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On controllability of fractional positive
continuous-time linear systems with delay

Beata SIKORA and Nikola MATLOK

In the paper positive fractional continuous-time linear systems are considered. Positive
fractional systems without delays and positive fractional systems with a single delay in control
are studied. New criteria for approximate and exact controllability of systems without delays
as well as a relative controllability criterion of systems with delay are established and proved.
Numerical examples are presented for different controllability criteria. A practical application
is proposed.
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1. Introduction

Fractional differential calculus is one of the fastest growing branches of math-
ematics in the 21st century. Katsuyuki Nishimoto [22] predicted this 30 years
ago. Especially in the last two decades, the number of publications in the field of
fractional differential calculus has shown a significant increase. The reason for
the increased interest in this topic is the fact that algorithms based on fractional
differential calculus often work better compared to algorithms using classical
differential calculus, as shown by theoretical studies [1, 4]. However, practical
research shows that it is not only the object of interest of physicists, biologists
or economists but it is also an excellent tool for modeling systems, which al-
lows for intensive development in the field of dynamic systems. The reason that
for over 250 years fractional differential calculus was dealt with only by mathe-
maticians was several definitions of the fractional derivative, a lack of physical
interpretation, and problems with solving fractional differential equations [6].
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The breakthrough came only in the mid-twentieth century, thanks to informa-
tion technology which, combined with already developed theorems and concepts
from the fractional calculus range, enabled analysis andmodeling of real phenom-
ena. The cooperation of a chemist Keith Oldham with a mathematician Jerome
Spanier, who in 1968 approached the problem of mass and heat exchange using
integrals and derivatives of order 1

2 [19], contributed significantly to this.
Discussions on fractional differential equations and their practical applications

can be found, among others, in monographs [17, 20, 21, 23–26].
Inmany applications, both external and internal variables cannot take negative

values. This condition is particularly strictly observed in population ecology. In
thematrixmodel, the non-negative state of x is the age structure of the population,
while control u means, for example, pest control [5]. Another example of positive
systems are electrical circuits [11, 15, 16].

The growing demand for models of systems described by non-negative quan-
tities caused the development of the theory of positive systems. These systems are
defined in the space of cones, not in a linear space, which makes themmuch more
complicated. Octants are called spatial equivalents of the quarters of the plane.
Controllability of such systems means that the system can be carried out from any
initial state to a final state with positive coordinates bymeans of a positive control.
Positive fractional discrete-time systems are discussed in [33], positive fractional
linear systems, both discrete- and continuous-time, are presented in [7, 9, 10]
and [14]. However, controllability of positive linear fractional systems is studied
only in [10] and [12] for discrete-time system, and [13] for continuous-time lin-
ear systems. The controllability problems for linear continuous-time fractional
systems with delayed control were analyzed in [2, 3, 27–31, 34]. Controllability
of positive continuous-time fractional systems with delayed control has not been
studied yet.

The aim of the work is to establish new controllability criteria for positive
linear fractional systems both for systems with and without delay.

The work is organized as follows: definitions of the Caputo derivative,
the Mittag-Leffler function, a pseudo-transition matrix, the Metzler matrix are
given in Section 2 as well as the Cayley-Hamilton method of determining the
pseudo-transition matrix. Section 3 contains mathematical models for positive
systems with and without delay. Formulas for a solution of the discussed sys-
tems are presented. Positivity aspects of the considered systems are examined.
Sections 4 and 5 contain main results of the paper: new controllability criteria
for both positive systems with and without delays. Section 6 presents several
numerical examples that illustrate the theoretical considerations. A practical ex-
ample is discussed in Section 7. Finally, concluding remarks are included in
Section 8.
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2. Preliminaries

The integer-order differentiation is the generalization of differentiation of
fractional order. The first concepts of fractional differential integral calculus were
presented in 1823 by Niels Abel. Currently, one of the most popular definitions of
a fractional order derivative is the Riemann–Liouville one, which under certain
conditions corresponds to the Grünwald–Letnikov derivative. However, in this
paper we use the Caputo fractional derivative due to the fact that in the Caputo
approach the initial conditions for fractional differential equations are analogous
to the integer-order differential equations case [24]. We recall the definition.

Definition 1 The Caputo fractional derivative of order α (n− 1 < α < n, n ∈ N)
for a function f : R+ → R is defined as follows

C Dα f (t) =
1

Γ(n − α)

t∫
0

f (n) (τ)
(t − τ)α+1−n dτ , (1)

where Γ is the gamma function.

It is obvious that for α → n the Caputo derivative tends to n-th order conven-
tional derivative of the function f , eg. limα→n

C Dα f (t) = f (n) (t).
A function of a complex variable z given by the formula

Eα (z) =
∞∑

k=0

zk

Γ(αk + 1)
, α > 0 (2)

is called the one-parameter Mittag-Leffler function. For α = 1 we obtain the
classical exponential function E1(z) = ez. Moreover, a function of a complex
variable z given by the formula

Eα,β (z) =
∞∑

k=0

zk

Γ(αk + β)
, α > 0, β > 0 (3)

is called the two-parameter Mittag-Leffler function. For β = 1 we obtain the
one-parameter Mittag-Leffler function Eα,1(z) = Eα (z).

Based on the above definitions, for α > 0 and an arbitrary n-th order square
matrix A we can give the formula for a pseudo-transition matrix Φ0(t) of the
linear fractional system C Dα (t) = A(t)x(t) [10, 21]:

Φ0(t) = Eα (Atα) =
∞∑

k=0

Aktαk

Γ(kα + 1)
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and

Φ(t) = tα−1Eα,α (Atα) = tα−1
∞∑

k=0

Aktαk

Γ((k + 1)α)
.

This means that for α ∈ (0, 1),

Φ0(t) =
t−α

Γ(1 − α)
Φ(t).

For α = 1 we obtain the classical transition matrix of ordinary differential
equations

Φ0(t) =
∞∑

k=0

Aktk

Γ(k + 1)
=

∞∑
k=0

(At)k

k!
= eAt .

There are several methods of computing the functions Φ0(t) and Φ(t) for
fractional order systems. In the paper, we apply the method that is based on the
following Cayley-Hamilton theorem which states that a matrix A satisfies its own
characteristic equation [21].

Theorem 1 If λn + an−1λ
n−1 + . . . + a1λ + an = 0 is a characteristic equation

for the n × n matrix A, then

An + an−1 An−1 + . . . + a1 A + a0I = 0,

where I denotes the n × n identity matrix.

Let be given a function f which can be expanded into the Taylor series

f (A, t) =
∞∑

k=0
ak (t)Ak .

Using Theorem 1, from the above series we obtain the followig finite sum

f (A, t) =
n−1∑
k=0

ak (t) Ak .

Eigenvalues λi are roots of the characteristic equation, so f (λk, t) can also be
represented as a finite sum with the same coefficients

f (λk, t) =
n−1∑
k=0

ak (t)λk, k = 1, . . . n.
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The matrix form of the above equality is as follows



f (λ1, t)
f (λ2, t)

...
f (λn, t)



=



1 λ1 · · · λ
n−1
1

1 λ2 · · · λ
n−1
2

...
...
. . .

...
1 λn · · · λ

n−1
n





a0(t)
a1(t)
...

an−1(t)



,

which makes it possible to determine the coefficients ak (t) for k = 0, 1 . . . , n− 1.
Taking

f (A, t) = a0(t)I + a1(t)A + . . . + an−1(t)An−1,

the pseudo-transition matrix can be expressed as

Φ0(t) = Eα (Atα) = f (A, t) =
n−1∑
k=0

ak (t) Ak .

In positive systems, inputs, outputs and state variables take only non-negative
values. Examples of positive systems are models of water and air pollution
or interval models in epidemiology. This chapter will provide sufficient and
necessary conditions for the external and internal positivity of fractional order
systems.

For simplicity, writing x(t) ∈ Rn
+, we understand that the values of the vector

x(t) are non-negative. Moreover, byMn×n(R+) we denote the set of all matrices
with dimensions n × n and non-negative elements.

Definition 2 A square matrix A = [ai j], i, j = 1, 2, . . . , n with real elements
is called the Metzler matrix if its elements lying outside the diagonal are non-
negative, i.e. ai j ­ 0 for i , j. We will denote the set of n × n (i.e. of order n)
Metzler matrices by Mn.

Theorem 2 [10] Let A be a square matrix of order n with real elements. Then

Φ0(t) ∈ Mn×n(R+) and Φ(t) ∈ Mn×n(R+) for t ­ 0 (4)

if and only if A is a Metzler matrix.

3. Mathematical model

We consider a linear fractional dynamical systemwith a single delay in control
described by the following state equations

C Dαx(t) = Ax(t) + B0u(t) + B1u(t − h), (5)
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y(t) = Cx(t) + Du(t) (6)

for t ­ 0 and 0 < α < 1, where x(t) ∈ Rn is a state vector, u(t) ∈ Rm is an
input vector (control), y(t) ∈ Rp is an otput vector, A is a n × n matrix with
real elements, Bi are n × m matrices with real elements (for i = 0, 1), C, D are
p × n, p × m matrices with real elements, respectively, and h is a constant delay
in control.

Let L2
loc([0,∞),Rm) denote the Hilbert space of locally square integrable

functions with values from Rm. For the control function u we assume that u ∈
L2
loc([0,∞),Rm).
Moreover, let be given the initial conditions z(0) = {x(0), u0} called the initial

complete state. For time-delay systems, the complete state z(t) = (x(t), ut (s)),
where ut (s) = u(s) for s ∈ [t − h, t), completely describes the behavior of the
system at time t.

By the Laplace transform it is easy to prove the following theorem about the
form of the solution of (5) (see [27]).

Theorem 3 For given initial conditions z(0) = {x(0), u0} ∈ R
n×L2([−h, 0],Rm)

and a control u ∈ L2
loc([0,∞),Rm), there exists a unique solution x(t) =

x(t, z(0), u) of (5), for every t ­ 0, taking the following form

x(t) = Φ0(t)x0 +

t∫
0

Φ(t − τ) [B0u(t) + B1u(t − h)] dτ. (7)

Definition 3 The fractional systemwith delay in control (5)– (6) is called positive
if and only if x(t, z(0), u) ∈ Rn

+ with any initial conditions z(0) ∈ Rn
+ and non-

negative control values u(t) ∈ Rm
+ for t ­ 0.

The following theorem follows from [8].

Theorem 4 The fractional system (5)–(6) is (internally) positive if and only if

A ∈ Mn, B0 ∈ Mn×m(R+), B1 ∈ Mn×m(R+),

C ∈ Mp×n(R+), D ∈ Mp×m(R+).

A special case of the system (5)–(6) is the following initial value problem
without delays

C Dαx(t) = Ax(t) + Bu(t), (8)
y(t) = Cx(t) + Du(t), (9)
x(0) = x0 (10)

for t ­ 0 and 0 < α < 1, where B is a n × m matrix with real elements.
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From Theorem 3 it follows that the solution of (8) has the form

x(t) = Φ0(t)x0 +

t∫
0

Φ(t − τ)Bu(t)dτ. (11)

Definition 4 The fractional system (8)–(10) is called positive if and only if
x(t) ∈ Rn

+ with any initial condition x(0) ∈ Rn
+ and non-negative control values

u(t) ∈ Rm
+ for t ­ 0.

Theorem 5 [8] The fractional system (8)–(10) is (internally) positive if and
only if

A ∈ Mn, B ∈ Mn×m(R+), C ∈ Mp×n(R+), D ∈ Mp×m(R+).

4. Controllability for positive systems without delay

In the case of systems without delays, there are two basic types of positive
controllability: approximate and exact [18]. Approximate controllability allows
the system to be moved to any small neighborhood of the final state. In turn,
exact controllability means that the system can be carried out to any final state.
Therefore, it is obvious that the approximate controllability is a weaker concept
than the exact one.

We will use the following symbols: let K be any set, then clK is the closure
of K , coK is the convex hull of K , while coconeK means the smallest convex
cone containing 0 and K . Moreover, let e(1), . . . , e(m) be the basic unit vectors
in the space Rm and e[1], . . . , e[n] in Rn.

Let us define the positive attainable set for the system (8)–(10).

Definition 5 A set

K+([0, t], x(0)) =



x(t) ∈ Rn
+ : x(t) = Φ0(t)x(0) +

t∫
0

Φ(t − τ)Bu(τ)dτ



(12)

is called the positive attainable set for the system (8)–(10) at t > 0.

Lemma 1 Let Φ(t) ∈ Mn×n(R+) and B ∈ Mn×m(R+). For the system (8)–(10)
and the attainable set (12) the following conditions hold:

1. clK+([0, t], x(0)) = cl
{
co{Φ(s)Bu : 0 ¬ s ¬ t, u ∈ Rn

+}
}

cl
⋃
t>0

K+([0, t], x(0)) = cl{co{Φ(s)Bu : 0 ¬ s, u ∈ Rn
+}}
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2. clK+([0, t], x(0)) = cl{cocone{Φ(s)Be(k) : 0 ¬ s ¬ t, k = 1, . . . ,m}}
cl

⋃
t>0

K+([0, t], x(0)) = cl{cocone{Φ(s)Be(k) : 0 ¬ s, k = 1, . . . ,m}}.

Proof. Lemma 1 follows from Theorem 2 and Proposition 4.7 included in [32],
for T (t) = Φ(t). 2

Definition 6 The fractional dynamical system (8)–(10) is called approximately
positively controllable on [0, t] if clK+([0, t], x(0)) = Rn

+.

Now we may formulate a criterion for approximate controllability of positive
fractional systems described by the state equations (8)–(10).

Theorem 6 Let A be the Metzler matrix and B ∈ Mn×m(R+) and assume that the
fractional system (8)–(10) is positive. The system is approximately controllable
on [0, t] if and only if for all k (k = 1, . . . , n) there exist l (l = 1, . . . ,m) and
µ > 0, such that e[k] = µBe(l).

Proof. Theorem 6 follows from Lemma 1 item 2 and Theorem 4.9 proved in [32],
for T (t) = Φ(t). 2

Definition 7 The fractional dynamical system (8)–(10) is called exactly positively
controllable on [0, t] if for any vectors x0(t), x1(t) ∈ Rn

+ there exists a control
u(t) ∈ Rm

+ , such that

x1(t) = Φ0(t)x0 +

t1∫
0

Φ(t − τ)Bu(τ)dτ. (13)

Definition 8 A matrix is called the generalised permutation matrix if its every
row and its every column contains only one positive element and the remaining
elements are zeros.

Remark 1 The generalised permutation matrix is nonsingular. The inverse ma-
trix A−1 of the generalised permutation matrix A is equal to the transpose matrix
in which all nonzero elements are replaced by their reciprocal.

Theorem 7 Let the fractional system (8)–(10) be positive. The system is exactly
controllable on [0, t], t > 0 if the matrix R given by the formula

R =

t∫
0

Φ(t − τ)BBT
Φ

T (t − τ)dτ (14)

is the generalised permutation matrix.
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An input vector that steers the dynamical system (8)–(10) from the state x0 = 0
at t = 0 to the state x1 at t = t1 has the form

u(t) = BT
Φ

T (t1 − t0)R−1x1 . (15)

Proof. If R is the generalised permutation matrix, then it follows from Remark 1
that R−1 ∈ Mn×n(R+). Let us assume that the system (8)–(10) is positive. Then,
based on Theorem 5 A is a Metzler matrix and B ∈ Mn×m(R+) and, according
to Theorem 2, Φ(t) ∈ Mn×n(R+) for t ­ 0.

For x0 = 0 and t = t1 the equation (11) can be rewritten as

x(t1) =

t1∫
0

Φ(t1 − τ)Bu(τ)dτ.

By inserting (15) into the above equation, we get

x(t1) =

t1∫
0

Φ(t1 − τ)BBT
Φ

T (t1 − τ)R−1x1dτ = RR−1x1 = x1 ,

which implies that the control u steers the system (8)–(10) from the initial state
x0 to the final state x1. 2

Remark 2 Exact controllability implies approximate controllability.

5. Controllability for positive systems with delay

Manymodels describing real-life processes require delays in state coordinates
or in control. Examples of such a process are, among others, mixing chemicals,
business fluctuations or spaceflights. In systems with delays, future states of the
system depend not only on the current state but also on the past states.

Two types of controllability of dynamical systems are generally considered for
systems with delays in control: relative controllability and absolute controllability
[18]. In the case of relative controllability on [0, t1], the aim is to find a control u
such that the state x(t1) can be reached using the control. In the case of absolute
controllability, the aim is to reach a function. This means that the final segment
of a trajectory (over the interval [t1 − vM (t1), t1]) should be a given function.

In the paper we present new criteria for relative controllability for fractional
positive systems. For this purpose, we transform the solution (7) of the differential
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equation (5)

x(t) = Φ0(t)x0 +

t∫
0

Φ(t − τ) [B0u(t) + B1u(t − h)] dτ =

= Φ0(t)x0 +

t∫
0

Φ(t − τ)
1∑

i=0
Biu(τ − hi)dτ =

= Φ0(t)x0 +

1∑
i=0

t∫
0

Φ(t − τ)Biu(τ − hi)dτ =

���������

τ − hi = z
dτ = dz

τ = 0→ z = −hi
τ = t → z = t − hi

���������

=

= Φ0(t)x0 +

1∑
i=0

t−hi∫
−hi

Φ(t − z − hi)Biu(z)dz =

= Φ0(t)x0 +

1∑
i=0

t−hi∫
−hi

Φ(t − τ − hi)Biu(τ)dτ.

(16)

Theorem 8 Let the fractional system with delay in control (5)–(6) be positive.
The system is relatively controllable on [0, t1] if and only if the matrix

R(0, t1) =
1∑

i=0

t1−hi∫
−hi

Φ(t1 − τ − hi)Bi BT
i Φ

T (t1 − τ − hi)dτ (17)

satisfies the condition rank R(0, t1) = n.

Proof. Let z(0) = (x0, u0) be any non-negative initial conditions and x1 be any
positive vector. To prove the sufficiency we will show that the control

ũ(t) = BT
i Φ

T (t1 − τ − hi)R−1(0, t1)[x1 − Φ0(t)x0] (18)

steers the fractional system (5)–(6) from the initial complete state z(0) =
{x(0), u0} to the state x(t1) = x1 and the control is non-negative.

Indeed, since we assume that the system is positive, we have A ∈ Mn and
Bi ∈ Mn×n(R+), i = 0, 1. Therefore Φ(t) ∈ Mn×n(R+) for t ­ 0. Hence, for
x1(t) ∈ Rn

+ we obtain ũ(t) ∈ Rm
+ .

Next, we will verify whether the control (18) steers the positive system (5)–(6)
from the initial non-negative complete state z(0) to the final state x(t1) = x1.
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From Theorem 3 and formula (16) it follows that

x(t1) = x(t1, z(0), ũ) = Φ0(t1)x0 +

1∑
i=0

t1−hi∫
−hi

Φ(t1 − τ − hi)Biũ(τ)dτ.

Substituting ũ defined by (18) into the above equality, we have

x(t1) = Φ0(t1)x0 +

1∑
i=0

t1−hi∫
−hi

Φ(t1 − τ − hi)Bi BT
i Φ

T (t1 − τ − hi)

× R−1(0, t1)[x1 − Φ0(t)x0]dτ

= Φ0(t1)x0 + R(0, t1)R−1(0, t1)[x1 − Φ0(t)x0] = x1 .

Hence, the positive fractional system (5)–(6) is relatively controllable on [0, t1].
We will prove the necessary condition by contradiction. We assume, that the

positive system (5)–(6) is relatively controllable on [0, t1] and rank R(0, t1) < n.
This means that the matrix R(0, t1) is singular. Therefore, there exists a vector
x̃ , 0 such that x̃T R(0,T ) x̃ = 0. We have

1∑
i=0

t1−hi∫
−hi

x̃T
Φ(t1 − τ − hi)Bi BT

i Φ
T (t1 − τ − hi) x̃dτ = 0.

It follows that for t ∈ [0, t1] we obtain

x̃T
Φ(t1 − t − hi)Bi = 0. (19)

The system is controllable if it can be steered from an initial complete state z(0)
to any final state x(t1) ∈ Rn

+. Therefore, there exists a control u0 that steers z(0)
to zero, which means that

0 = x(t1, z(0), u0) = Φ0(t1)x0 +

1∑
i=0

t1−hi∫
−hi

Φ(t1 − τ − hi)Biu0(τ)dτ.

Moreover, there exists a positive control ũ from the state z(0) to x̃. Hence

x̃ = x(t1, z(0), ũ) = Φ0(t1)x0 +

1∑
i=0

t1−hi∫
−hi

Φ(t1 − τ − hi)Biũ(τ)dτ.
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From the above dependencies we have

x̃ −
1∑

i=0

t1−hi∫
−hi

Φ(t1 − τ − hi)Bi[ũ(τ) − u0(τ)]dτ = 0.

Multiplying by x̃T and applying (19), we obtain x̃T x̃ = 0. It follows that x̃ = 0,
which is a contrary to our assumption. Therefore thematrix R(0, t1) is nonsingular
and hence rank R(0, t1) = n. 2

6. Examples

Below we present several numerical examples to illustrate the obtained theo-
retical results.

Example 1 Let us consider a positive fractional systemdescribed by the following
differential equation

C D
1
2 x(t) =



−1 1 0
1 0 1
0 1 1


x(t) +



1 0
0 0
0 1


u(t), t > 0. (20)

Since A is the 3 × 3 matrix, we consider following unite base vectors in the
space R3

e[1] =


1
0
0


, e[2] =



0
1
0


, e[3] =



0
0
1


.

Unite base vectors in the space R2 corresponding to the matrix B have the form

e(1) =
[

1
0

]
, e(2) =

[
0
1

]
.

We are looking for a constant µ, for which the condition e[k] = µBe(l) holds,
where k = 1, 2, 3 and l = 1, 2.

Be(1) =


1 0
0 0
0 1



[
1
0

]
=



1
0
0


= e[1],

Be(2) =


1 0
0 0
0 1



[
0
1

]
=



0
0
1


= e[3].
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Figure 1: Trajectories of the system (20) for selected controls

By means of vectors e(1), e(2) and the constant µ it is impossible to get the
base vector e[2]. According to Theorem 6, the system (20) is not approximately
controllable.

Example 2 Let be given a positive fractional system
C D

1
3 x(t) = Ax(t) + Bu(t) (21)

where A =
[

1 0
0 2

]
and B =

[
0 1
1 0

]
.

On the basis of Theorem 7 we will show that the positive system (21) is exactly
controlllable on [0, 1] with zero initial conditions.

We start with finding the matrix Φ(t) for α = 1/3

Φ(t) =
1∑

k=0

Akt (k+1) 1
3−1

Γ((k + 1) 1
3 )
=

[
1 0
0 1

]
t−

2
3

Γ
(

1
3

) + [
1 0
0 2

]
t−

1
3

Γ
(

2
3

)

=



t−
2
3

Γ

(
1
3

) + t−
1
3

Γ

(
2
3

) 0

0
t−

2
3

Γ

(
1
3

) + 2t−
1
3

Γ
*.
,

2
3

+/
-



.
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Knowing that BBT =

[
1 0
0 1

]
and Φ(t) = ΦT (t), we determine the matrix R

R =

1∫
0

Φ(t−τ)BBT
Φ

T (t−τ)dτ =



−3(
Γ

(
1
3

))2+
3(

Γ
(

2
3

))2 0

0
−3(
Γ

(
1
3

))2+
12(
Γ

(
2
3

))2



.

Using approximate values of the gamma function: Γ
(

1
3

)
≈ 2.68 and Γ

(
2
3

)
≈ 1.35,

we get the following approximate result
[

1.23 0
0 6.16

]
.

Each row and each column of the above matrix contains only one positive element
and the others are zeros. Therefore, it is the generalized permutation matrix. It
follows that the positive system (21) is exactly controllable.

Now we will show that the system is also approximately controllable (see
Remark 2).

Base unit vectors in the space R2,
[

1
0

]
and

[
0
1

]
correspond to vectors

e[1], e[2] as well as to vectors e(1), e(2).

Figure 2: Trajectories of the system (21) for selected controls
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For µ = 1 the following inequalities are satisfied:

Be(1) =
[

0 1
1 0

] [
1
0

]
=

[
0
1

]
= e[2],

Be(2) =
[

0 1
1 0

] [
0
1

]
=

[
1
0

]
= e[1].

Therefore, there exist µ = 1 > 0, k = 1, 2 and l = 1, 2, such that the condition
e[k] = µBe(l) from Theorem 6 holds. It follows that the positive fractional system
(21) is approximately controllable which agrees with Remark 2.

Example 3 For a positive fractional system with delay in control

C D
1
2 x(t) = Ax(t) + B0u(t) + B1u(t − 3), (22)

where t ∈ [0, 1], z(0) = (0, 0), and the system matrices are as follows

A =
[

0 0
0 1

]
, B0 =

[
1
0

]
, B1 =

[
0
2

]
,

we will verify whether the condition from Theorem 8 holds, that is if
rank R(0, 1) = 2.

We start with finding the pseudo-transition matrix Φ(t) and its trans-
pose ΦT (t):

Φ(t) =
1∑

k=0

Akt (k+1) 1
2−1

Γ
(
(k + 1) 1

2

) = [
1 0
0 1

]
t−

1
2

Γ( 1
2 )
+

[
0 0
0 1

]
t0

Γ(1)
=



t−
1
2

Γ( 1
2 )

0

0
t−

1
2

Γ( 1
2 )
+ 1



,

Φ
T (t) = Φ(t) =



t−
1
2

Γ( 1
2 )

0

0
t−

1
2

Γ( 1
2 )
+ 1



.

For t1 = 1, h0 = 0, and h1 = 3the controllability matrix R(0, 1) has the form

R(0, 1) =

1∫
0

Φ(1 − τ)B0BT
0Φ

T (1 − τ)dτ +

−2∫
−3

Φ(−2 − τ)B1BT
1Φ

T (−2 − τ)dτ,
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so the next step is computing products:

Φ(1 − τ)B0BT
0Φ

T (1 − τ),

Φ(−2 − τ)B1BT
1Φ

T (−2 − τ),

where
B0BT

0 =

[
1 0
0 0

]
, B1BT

1 =

[
0 0
0 4

]
.

Integrating elements of the matrix and then adding them, we obtain

R(0, 1) =



1∫
0

(1 − τ)−1(
Γ( 1

2 )
)2 dτ 0

0 0



+



0 0

0
−2∫
−3

4 *
,

(−2 − τ)−
1
2

Γ( 1
2 )

+ 1+
-

2

dτ



=



0 0

0
16
Γ( 1

2 )
+ 4


.

We see that the determinant of the above matrix is equal to zero which means that
rank R(0, 1) , 2. Therefore, based on Theorem 8 we conclude that the positive
system (22) is not relatively controllable on [0, 1].

Example 4 Let us consider the positive fractional system with delay in control
C D

1
2 x(t) = Ax(t) + B0u(t) + B1u(t − 1) (23)

for t ∈ [0, 2], with zero initial conditions and the following matrices

A =
[

0 1
1 0

]
, B0 =

[
0
1

]
, B1 =

[
1
1

]
.

Applying Theorem 8 we will check whether the system is relatively controllable
on the time interval [0, 2], that is whether

rank
*..
,

1∑
i=0

t1−hi∫
−hi

Φ(1 − τ − hi)Bi BT
i Φ

T (1 − τ − hi)dτ
+//
-
= 2.

We determine matrices Φ(t) and ΦT (t) first

Φ(t) =
1∑

k=0

Akt (k+1) 1
2−1

Γ
(
(k + 1) 1

2

) = [
1 0
0 1

]
t−

1
2

Γ( 1
2 )
+

[
0 1
1 0

]
t0

Γ(1)
=



1
√
πt

1

1
1
√
πt



= ΦT (t).
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Next, we calculate products B0BT
0 and B1BT

1

B0BT
0 =

[
0 0
0 1

]
, B1BT

1 =

[
1 1
1 1

]
.

Obtained results we substitute into the formula for R(0, 2)

R(0, 2) =

2∫
0

Φ(2 − τ)B0BT
0Φ

T (2 − τ)dτ +
1∫

−1

Φ(1 − τ)B1BT
1Φ

T (1 − τ)dτ.

Multiplying matrices and integrating elements, we have

R(0, 2) =



4 +
ln 2
π
+

4
√

2π
π

2 +
ln 2
π
+

6
√

2π
π

2 +
ln 2
π
+

6
√

2π
π

2 +
2 ln 2
π
+

4
√

2π
π



.

Obviously rank R(0, 2) = 2. Therefore, according to Theorem 8, positive system
(22) is relatively controllable on [0, 2].

7. Practical example

Let us consider an electrical circuit of fractional order consisting of resistors
Ri, inductances Li and voltage sources ei, as shown in Fig. 3 [16].

Figure 3: Electrical circuit

There is a voltage drop during current flow through the voltage source. From
Ohm’s law, the drop in voltage U corresponds to the product of the resistance R
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and the current intensity i. For each mesh we write an appropriate equation using
Kirchhoff’s second law, which says that in a closed electrical circuit the sum of
voltages at sources ei is equal to the sum of voltage drops at all current receivers
Ui. There is an inductor in each mesh, so the respective current voltages increase
by the electromotive force ε which, according to Faraday’s law, is expressed by

the formula ε = −L
dαi
dtα

in the opposite direction to i, as Lenz’s law states.

For α ∈ (0, 1] and the Caputo fractional derivative
dαi
dtα
= C Dαi, we obtain

the following equalities

e1 = R1i1 + L1
C Dαi1 + R3(i1 − i2),

e2 = R2i1 + L2
C Dαi2 + R3(i2 − i1).

The above equations can be expressed in the matrix form as

C Dα

[
i1
i2

]
= A

[
i1
i2

]
+ B

[
e1
e2

]
, (24)

where

A =



−(R1 + R3)
L1

R3
L1

R3

L2

−(R2 + R3)
L2



, B =



1
L1

0

0
1
L2



.

The system defined in this way is positive because A is a Metzler matrix and B is
a matrix with non-negative elements.

We take the following values: R1 = 1, R2 = 2, R3 = 0, L1 = 1, L2 = 1. Then
the matrices A and B have the forms

A =
[
−1 0
0 −2

]
, B =

[
1 0
0 1

]
.
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We will show that for the above matrices A and B the system (24) of order α = 1
3

is exactly controllable on the time interval [0, 1].

Φ(t) =
1∑

k=0

Akt (k+1) 1
3−1

Γ

(
(k + 1)

1
3

) = [
1 0
0 1

]
t−

2
3

Γ
(

1
3

) + [
−1 0
0 −2

]
t−

1
3

Γ
(

2
3

) =

=



t−
2
3

Γ
(

1
3

) − t−
1
3

Γ
(

2
3

) 0

0
t−

1
2

Γ
(

1
2

) − 2
t−

1
3

Γ
(

2
3

)


= ΦT (t),

BBT =

[
1 0
0 1

] [
1 0
0 1

]
=

[
1 0
0 1

]
.

(25)

For this purpose we verify that

R =

1∫
0



(t − τ)−
2
3

Γ
(

1
3

) −
(t − τ)−

1
3

Γ
(

2
3

) 0

0
(t − τ)−

1
2

Γ
(

1
2

) − 2
(t − τ)−

1
3

Γ
(

2
3

)


[
1 0
0 1

]
×



(t − τ)−
2
3

Γ
(

1
3

) −
(t − τ)−

1
3

Γ
(

2
3

) 0

0
(t − τ)−

1
2

Γ
(

1
2

) − 2
(t − τ)−

1
3

Γ
(

2
3

)


dτ

is the generalized permutation matrix.

R =



−
3(

Γ
(

1
3

))2 +
3(

Γ
(

2
3

))2 0

0 −
3(

Γ
(

1
3

))2 +
12(
Γ

(
2
3

))2



≈

[
1.23 0

0 6.17

]
.

Hence, on the basis of Theorem 7, the system (24) is exactly controllable on [0, 1].
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8. Concluding remarks

Positive fractional systems without delays as well as positive fractional sys-
tems with single delay in control have been studied in the paper. The approximate
(Theorem 6) and exact (Theorem 7) controllability criteria for positive systems
without delays has been established. The new necessary and sufficient conditions
for the relative controllability (Theorem 8) of positive fractional systems with
single delay have been formulated and proved. The numerical examples have
been presented to illustrate the theoretical results. The given example of electri-
cal circuit is one of the possible practical applications of the discusses theoretical
issues. The presented results can be extended to positive semilinear fractional
systems.
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