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1. Introduction

The cross-sections of some electrical systems are elliptical,
e.g., helically stranded non-magnetic conductors with elliptical
[1–3], and semi-elliptical [4] cross-section. Elliptical homoge-
neous busbars are also used. In addition, models of cylindrical
systems that deform to an elliptical shape have been discussed
in the reference [5]. Regardless of this, elliptically shaped slots
have been found in electrical machines [6,7]. Some charges are
heated by the dielectric method; these often take the form of an
elliptical column.

One of the key parameters of the aforementioned systems
is their temperature, e.g., it limits current that the conductor
can carry (steady state current rating). Exceeding this value can
threaten the thermal safety of the surroundings and lead to in-
ternal mechanical stresses; this can result in either minor or sig-
nificant displacement of the wires. If shorting occurs, the re-
sulting temperature may be so high that the delaminated wires
will form a kind of “birdcage” in the conductor. In addition, the
temperature of the dielectrically heated charge should not ex-
ceed the permitted value. Above this threshold, the charge may
lose its desirable properties or become damaged. The difference
between the maximum and the minimum charge temperatures,
i.e., the gradient, is also important. For the reasons that have
been set out, the thermal field analysis in electrical systems is
an important technical task that should be undertaken.

The analytical-numerical method, which is covered in this
article, has certain advantages; one of these is the possibility
of calculating the thermal field at any point of an area that is
bounded by an ellipse. Using numerical methods [8–10], the
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field is only determined in the nodes of the grid, i.e., in selected
points only. This means there is a finite number of degrees of
freedom for the numerical solutions.

On the other hand, analytical solutions for elliptical bound-
aries [11–14] only apply to first and second kind boundary con-
ditions, i.e., the Dirichlet or Neumann boundary conditions.
The proposed analytical-numerical method also allows model-
ing of heat transfer in elliptical configurations, with the use of
third kind boundary conditions, e.g., Hankel’s:

(
dT
dn

)

P
= BT

∣∣
P (1)

where the left-hand side of the equation is the derivative of the
temperature, T , with respect to the external normal at the point
P on the boundary’s surface, when B = const.

Despite an intensive search, the authors of this paper could
not find any analytical-numerical calculations for elliptical-
cylindrical coordinates in the professional literature. For this
reason, the given bibliography has been limited to those previ-
ously cited analytical or numerical solutions in the elliptical re-
gions. The authors believe that the analytical-numerical method
presented in this paper has filled the gap in the subject being
discussed. Moreover, in contrast to the numerical methods, the
analytical-numerical method means that the field at an arbitrary
point in the system can be determined. When compared with the
analytical methods, the progress that has been made is model-
ing with the use of third kind (Hankel’s) boundary conditions.

2. A boundary problem for the thermal field
in an area bounded by an ellipse

Figure 1 shows the area bounded by an ellipse, where the semi-
major axis and the semi-minor axis have been denoted as a
and b, respectively. The perimeter of the ellipse is defined by
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Fig. 1. The area bounded by an ellipse and heated by an internal heat
source with efficiency g

the coordinate η = η0, whereas c is the abscissa of the focal
point. The thermal field T (η ,ψ) of the area is generated by an
internal heat source with efficiency g.

In Section 4, simplifying assumptions will be given. These
assumptions will create a physical model of the examined elec-
trical systems.

The boundary problem of the 2D model was defined with
respect to the temperature increment v(η ,ψ) = T (η ,ψ)− Ta,
where v(η ,ψ) are the elliptical-cylindrical coordinates (Fig. 1),
whereas Ta is the ambient temperature. The stationary distribu-
tion of the temperature increment in the system is described by
Poisson’s equation [15–17]:

1
c2 (cosh2η−cos2 ψ)

(
∂ 2v(η ,ψ)

∂η2 +
∂ 2v(η ,ψ)

∂ψ2

)
=− g

λ
(2)

for 0 ≤ η ≤ η0, 0 ≤ ψ ≤ 2π , where λ is the equivalent thermal
conductivity.

It was assumed that the surface η = η0 emits heat to the at-
mosphere according to Newton’s law. The aforementioned en-
ergy transfer is described by third kind (Hankel’s) boundary
condition [15, 17], which, for elliptical-cylindrical coordinates,
takes the form:

λ [gradv(η ,ψ)] ·�1η

∣∣∣
η=η0

=−α · v(η = η0,ψ), (3a)

for 0 ≤ ψ ≤ 2π , which leads to:

1

c
√

cosh2 η − cos2 ψ

∂v(η ,ψ)

∂η

∣∣∣∣
η=η0

=−α
λ
· v(η = η0,ψ) (3b)

for 0 ≤ ψ ≤ 2π , where α , is the total heat transfer coefficient,
taking convection and radiation into account.

Equations (2) and (3) define the boundary problem for the
thermal field distribution. To the best of the authors’ knowl-
edge, both the analytical and the analytical-numerical solution
of Eq. (2) with the boundary condition (3b) have not been pub-
lished in the professional literature.

3. The solution to the boundary problem
of a thermal field in an ellipse

The solution to the problem (2)–(3b) that is being sought, con-
sists of a particular integral of a heterogeneous equation, i.e.,
Poisson (2) and a general integral of a homogeneous equation,
i.e., Laplace; this can be obtained by setting the right side of
Eq. (2) to zero [18]. This particular integral was calculated on
the basis of the reference [16] (the case of function of η , ψ
variables in elliptic coordinates). On the other hand, the gen-
eral integral was calculated using the separation of variables
method [17, 19]. The superposition of the aforementioned inte-
grals leads to the following solution:

v(η ,ψ) =−gc2

8λ
[cosh(2η)+ cos(2ψ)]

+(A0 +B0η)(C0 +D0ψ)

+
∞

∑
n=1

[An cosh(nη)+Bn sinh(nη)]

· [Cn cos(nψ)+Dn sin(nψ)] (4)

for 0 ≤ η ≤ η0, 0 ≤ ψ ≤ 2π .
It follows from the system’s configuration (Fig. 1), that the

solution with respect to the coordinate ψ must be periodic
and even, which results in D0 = Dn = 0. The singular and
non-physical terms must also be removed. The heat flux (�q =
−λ ·gradv(η ,ψ)) in a singular point (focus) must be finite. Af-
ter the application of Eq. (4) to calculate the flux limits �q in
focus (η = 0,ψ = 0), the functions η and were sinh(nη) re-
jected (B0 = Bn = 0 was accepted). The inclusion of the above
conclusions and the introduction of new constants resulted in
the solution with the following form:

v(η ,ψ) =−gc2

8λ
[cosh(2η)+ cos(2ψ)]+F0

+
N

∑
n=1

Fn cosh(nη)cos(nψ) (5)

for 0 ≤ η ≤ η0, 0 ≤ ψ ≤ 2π ,
The unknown coefficients F0 and Fn were calculated us-

ing Hankel’s boundary condition (3b) (third kind). In order to
achieve this, the sum of the series (5) was limited to a finite
number with N terms and substituted into (3b), resulted in the
following:

1

c
√

cosh2(η0)− cos2(ψ)

[
−gc2

4λ
sinh(2η0)

+
N

∑
n=1

nFn sinh(nη0)cos(nψ)

]

=−α
λ

[
−gc2

8λ
[cosh(2η0)+ cos(2ψ)]+F0

+
N

∑
n=1

Fn cosh(nη0)cos(nψ)

]
(6)

for 0 ≤ ψ ≤ 2π .
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Fig. 1. The area bounded by an ellipse and heated by an internal heat
source with efficiency g
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Equation (6) was then multiplied by cos(mψ) and each side
was integrated separately with respect to the angular coordi-
nate ψ in the range 〈0,2π〉; this then led to Eq. (7a) where
m = 1,2, . . . ,N. The next Eq. (7b) was obtained by integrat-
ing each side of Eq. (6) separately, with respect to the angular
coordinate ψ in the range 〈0,2π〉. As a result, the Eqs. (7a) and
(7b) form a system for N+1 of the equations with respect to the
unknowns F0, . . . ,Fn:

N

∑
n=1

FnI1(m,n) = I2(m) for m = 1,2, . . . ,N, (7a)

N

∑
n=1

FnI3(n)+F0 ·
2πα

λ
= I4 (7b)

where:

I1(m,n) =




nsinh(nη0)

c
·

2π∫

0

cos(nψ)cos(mψ)dψ√
cosh2(η0)− cos2(ψ)

for m �= n,

msinh(mη0)

c
·

2π∫

0

cos2(mψ)dψ√
cosh2(η0)− cos2(ψ)

+
απ cosh(mη0)

λ
for m = n,

(8a)

I2(m) =




gcsinh(2η0)

4λ
·

2π∫

0

cos(mψ)dψ√
cosh2(η0)− cos2(ψ)

for m �= 2,

gcsinh(2η0)

4λ
·

2π∫

0

cos(2ψ)dψ√
cosh2(η0)− cos2(ψ)

+
πgc2α

8λ 2 for m = 2,

(8b)

I3(n) =
nsinh(nη0)

c
·

2π∫

0

cos(nψ)dψ√
cosh2(η0)− cos2(ψ)

, (8c)

I4 =
gcsinh(2η0)

4λ
·

2π∫

0

dψ√
cosh2(η0)− cos2(ψ)

+
πgc2α

4λ 2 cosh(2η0) . (8d)

The integrals in Eqs. (8a–8d) can be identified as complete
elliptic integrals of the first kind [20]. However, transforming
Eqs. (8a)–(8d) to the form presented in the reference [20] is
very arduous. It is considerably easier to directly calculate inte-
grals (8a)–(8d) using an arbitrary method of numerical integra-
tion [21]. After determining the integrals in Eqs. (8a)–(8d), it
is necessary to numerically solve the system of Eqs. (7a)–(7b)

for the unknown coefficients Fn and the constant F0 in Eq. (5);
this solves the boundary problem (2)–(3b). According to the
definition of the increment v(η ,ψ), the final field distribution
in the system could then be obtained by inserting the ambient
temperature Ta into the right side of Eq. (5).

4. Applications

The first example of an application for this method is the anal-
ysis of a thermal field in a non-magnetic conductor with an
elliptical cross-section (Fig. 1). The conductor is made of he-
lically stranded bundles of aluminum wire, with a total (ef-
fective) cross-section S < πab. The air that fills the gaps be-
tween the bundles reduces the thermal conductivity of the sys-
tem compared to solid aluminum. The length of the conductor
is much greater than the major axis of the ellipse; this means
that the system can be treated as two-dimensional. The conduc-
tor was laid horizontally in a closed space (in-door conditions).
For this reason, the effect of solar radiation could be neglected
and a constant ambient temperature Ta was assumed. A constant
value of the total heat transfer α was adopted for the perimeter
of the ellipse.

Taking the above assumptions into consideration, the incre-
ment of the stationary temperature field (with respect to Ta)
could be described by the two-dimensional Poisson Eq. (2). The
efficiency of the heat source g on the right-hand side of Eq. (2)
is related to the electrical current flowing through the conductor
at the mains frequency

g =
P
V

=
ksknRDC|I|2

πabl
= ksknρ

|I|2

S ·πab
, (9)

where: P corresponds to the power losses that result from the
flow of alternating current with the root mean square value |I|,
V is the volume of a segment of the conductor with length l,
RDC is the DC resistance, ks is the skin factor [1], kn is the
stranding factor [22], which takes the helical twisting of the
wires into account, ρ(Tmax) is the resistivity of the conductor
at its maximum operating temperature and S is the sum of the
cross-sections of the bundles (the twisted aluminum wires). The
following data values were used for the calculations:

b = 0.00690988 m, a = 2b, λ1 = 180 W/(mK),

Tmax = 70◦C, Ta = 25◦C, Tmax = 70◦C,

ks = 1.02, kn = 1.02,

ρ = 2.88335 ·10−8 Ω ·m,

S = 270 mm2, α = 16 W/(mK).

(10)

The values above also determined the secondary parameters
that are essential for the analysis of the elliptical system, which
are: the abscissa of the focus of the ellipse c =

√
a2 −b2 and

the equation of its perimeter η0 = arc [sinh(b/c)].
Based on the method presented earlier (Sec. 3), a computer

program was written in the Mathematica 11.1 environment [21].
The program then was used to numerically solve the integrals
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The solution to the problem (2)–(3b) that is being sought, con-
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8λ
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+(A0 +B0η)(C0 +D0ψ)

+
∞

∑
n=1
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+
N

∑
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1

c
√

cosh2(η0)− cos2(ψ)

[
−gc2

4λ
sinh(2η0)

+
N

∑
n=1

nFn sinh(nη0)cos(nψ)

]

=−α
λ

[
−gc2

8λ
[cosh(2η0)+ cos(2ψ)]+F0

+
N

∑
n=1

Fn cosh(nη0)cos(nψ)

]
(6)

for 0 ≤ ψ ≤ 2π .
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Equation (6) was then multiplied by cos(mψ) and each side
was integrated separately with respect to the angular coordi-
nate ψ in the range 〈0,2π〉; this then led to Eq. (7a) where
m = 1,2, . . . ,N. The next Eq. (7b) was obtained by integrat-
ing each side of Eq. (6) separately, with respect to the angular
coordinate ψ in the range 〈0,2π〉. As a result, the Eqs. (7a) and
(7b) form a system for N+1 of the equations with respect to the
unknowns F0, . . . ,Fn:

N

∑
n=1

FnI1(m,n) = I2(m) for m = 1,2, . . . ,N, (7a)

N

∑
n=1

FnI3(n)+F0 ·
2πα

λ
= I4 (7b)

where:

I1(m,n) =




nsinh(nη0)

c
·

2π∫

0

cos(nψ)cos(mψ)dψ√
cosh2(η0)− cos2(ψ)

for m �= n,

msinh(mη0)

c
·

2π∫

0

cos2(mψ)dψ√
cosh2(η0)− cos2(ψ)

+
απ cosh(mη0)

λ
for m = n,

(8a)

I2(m) =




gcsinh(2η0)

4λ
·

2π∫

0

cos(mψ)dψ√
cosh2(η0)− cos2(ψ)

for m �= 2,

gcsinh(2η0)

4λ
·

2π∫

0

cos(2ψ)dψ√
cosh2(η0)− cos2(ψ)

+
πgc2α

8λ 2 for m = 2,

(8b)

I3(n) =
nsinh(nη0)

c
·

2π∫

0

cos(nψ)dψ√
cosh2(η0)− cos2(ψ)

, (8c)

I4 =
gcsinh(2η0)

4λ
·

2π∫

0

dψ√
cosh2(η0)− cos2(ψ)

+
πgc2α

4λ 2 cosh(2η0) . (8d)

The integrals in Eqs. (8a–8d) can be identified as complete
elliptic integrals of the first kind [20]. However, transforming
Eqs. (8a)–(8d) to the form presented in the reference [20] is
very arduous. It is considerably easier to directly calculate inte-
grals (8a)–(8d) using an arbitrary method of numerical integra-
tion [21]. After determining the integrals in Eqs. (8a)–(8d), it
is necessary to numerically solve the system of Eqs. (7a)–(7b)

for the unknown coefficients Fn and the constant F0 in Eq. (5);
this solves the boundary problem (2)–(3b). According to the
definition of the increment v(η ,ψ), the final field distribution
in the system could then be obtained by inserting the ambient
temperature Ta into the right side of Eq. (5).

4. Applications

The first example of an application for this method is the anal-
ysis of a thermal field in a non-magnetic conductor with an
elliptical cross-section (Fig. 1). The conductor is made of he-
lically stranded bundles of aluminum wire, with a total (ef-
fective) cross-section S < πab. The air that fills the gaps be-
tween the bundles reduces the thermal conductivity of the sys-
tem compared to solid aluminum. The length of the conductor
is much greater than the major axis of the ellipse; this means
that the system can be treated as two-dimensional. The conduc-
tor was laid horizontally in a closed space (in-door conditions).
For this reason, the effect of solar radiation could be neglected
and a constant ambient temperature Ta was assumed. A constant
value of the total heat transfer α was adopted for the perimeter
of the ellipse.

Taking the above assumptions into consideration, the incre-
ment of the stationary temperature field (with respect to Ta)
could be described by the two-dimensional Poisson Eq. (2). The
efficiency of the heat source g on the right-hand side of Eq. (2)
is related to the electrical current flowing through the conductor
at the mains frequency

g =
P
V

=
ksknRDC|I|2

πabl
= ksknρ

|I|2

S ·πab
, (9)

where: P corresponds to the power losses that result from the
flow of alternating current with the root mean square value |I|,
V is the volume of a segment of the conductor with length l,
RDC is the DC resistance, ks is the skin factor [1], kn is the
stranding factor [22], which takes the helical twisting of the
wires into account, ρ(Tmax) is the resistivity of the conductor
at its maximum operating temperature and S is the sum of the
cross-sections of the bundles (the twisted aluminum wires). The
following data values were used for the calculations:

b = 0.00690988 m, a = 2b, λ1 = 180 W/(mK),

Tmax = 70◦C, Ta = 25◦C, Tmax = 70◦C,

ks = 1.02, kn = 1.02,

ρ = 2.88335 ·10−8 Ω ·m,

S = 270 mm2, α = 16 W/(mK).

(10)

The values above also determined the secondary parameters
that are essential for the analysis of the elliptical system, which
are: the abscissa of the focus of the ellipse c =

√
a2 −b2 and

the equation of its perimeter η0 = arc [sinh(b/c)].
Based on the method presented earlier (Sec. 3), a computer

program was written in the Mathematica 11.1 environment [21].
The program then was used to numerically solve the integrals
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(8a)–(8d), as well as the system of Eqs. (7a)–(7b). For this
purpose, the iterative Krylov method was used. The program
was then used to calculate the sum of the ambient temperature
Ta and the series (5). The program also visualized the results.
While calculating an infinite series from Eq. (5), it was found
that it was strongly convergent. The addition of more than 12
terms resulted in a change in the calculation at the sixth decimal
place at any point in the system; for this reason, the calculation
of the series from Eq. (5) was limited to the first 12 terms.

An important parameter of a conductor is the steady state
current rating Icr; this is limited by the maximum temperature
Tmax the conductor can be heated to during sustained operation.
Thus, the maximum value of the current Icr must be found, to
ensure that the highest temperature at the conductor’s surface
does not exceed Tmax. The parameter Tmax exists to ensure the
thermal safety of the surroundings. Among all of the points on
the perimeter of the elliptical conductor, its upper and lower co-
vertices are the closest to the center (Fig. 1); for this reason, they
are the hottest points of the boundary. Therefore, the steady-
state current rating of the conductor can be determined from
the Eq. (11)

T
(

η = η0,ψ =
π
2
, Icr

)
= Tmax . (11)

(a)

(b)

Fig. 2. (a) The temperature distribution on the major axis (y = 0) of
the elliptical conductor with an electrical load of Icr = 658.6 A (b) The
temperature distribution on the minor axis (x = 0) of the elliptical con-

ductor with an electrical load of Icr = 658.6 A

Equation (11) was then solved iteratively in the Mathematica
11.1 software [21] using a While loop; for the data from set
(10), the result Icr = 658.6 A was obtained. Following this, the
thermal field for the above stated current was determined for
an elliptical conductor. For the sake of convenience, the se-
lected distributions were presented in Cartesian coordinates,
x = ccoshη cosψ and y = csinhη sinψ . Figures 2a and 2b il-
lustrate the temperature change on the major (y = 0, Fig. 2a)
and minor (x = 0, Fig. 2b) axes, respectively. In turn, Fig. 3
shows the isotherms of the temperature field in the conductor;
due to the high thermal conductivity of aluminum, the temper-
ature distribution (Figs. 2a and 2b and Fig. 3) was nearly uni-
form throughout the entire volume of the conductor.

Fig. 3. The isotherms of the temperature field in the cross-section of
the elliptical conductor with an electrical load of Icr = 658.6 A where

λ1 = 180 W/(mK)

The second example is the analysis of the temperature field in
a long column with an elliptical base; its cross-section is illus-
trated in Fig. 4. The dielectric column (charge) is heated elec-
tronically and every point in this block is a heat source with an
efficiency g. The condition g= const is well met when one elec-
trode of the capacitor is grounded (Fig. 4). At the same time, the
maximum difference in the potential on the second electrode
should not exceed 10%. The above conditions can be satisfied
by powering the capacitor at multiple points or by introducing
coils at suitable points between the electrodes [23].

Fig. 4. The isotherms of the temperature field in the cross-section of
long dielectric column where λ2 = 0.2 W/(mK)
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For the sake of comparison, as in the previous example, the
same efficiency g was assumed; for the same reason, the param-
eters (10) were unchanged, except for λ . In this example, it was
assumed that λ2 = 0.2 W/(mK). Figure 4 shows the isotherms
of the temperature field for the above test example.

The scope of the application of Poisson’s equation in tech-
nology and physics is very broad. Apart from the tempera-
ture inside a system with a continuous heat generation, Pois-
son’s equation describes the distribution field of the velocities
of a fluid flowing from the source. The Poisson’s equation also
describes the potentials of other physical fields; these are elec-
trostatic potential in the presence of electrical charges and grav-
itational potential in the presence of a field sources (mass).

5. Numerical verification of the method

The presented method was then verified; the obtained results
were then compared with the numerical calculations [24] and
[25]. For this reason, the temperature problem in Eqs. (2) and
(3) was solved again using the finite element method [24–27] in

(a)

(b)

Fig. 5. (a) The relative differences from Eq. (12) between the results
of the analytical-numerical method and the finite element method for
y = 0 (the major axis of the ellipse) where λ2 = 0.2 W/(mK) (dielec-
tric) (b) The relative differences from Eq. (12) between the results
of the analytical-numerical method and the finite element method for
x = 0 (the minor axis of the ellipse) where λ2 = 0.2 W/(mK) (dielec-

tric)

the Mathematica software [21]. Then, the relative difference in
the temperature increment was calculated using the following
formula:

δT = 100%
[T (x,y)−Ta]− [TFE(x,y)−Ta]

T (x,y)−Ta
(12)

where, T (x,y) is the temperature distribution obtained from the
presented analytical-numerical method and TFE(x,y) is the tem-
perature distribution calculated from the finite element method.
Figures 5a and 5b illustrate Eq. (12) for the case of the dielec-
tric column (λ2 = 0.2 W/(mK)) on the major (y = 0, Fig. 5a)
and the minor (x = 0, Fig. 5b) axes of the ellipse, respectively.
The relative differences from Eq. (12) in the elliptical conduc-
tor (λ1 = 180 W/(mK)) where about three times smaller than
presented in Figs. 5a and 5b.

6. Final remarks

A. This article describes a novel analytical-numerical approach
to determining a stationary thermal field in the elliptical
region. Cooling the system was modeled using third kind
boundary condition (Hankel’s) (3b). The total heat trans-
fer coefficient takes into account both the convective and
radiative energy transfer. The eigenfunctions of the Laplace
operator (5) were established analytically from the superpo-
sition of the general and particular integral of the Poisson’s
Eq. (2) and by the separation of variables method. The coef-
ficients of the eigenfunctions were determined numerically
from the system of Eqs. (7a and 7b) after the elliptical inte-
grals (8a–8d) had been calculated.

B. The thermal conductivity λ has a considerable influence on
the distribution of the temperature field. When the value of
λ2 is low, heat dissipation to the outside of the system is
difficulted; this results in a higher temperature for the same
efficiency of the sources g. For example, in the center of
the ellipse, T (η = 0, ψ = π/2, λ2) = 87.32◦C > T (η =
0, ψ = π/2, λ1) = 70.014◦C. The area with a temperature
higher than 70◦C was substantially larger as well, as judged
from Fig. 4, with respect to Fig. 3. Additionally, a lower
value of λ2 definitely increased the drop in the temperature
gradient, e.g., the difference in the center and right vertice
of the ellipse was equal to

[T (η=0,ψ=π/2,λ2)−T (η=η0,ψ=0,λ2)]=22.42◦C
> [T (η=0,ψ=π/2,λ1)−T (η=η0,ψ=0,λ1)]=0.029◦C.

As has been shown, a high value of λ1 nearly evens out the
temperature distribution in the system.
It follows from Figs. 3 and 4 that the perimeter of the system
(the dashed line) is never isothermal. A suitable temperature
at the higher and lower co-vertices of the ellipse is always
larger than in the right and left vertices. This is a result of the
different distances from those points to the center (b < a).
For this reason, the isotherms do not have a common focus
with the perimeter of the system.
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C. It follows from Figs. 5a and 5b, that the relative differences
(12) in the temperature distributions, calculated using the
analytical-numerical method and the finite element method,
are very small. Therefore, the developed method leads to
nearly equivalent results as the widely applied numerical
method.

D. In the special one-dimensional case (a = b), the abscissa of
the focus c =

√
a2 −b2 is zero. As a result of the above,

singularities will occur in the calculation. In addition, it
should be noted that the cylindrical (polar) coordinate sys-
tem is not a special case of the elliptical coordinate system.
This is proved by Lame’s coefficients (metrics) of both sys-
tems [16]. So, the condition of the applicability of the pre-
sented method is maintain the two-dimensionality, or a �= b.
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