PD filter performs better in situations burdened with greater number
of unknowns.

The state estimation errors described in Fig. 4 confirm the abovementioned
observations — the errors made by an adaptive PD filter drift much faster towards
zero than errors of the Kalman filter. This implies that the estimation with PD
adaptive filter reflects the reality quicker than estimation with the Kalman filter.
This is caused by flexible selection of amplification in the PD adaptive algorithm.
Changes in amplification K that correspond to amplification K of the Kalman
filter for both state variables were shown in Fig. 5. As it can be observed, ampli-
fications vary in a wide range and, what is characteristic, ar the moment of big
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Figure 4: Illustration of estimation errors of state variables x; that represent BOD (a) and
X7 that represents DO deficiency (b) with the Kalman filter (green) and the filter with PD
adaptation (black)

interference occurrence (side creek) the values rise very significantly and then
they decrease gradually. Additionally, changes in the amplification coefficient
for the whole state variable that represents BOD vary to a greater extent than
for the variable that represents DO deficiency, which is caused by the fact that
DO is measured and the algorithm has more complete data on the signal. This
observation is proved by all the simulations conducted.
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Figure 5: Illustration of PD adaptive filter amplification changes during estimation of the
state variable x; that represents BOD (a) and x, that represents DO deficiency (b)

The value of the parameter k, influences the performance of the adaptive
PD filter (Fig. 6). Assumption of too high or too low values causes a change
in waveforms of the estimated signals. In order to do that indicators that enable
to asses estimation quality were defined. This influence is, practically speaking,
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small in the case of DO deficiency estimation, which, as previously mentioned,
results from the fact that DO is a measured signal and the estimation has more
information on its character.
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Figure 6: Illustration of the estimate of state variables x; (BOD) (a) and x, (deficiency
of DO) (b) with the adaptive PD for different amplification values k,. The green colour
shows data from the model. We are showed assumed values: Black colour for the variable
x1 — kp = -0.9, xo —» k, = 0.12. Brown colour x; — k, = —1.3, xo — k, = 0.16.
Blue colour x; — k, = —0.6, for x, — k, = 0.07

The studies also encompassed the influence of the intensity changes of mea-
surement and system interference, expressed by means of their covariance, on
the estimation quality measured with two indicators: RM SE (12) and M PE (13).
The selected research results are presented in Fig. 7.

In the case of estimation of the non-measured state coordinate x; that repre-
sents BOD one can notice apparent advantage of the adaptive PD filter over the
Kalman filter (Figs. 7a, 7c). The value of both error indicators is significantly
lower for the analysed cases, irrespectively from the values of covariances of sys-
tem errors W and measurement errors V. In the case of the estimation measured
for the state variable x; that represents DO for both filters the indicators acquire
comparable values.
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(©) (d)

Figure 7: Illustration of the changes of estimation quality indicators (RMSE) and (MPE),
depending on the covariance of system and measurement interferences
The values on the axis W are represented by system interference covariance matrices of the

values of: 1 — [_32 _12];2—> [_64 ;T];3—> [_94 _64];4—> [ii _96];thevaluesonthe

axis V are represented by covariances of measurement interference of the values: 1 — 0.1;
2 — 0.3; 3 — 0.6. Green colour — the Kalman filter, light brown — adaptive PD filter

5. Summary

The paper discusses the algorithm of adaptive determination of the amplifica-
tion filter that estimates object state on the basis of the state coordinate measured
online. A model of ariver described by ordinary differential equations, according
to the so-called characteristics, with three big side creeks of significant pollution
was used as the study object.
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The proposed iterative algorithm of adaptive determination of the amplifica-
tion filter does not require the knowledge of system (W) and measurement (V)
covariance matrices, which make up for significant non-conformity in the case
of using the Kalman filter. Determining values of the W and V matrices requires
long-term statistical research and their values are often burdened with a large
error. These disadvantages do not appear in the approach proposed in this paper.
The algorithm presented in the work require any information about system and
measurement disturbances, but only the expert knowledge needed to select k,
and T'4. The algorithm has a form of additive filter amplification correction and
for the purpose of its selection it makes use of the predefined adaptive error and
its derivative; thus it has a proportional-differential character (PD). In all the
investigated cases the adaptive filter provided better estimation results, measured
with quality indicators RMSE and MPE, than the Kalman filter. It was partic-
ularly evident for the non-measured estimation of the state coordinate. Better
convergence of estimates in the adaptive filter for the state variable values, in the
case of high variations, is the result calculated by the algorithm of temporarily
high values of amplifications.

Performance of the adaptive PD filter was stable in a wide range of changes
of the proportional amplification parameters k, and differentiation time Tq

Itis noteworthy that the proposed method does not require a significant amount
of calculations and the computation complexity is lower by one order than the
Kalman filter.
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