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normal, noncancerous brain cells which render the process of 
measuring the tumour area/volume a critical factor in modern 
intensity-modulated radiotherapy (IMRT) planning and further 
treatment course selection.

Deep learning algorithms have been applied in numerous 
industries with great success. Researchers, together with devel-
opers, have produced evidence for many concept solutions that 
fully utilize algorithms based on advanced statistics. Neverthe-
less, there have been relatively few revolutionary deployments 
of deep learning systems over the last decade in common radiol-
ogy practices. In modern research, there is a trend of attempting 
to work using medical data in healthcare environment applica-
tion and transformation, which requires appropriate standards 
and frameworks in order to achieve applicable outcomes. Initial 
efforts have the potential result of shaping medical image pro-
cessing, which in turn has influence on computing software 
deployment.

This paper proposes a universal and complex framework 
for two parts of the dose control process: tumours detection 
and tumours area segmentation, based on medical images. The 
framework is comprehensive and addresses the main challenges 
when working with medical data and applying modern deep 
learning techniques for automated tumour detection and seg-
mentation. The framework is applied to shape CADx and CADe 
systems in the healthcare industry to assist doctors and facilitate 
their work. CADx/CADe objectives are achieved with the use of 
classification, detection, and prediction, while image processing 
tasks are performed with image segmentation, registration, and 
generation [3].

1. Introduction

Based on Cancer Research UK reports, brain, other central ner-
vous systems (CNS) and intracranial tumours are the 9th most 
common cancer grouping in the UK. For over a decade in the 
UK (between 2005‒2007 and 2015‒2017), the cancer incidence 
rate for this specific group of cancers in women and men com-
bined increased by 15%. In females, age-standardized incidence 
rates grew by 22%, and in males, rates increased by 8% [1].

Diagnoses and prognoses made by medical doctors and 
radiologists are dependent on medical imaging, i.e. obtaining 
clinically meaningful information from various imaging modal-
ities such as CT and/or MR imaging. In certain advanced clinics 
and hospitals, PET scan is executed during CT scan, but since 
PET is invasive, its use is not a widespread practice.

In the Nuclear Medicine Department of the Medical Uni-
versity of Warsaw, at the Central Clinical Hospital, clini-
cal trials are conducted using new treatment strategies for 
cases diagnosed with glioblastoma [2]. Based on the medical 
images, radiologists determine the tumour location, size, and 
the level of advancement, but also the amount of radiological 
substance injected into the interior of the tumour during the 
invasive examination or postoperatively after resection. The 
substance doses inflict damage on the tumour cell along with 

SPECIAL SECTION

© 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Abstract. For brain tumour treatment plans, the diagnoses and predictions made by medical doctors and radiologists are dependent on medical 
imaging. Obtaining clinically meaningful information from various imaging modalities such as computerized tomography (CT), positron emis-
sion tomography (PET) and magnetic resonance (MR) scans is the core method in software and advanced screening utilized by radiologists. 
In this paper, a universal and complex framework for two parts of the dose control process: tumours detection and tumours area segmentation 
from medical images is introduced. The framework formed the implementation of methods to detect glioma tumour from CT and PET scans. 
Two deep learning pre-trained models: VGG19 and VGG19-BN were investigated and utilized to fuse CT and PET examination results. Mask 
R-CNN (region-based convolutional neural network) was used for tumour detection – the output of the model is bounding box coordinates for 
each object in the image (tumour). U-Net was used to perform semantic segmentation: segment malignant cells and tumour area. The transfer 
learning technique was used to increase the accuracy of models while having a limited collection of the dataset. Data augmentation methods 
were applied to generate and increase the number of training samples. The implemented framework can be utilized for other use cases that 
combine object detection and area segmentation from grayscale and RGB images, especially to shape computer-aided diagnosis (CADx) and 
computer-aided detection (CADe) systems in the healthcare industry to facilitate and assist doctors and medical care providers.

Key words: deep learning; medical imaging; tumour detection; semantic segmentation; image fusion.

Deep learning-based framework for tumour detection  
and semantic segmentation

Estera KOT1, Zuzanna KRAWCZYK1*, Krzysztof SIWEK1, Leszek KRÓLICKI2,  
and Piotr CZWARNOWSKI2

1 Warsaw University of  Technology, Faculty of  Electrical Engineering, Pl. Politechniki 1, 00-661 Warsaw, Poland 
2 Medical University of  Warsaw, Nuclear Medicine Department, ul. Banacha 1A, 02-097 Warsaw, Poland

*e-mail: zuzanna.krawczyk@ee.pw.edu.pl

Manuscript submitted 2020-10-20, revised 2020-12-15, initially accepted  
for publication 2020-12-21, published in June 2021

http://creativecommons.org/licenses/by/4.0/
mailto:zuzanna.krawczyk@ee.pw.edu.pl


2

E. Kot, Z. Krawczyk, K. Siwek, L. Królicki, and P. Czwarnowski

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e136750

Fig. 1. Key components of the proposed framework

The framework formed the implementation of the methods 
to detect glioma tumour from CT and PET scans developed 
and presented in [4]. Glioma, called glioblastoma, is the most 
malicious primary brain tumour [5], with a 100% mortality rate 
and the fourth histologic classification of the World Health 
Organization.

The framework consists of six key components presented 
in Fig. 1. The method commences with the pre-processing of 
image operations. The implementation was performed in the 
Python environment; however, not all Python libraries support 
image transformation in DICOM format, which is the optimal 
and desired choice for medical data. Consequently, conversion 
of DICOM to PNG/JPG format is required. DICOM contains 
essential information which is used in the subsequent analysis; 
for example, for volume computation, there is a pixel spacing 
attribute required. Saving original files or exporting DICOM 
parameters to a database can facilitate further development. 
To execute fusion, images must be rescaled to identical siz-
ing. Fusion of the images can be executed in numerous man-
ners; considerations are addressed in the exposition below. For 
tumour detection, the so-called “YOLO” network was consid-
ered, particularly in the section of related work, where numer-
ous references to that deep learning model can be found. An 
alternative network to YOLO is Mask R-CNN, proposed as it 
can also perform object instance segmentation, which can be 
beneficial in further research. For tumour segmentation, the 
U-Net model was selected as this model is dedicated to bio-
medical images and, in previous papers, it produced promising 
results. Volume computation is based on the tumour square on 
each slice and pixel spacing, i.e. the physical distance in the 
patient between the centre of each pixel. The final component, 
i.e. visualization of the tumour, is essential for the radiologist.

All deep learning architectures used in this research are 
based on a convolutional neural network (CNN). A CNN refers 

to a network architecture composed of several stacked convolu-
tional layers [6]. The convolution procedure recognizes locally 
connected information, i.e. the neighbouring voxels or pixels. 
Expanding the area of view of the network is possible due to 
the presence of pooling layers between the convolution layers. 
It takes a part of the locally connected nodes of the input layer 
and results in an output having a smaller spatial footprint [6]. 
A series of fully connected layers combines all activations of 
the previous layers. Finally, the model outputs the final set of 
feature values relevant to the given task.

2. Related works

A common pre-requisite for therapeutic planning is detection 
and identification of the region, i.e. the voxel positions associ-
ated with the diseased condition. The authors [7] have success-
fully used the deep learning method, ROI-based convolutional 
neural network (CNN) or “YOLO,” for detecting changes in 
mammography images, obtaining as much as 96.33% accu-
racy. The model in question conducted automatic detection and 
classification. A model capable of processing a single image in 
43 ms was built [8]. Based upon the possibilities presented in 
the paper while maintaining accuracy within statistical reason, 
a complete analysis of the study for a single patient may take 
up to 10 seconds. The YOLO network is also used to detect and 
locate tumours in the lungs employing CT images [9]. Detection 
of early stage brain tumours based on MR imaging using the 
AlexNet model and Faster R-CNN making use of transfer learn-
ing has been described in [10, 11]. The new XmasNet archi-
tecture completion of the classification of the senile neoplasm 
based on MRI examinations was presented in [12]. Finally, in 
[13] a brain tumour detection and classification system were 
implemented using CWT, DWT and SVMs.

The segmentation of medical images is also a topic covered 
by contemporary scientists. Fully automated segmentation of 
brain tumours from MR images was presented in paper [14] 
using the U-Net [15, 16]. MRI processing was also examined in 
[17], where the Faster R-CNN network was deployed to classify 
and segment tumours. Custom CNN network was also used 
in [18] to perform localization of multiple sclerosis lesions in 
MRI images.

3. Image fusion

Tumour structures are nearly undetectable on CT scans. This 
type of image presents the soft tissues as well as the structure 
of the brain. To base a diagnostic decision on CT, a PET scan 
is executed during a medical examination via the same CT-PET 
scanner. As a result, two series of slices per each type of exam-
ination are returned. Slices are correlated but not merged. For 
further analysis processes, both for the radiologist and these 
research purposes, the fusion of CT and PET scans must be 
executed.

CT scan is 512£512 which results in 262 144 pixels. The 
pixels with the lowest value (zeros) are displayed as black, 
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Tumour detection (Mask R-CNN)

Tumour segmentation (U-Net)

Area/Volume Computation

2D/3D Visualization

CT scan based fusion with PET scan  
(VGG19 and VGG19-BN)
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and the highest values as white. The structure of the brain is 
reflected in CT scans as a level of grey, which indicates the 
degree of absorption of X-rays determined by Hounsfield units 
(HU).

The proper sets of training and validating data determine 
whether the developed model distinguishes between abnormal 
and normal brain matter regions and classifies each correctly 
as a benign tumour, a malignant tumour or healthy tissue. The 
dataset of twenty-two patients used for this research purposes 
was delivered and acquired by the Nuclear Medicine Depart-
ment. Images were taken using a Siemens Biograph 64 PET-CT 
scanner during the years 2016‒2018, both 148 slices for PET 
and CT scan. Each slice weighs around 520 KB netting approxi-
mately 110 MB for a single examination of a CT and correlated 
PET scan.

With the increase in the volume of data, especially when 
working with MR scans that can weigh 1.5 GB for a single 
examination, traditional machine learning algorithms may be 
incapable. Modern deep learning models are most promising. 
The basic computational unit is the neuron. This concept grew 
from the study of the human brain, which takes many signals as 
inputs, combines them linearly using weights, and then transfers 
the combined signals by nonlinear operations to generate output 
signals [3]. To produce accurate results, deep learning models 
require massive amounts of training datasets, where annotations 
are made by medical experts, which makes a medical dataset 
harder to obtain. To mitigate this challenge, two approaches 
can be taken: transfer learning technique and data augmenta-
tion. Transfer learning facilitates the transfer of features from 
non-medical data. Data augmentation facilitates generating and 
increasing the number of training samples via methods such as 
cropping, random rotation, transposing, elastic transform, etc.

3.1. VGG19 and VGG19-BN. To fuse CT and PET scans, 
the method described in [19] was applied, initially developed 
to fuse infrared and visible images. Experiments confirmed 
the methods could be successfully applied for medical image 
fusion. The methods firstly take the source images (CT and 
PET scans) and decompose them into base parts and detailed 
content. Then a weighted-averaging fusion strategy is applied to 
fuse the base parts. To extract the detailed content, a pretrained 
deep learning network (VGG19 or VGG19-BN) is applied to 
compute multi-layer features.

VGG19 is a variant of the VGGNet – a deep convolutional 
neural network proposed in [20]. The name of this model was 
inspired by the name of the research group ‘Visual Geometry 
Group (VGG)’.The VGG19 has 19 layers. VGG-19-BN is an 
extended VGG19 model with batch normalization, i.e. a layer 
between each convolutional and activation unit layer as well 
as between each inner product and activation unit layer [21]. 
Implementation is available in [22]. Both models are trained 
on ImageNet to extract deep features. ImageNet dataset con-
sists of various types of objects which can be used for training 
purposes. The transfer learning from a pre-trained ImageNet 
network significantly improves the results on every dataset, 
which is an attempt at compensating for the lack of adequate 
training data [23].

The implementation of the fusion experiment coded in 
Python utilizing PyTorch library can be found in [24]. Table 1 
presents a selection of obtained graphical results.

Table 1 
Results for fusion experiment

Slice 
no. PET scan CT scan Fusion with 

VGG19
Fusion with 
VGG19-BN

1

2

3

Each slice processing takes approximately 6 to 7 s of com-
putation for VGG19 and VGG19-BN, approximately 8 s on 2 
nodes of Virtual Machine with 224 GB of memory and 4 GPUs 
(Tesla K80).

3.2. Jaccard distance. A fused image is expected to present 
more shaped, contrasting details and less artificial noise. For 
quantitative comparison of the obtained images, as well as for 
measuring the performance of segmentation, methods such 
as the dice coefficient (DICE) or average symmetric surface 
distance coefficient (ASSD) [25], accuracy, precision, recall, 
F-measure, G-measure, and Jaccard distance [26] can be used. 
In this paper, the Jaccard coefficient was applied to measure the 
similarity between two fusion results. Jaccard distance reaches 
its best value at 1 and worst value at 0, indicating a lower sim-
ilarity [26]. The results comparing five fusion outcomes are 
presented in Table 2.

Table 2 
Jaccard coefficient for fused images with VGG19  

and VGG19-BN models

Method
Slice no.

1 2 3 4 5
Jaccard 

coefficient 0.9823 0.9837 0.9851 0.9931 0.9479

Results confirm the impact of applying batch normaliza-
tion [27] in a fusion model, as long as the same deep learning 
model architecture was chosen. Fig. 2 presents the differences 
in pixel intensities in the obtained fused images. Moreover, the 
histogram is useful to confirm if there is any significant noise 
affecting the image. The original examination results are saved 
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in DICOM format, and in those cases, the histograms should 
reflect intensities in HU. Any transformation of an image, espe-
cially conversion to PNG/JPG formats, can change pixel inten-
sity values. The maximum pixel intensity value obtained from 
the PNG files was 255 when on the original CT was 2,692, and 
on the original PET DICOM file, 23,706.

finally, 10 images not used during the training were taken. The 
best-achieved model is available in [31].

4.2. Results. Tumour detection takes approximately 10 s in the 
previously discussed infrastructure. Cropping is accomplished 
in less than 1 s. Results are presented in Table 3.

Table 3 
Mask R-CNN model results

Slice 
no. Source image Detection Cropping

1

2

3

4

5

6

Mask R-CNN can be successfully applied to detected 
tumours. For all slides where tumour was clearly present, the 
model gives the correct results and detects the tumour. How-
ever, the sensitivity of the trained model is too high, especially 
for the slices where the analysed tumour (glioma) cannot exist. 
The results of the working model presented in Fig. 3 are not 
acceptable. The results for slice 6 from Table 3 present the algo-

Fig. 2. Histogram for fused images

Choosing a different deep learning model to fuse images 
can lead to producing different output images and modifying 
pixel intensity values. Detecting tumours, especially segment-
ing tumour area, is based on pixel intensities, independent of an 
image format. For volume computation to determine a further 
treatment plan; pixel intensity is crucial, which is why choosing 
the correct method for fusion can influence the results.

Fusion with VGG19-BN model produces smaller contrast 
results, and for further experiments, results obtained with the 
usage of VGG19 are used.

4. Tumour detection

Mask R-CNN is an extension of Faster R-CNN [28]. The model 
is flexible and can be utilized for object classification, object 
detection and instance segmentation. Mask R-CNN returns the 
class label, bounding box coordinates and the object mask for 
each object in the image.

4.1. Implementation details. The pretrained model was used on 
the COCO dataset [29]. Pretrained models contain the weights 
and biases that represent the features the dataset was trained 
on. Learned features can be transferable to different data. Init 
models can be downloaded from [30] – Mask R-CNN 2.0. Next, 
the first training for all layers (except the initial layer which 
was frozen) was implemented. The chosen parameters were five 
epochs and a learning rate of 0.001. After the initial run, a sec-
ond training of all layers during ten epochs and with a learning 
rate of 0.0001 was completed.

Recreation of the model in inference mode and load trained 
weights was the primary stage. Random testing followed, and 
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rithm behaviour when two boxes are drawn, one should not be 
inside the other.

The solution for this challenge is to analyse only the slices 
in which the tumour is visible. Based on statistical experiments, 
the tumour is not visible in slices from 0 to 60 and from 110 
to 148. Processing exclusively the scans where the tumour can 
be located not only reduces over-detection but also drastically 
improves the performance via reducing the time of computation 
by almost 2/3.

The final algorithm cropped a 64£64 size image as the input 
for the next step of the proposed method, i.e. segmentation. An 
alternative approach could be to calculate the size of a final 
output based on the equation:

	 ρ = max (α, β ) + 30 pixels , (1)

where α and β are the tumour width and height and 30 pixels 
were added as small surrounding area [32].

5. Tumour segmentation

The objective of the semantic segmentation is to assign an 
object category label for each pixel in the image. The U-Net is 
the extension of a fully convolutional network (FCN) [33], i.e. 
the first end-to-end architecture proposed for semantic segmen-
tation. The U-Net produces good results even with a large data-
set absent when data augmentation techniques are used [15].

5.1. Implementation details. The U-Net model implemented 
in Keras was adjusted to run on smaller images than origi-
nally designed (64£64 resolution images). The adjusted model 
architecture implementation is presented in [34]. The model 
was trained with a prepared dataset where tumour areas were 
manually masked. The steps per epoch number were calculated 
as the number of trained images divided by the batch size set 
to 16. Data augmentation was used to increase the dataset vari-
ance to be able to feed the deep learning neural network. There 
were several techniques utilized in augmenting data samples 
such as rotations, shear intensity, zoom, channel shifts, and 
horizontal flips.

Output from the network is 64£64, which represents 
a mask. In the sigmoid activation function, mask pixels are in 
[0, 1] range. The loss function for the training is simply a binary 
cross-entropy. The model was trained for 10 epochs achieving 

the accuracy of almost 97% on the training dataset and similar 
on the validation dataset.

5.2. Results. Tumour area segmentation for a single patient 
(about 50 slices) takes around 15 s in the same infrastructure 
as fusion was completed. The visual results are presented in 
Table 4. The infrastructure choice increased in its importance, 
especially during training. The main inconveniences of CNNs 
are both the enormous amount of computational power and 
the amount of time necessary to train the networks. The strict 

Fig. 3. Overdetection in slices where glioma cannot be present due 
to its nature

Table 4 
Results for U-Net semantic segmentation

Slice 
no. Source image Segmented tumour 

area

1

2

3

4

5

6
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requirement for training is GPU. For interference mode, it was 
concluded that the CPU working well and validating FPGA 
(field-programmable gate arrays) is necessary in order to pos-
sibly accelerate the calculations.

The obtained results are entirely satisfactory. Loading of 
pretrained weights significantly increases the accuracy and 
reduces the time for model training.

6. Conclusions and future work

In this paper, the framework for tumour detection and segmen-
tation in medical images is presented. It is understood that the 
frames for operations involving object detection and segmenta-
tion tasks using grayscale images can be applied in other cases 
when dealing with solid structure tumours, such as the detection 
of tumours from MRI images.

The primary challenging aspect of applying deep learning 
methods in medicine is the size of any given dataset which 
will feed and validate the CNNs. Our research for this paper 
combines CT and PET scans, with fused images. The obtained 
results are similar to MRI images, which gives hope that the 
methods and models trained on MRI images, due to the trans-
fer learning technique, can be successfully run on the fusion 
of CT and PET. Reciprocally, models trained on fused images 
can work on MRI. However, experimental confirmation is nec-
essary.

The object detection on greyscale images is of greater dif-
ficulty compared to the identical task using RGB images. The 
presented framework can be applied to object detection in gen-
eral and the Mask R-CNN model is recommended. When there 
is no need for volume or area computation, then the segmenta-
tion step can be omitted. For tumour segmentation, one should 
consider using instance segmentation for a separate analysis 
of small tumours, e.g. primary research focus was on the main 
body of a tumour. However, glioma can consist of the main 
tumour with additional lesser in the vicinity.

The objective of tumour detection and segmentation could 
be achieved in one step, i.e. using only U-Net. The main chal-
lenge is that setting up training as a heterogeneous dataset of 
different shapes of glioma should be prepared. Moreover, for 
that task, standard methods such as local thresholding and pro-
cessing slices only when the global threshold for tumour is met 
should be applied.

The subsequent development for these methods is to follow 
the created framework and evaluate the performance of the pro-
posed image segmentation algorithm using the Dice coefficient. 
Evaluation of the proposed algorithm in MR scans with brain 
tumours and prostate should continue. It would be beneficial to 
work on 3D tumour visualisation inside a 3D skull with colour-
coded tumours. A proposal to release the algorithm as a web 
app for initial use by the radiologists in cooperation with the 
research team has been considered.

Over the previous year, due to an increase of detected 
cancers and SARS-COV-2 global pandemic, there has been 
increased human awareness of the reliance on the healthcare 
sector along with overall demand for higher, faster, and more 

accurate standards of care. However, the interpretations of med-
ical data can be made only by medical experts. Their number is 
not limitless, and they are in high demand in every hospital or 
radiological centre. It can be confidently attested that all auto-
matic systems which utilize modern deep learning techniques 
will be in high demand. Radiologists can use the results of the 
model for tumour detection during the screening tests, thereby 
decreasing the time necessary while increasing the accuracy. 
Oversensitivity of the model detects all areas of pixel intensity 
including abnormalities which cannot be observed by humans.
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