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1. Introduction

Today’s rapid development in nanoelectronics and spintronics
upgrades to the problem of material functional hybridity, which
takes a prominent position in the field of the novel circuitry
solutions. In the foregoing perspective multiferroic materials
are most widely studied. Multiferroic materials are substances
where the ferroelectric and magnetic ordering coexists, which
opens the prospects for the creation of new functional materials
and nanodevices based on them [1–7].

On the other hand, nanodevices with autonomous operation
mode require nanoscale power sources which are capable to
convert the energy from a variety of external fields. Obviously,
there is no other alternative to solve this problem than the tran-
sition to a new quantum level of energy storage, since the elec-
trochemical method is unacceptable a priori in this case. Unfor-
tunately, such tasks have only recently begun to be formulated.
So, experts from Illinois University (USA) offered a system of
vacuum nanotube arrays and called it Digital quantum battery.
However, today this system exists in the form of theoretical cal-
culations only [8]. Ilyanok A. suggested to use a thin dielectric
layer at a large contact area, which can be realized in nanocom-
posites with the permittivity ε = 2 ·106 [9]. Hai et al. [10] dis-
covered the electromotive force of spin origin in a nanostruc-
ture with alternating magnetic and non-magnetic nanoparticles
within which a tunnelling, that contained a large number of
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quantum nanomagnets of a given composition, was formed. In
this case, the magnetic energy was converted into electric dur-
ing the process of magnetic quantum tunnelling. A spin capac-
itor based on field-effect transistor was suggested as well [11].
The electromotive force (EMF) of ∼ 0.1 V in this capacitor was
formed by spin-polarized injection. However, nowadays there
are still no well-developed nanosources of energy. There is the
idea and experimental attempts to confirm it [12], but with pa-
rameters and conditions that are far from commercial use. This
work is devoted to finding the ways to overcome the problem.

2. Technological aspects and investigation
methods

Gallium Selenide (GaSe) monocrystals of distinct layered
structure, grown by Bridgman-Stockbarger method, were used
as a host matrix material. It demonstrates p-type conductivity
with optical band gap value of ∼ 2 eV [13]. GaSe is a well-
known material for its ability to accommodate guest parti-
cles in positions perpendicular to crystallographic C axis [14]
within the range of Van der Waals interaction. The process of
guest component insertion into specific intracrystalline places
is called intercalation [15].

Samarium (III) Chloride (SmCl3) was chosen as guest com-
ponent because of its magnetic properties. All our previous at-
tempts to insert SmCl3 directly into GaSe failed. Therefore,
the three-stage intercalation and deintercalation technique de-
scribed in detail in [16,17] was used to obtain a fourfold expan-
sion of initial GaSe matrix first and GaSe<SmCl3> clathrate
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then. The insertion process was controlled by precision gravi-
metric method.

X-ray investigations were carried out with DRON-3 diffrac-
tometer and in Cu–Kα (λ = 1.5419 Å) radiation monochro-
matized by the reflection from (111) plane of Ge monocrystal
in X-ray beam propagation mode. The application of perfect
Ge monocrystal and collimation system for initial and scat-
tered beam enabled to start measurements from wave vector
s = 0.01 Å−1 for collecting spectra of the small-angle scatter-
ing. 1 mm slit was placed in front of the detector, that corre-
sponds to spatial separation of ∆(2θ) = 0.03◦. The registration
of scattered radiation was carried out in the scan mode in the an-
gular range of 0.25−4.00◦ with a step of 0.05◦; exposure time
– 100 s.

Impedance analysis was performed using AUTOLAB (Eco-
Chemie, The Netherlands) measuring facility integrated with
FRA-2 and GPES software. Measurements were executed
within 10−3−106 Hz frequency range perpendicularly to guest
component planes. Questionable data points were removed em-
ploying Dirichlet filtering [18, 19]. Frequency dependences
of complex impedance Z were analysed by a graph-analytic
method in the ZView 2.3 (Scribner Associates) software pack-
age. Approximation errors did not exceed 4%. Impedance spec-
tra were recorded under normal conditions (room temperature,
darkness), as well as in a constant magnetic field that was ap-
plied perpendicularly to the sheets with magnetic field strength
value of 2.75 kOe.

Thermostimulated depolarization spectra were recorded in
the mode of short-circuited contacts with linear heating at a rate
of 5◦C/min.

3. Results and discussion

The values of corresponding interplanar distances d for synthe-
sised clathrate were calculated on the basis of the analysis of the
angular positions of the X-ray diffraction peaks, shifted to the
small-angle region compared to the expanded matrix (Fig. 1).
These calculations in combination with the small-angle X-ray
scattering data confirm that the synthesized clathrate is one of
the architectures with staged ordering (inset in Fig. 1). It should
be noted that GaSe<SmCl3> clathrate is characterized by de-
fective structure, which in particular manifests itself in some
scattering in values of interlayer distance, the presence of mi-
crostresses and structural defects.

Figure 2 shows the frequency dependences of the real part
of specific complex impedance (ReZ) measured perpendicu-
larly to the layers of the expanded GaSe matrix and synthesised
GaSe<SmCl3> clathrate. The part of the real component of spe-
cific complex impedance that corresponds to the current flow
caused by delocalised charge carriers differs drastically in the
low frequency range and drops in one order of magnitude after
SmCl3 encapsulation. A positive magnetoresistance is visual-
ized with a magnetic field application but in the 0.1−400 Hz
frequency range only.

The shape of Nyquist plot (the mapping of the complex
impedance Z in the plane with real ReZ and imaginary – ImZ

Fig. 1. XRD diffraction pattern of GaSe initial sample (black), GaSe
fourfold expanded sample (red), GaSe<SmCl3> (green) clathrate with
interlayer distances d. The inset represents a schematic structure of the

clathrate architecture

Fig. 2. Frequency dependences of real component of complex
impedance, that is perpendicular to GaSe<SmCl3> nanosheets and
which are measured under normal conditions (red) and in magnetic

field (green). Black – initial expanded matrix

parts as the coordinate axes) changed significantly (Fig. 3).
The horizontal branch of complex impedance is observed for
initial expanded GaSe matrix only (Fig. 3a) and disappears
for GaSe<SmCl3> clathrate structure (Fig. 3b). This branch
shows a sharp almost 40-fold decrease in the ReZ in a very
narrow 2.1−2.6 Hz frequency range (Fig. 2) and disappears
for GaSe<SmCl3> most probably because of delocalisation of
charge carriers from trap centres near the Fermi level stimulated
by alternating field. But most extraordinary phenomena is ob-
served when at low frequencies impedance goes in IVth quad-
rant of complex plane (Fig. 3). This effect is known as negative
capacitance [20, 21] and is proposed to apply in nanoelectron-
ics for developing gyrator free delay lines. The observed, in
this work, inductive capacitance under magnetic field is more
intense and has an inverse frequency genesis that enables mag-
netic operation by delay nanolines.
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Fig. 3. Nyquist plots for the direction that is perpendicular to
nanosheets of expanded GaSe matrix (a, black) and GaSe<SmCl3>
(b) which are measured under normal conditions (red) and in magnetic

field (green). The equivalent electric circuit (c) for all diagrams

The equivalent electric circuit for the representation of
impedance response is shown in Fig. 3c. The high frequency
R||CPE link with CPE as constant phase element of capaci-
tive type stands for distributed capacitance that is caused by
vacancies or impurity levels which serve for the conduction
of clathrate at room temperature. The lowest frequency unit
CQ||RrecL simulates current flow through the host-guest inter-
face [22] and L represents the inductance, Rrec is the recombi-
nation resistance for charging the quantum capacitance CQ [23],
which is determined by CQ = e2dn/dEFn with n as an electron
density and EFn as an energy position of hole Fermi quasilevel.
The admittance for low frequency region is described by the
equation

Y (ω) =
1

Rrec + iωL
+ iωCQ (1)

and at really low frequencies can be rewritten as

Y (ω) =
1

Rrec
− iωC, (2)

where C =CL −CQ; CL = L/R2
rec.

According to Eq. (2) the impedance of the last unit of the
equivalent electric circuit for nanohybrid material at low fre-
quencies (ω < 1/(RrecC)) is the parallel connection of recom-
bination resistance Rrec and constant negative capacitance C.

The spectrum of the thermostimulated discharge current for
GaSe<SmCl3> recorded at a constant temperature scan rate re-
vealed significant bands of homocharge relaxation, alternating
with vague bands of heterocharge relaxation (Fig. 4). There-
fore, on the basis of theory for spontaneous thermovoltaic en-
ergy generation [24–28], the important conclusion can be made.
The synthesised GaSe<SmCl3> structure demonstrates an over
twofold increase in generated electromotive force of thermo-
voltaic effect at room temperature and fourfold increase at tem-
peratures over 315 K if compared to known structures.

Fig. 4. Thermostimulated depolarization of the extended
GaSe<SmCl3>

The cyclic voltammogram of synthesised GaSe<SmCl3>
nanohybrid structure is untypical (Fig. 5) and illustrates the
charge accumulation from extrinsic source and EMF of about
1.5 V appearances. The asymmetrical character for EMF in re-
lation to applied voltage polarity can be provoked by thermogal-
vanic effect as well. Also, the change of current-voltage charac-
ter in a magnetic field is an extraordinary phenomenon which is
caused by spin EMF generation and confirmed by the values of
voltage at zero current during (a–d, see Fig. 5) straight and for-
ward scanning. The value of EMF caused by injected charges

Fig. 5. Cyclic voltammetry characteristic of GaSe<SmCl3> measured
under normal conditions (red) and in magnetic field (green)
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in combination with thermovoltaic EMF changes of 0.75 V in
an applied magnetic field and can be classified as spin EMF at
room temperatures. This value is 30 times higher than EMF ob-
served for nanostructure with magnetic tunnel junction at tem-
perature of 3 K [10].

There is thorough understanding of physical mechanism for
thermovoltaic phenomena (see [28]) but situation with spin
EMF is more complicated and not so obvious because of not
only inconsistency of Faraday‘s law of electromagnetic induc-
tion but because of basic conceptual approach. Let us look at
the problem more thoroughly.

Consider the model of a spin capacitor which consists of two
barriers of V0 value and potential well between them. The ma-
terial demonstrating these barriers is characterised by a large
hysteresis which means that the direction of magnetization in
the external magnetic field changes slowly, ideally indefinitely
slowly. Instead, the electrons in the potential well can easily
change the direction of their spin under the influence of the
magnetic field. In the case of the absence of a magnetic field,
spins of electrons within a potential well are oriented randomly,
and when magnetic field is applied, they orient in its direction.
It is an obvious fact that spins of electrons will suppress the
influence of thermal motion, the intensity of which is charac-
terized by the temperature value. However, taking into account
the exclusively estimated nature of our calculations, we will ig-
nore the influence of temperature.

Let us direct the axis z towards the magnetization of the ma-
terial. Then eigenvectors of projection operator in direction l
in the basis of the eigenvector of the operator σz :

∣∣ ↑> and∣∣ ↓> are:

∣∣ψ+
l >= cos(θ/2)

∣∣ ↑>+ sin(θ/2)eiϕ ∣∣ ↓>, (3)

∣∣ψ−
l >=−sin(θ/2)e−iϕ ∣∣ ↑>+ cos(θ/2)

∣∣ ↓>, (4)

where θ and ϕ are the corresponding angles in the spherical
coordinate system.

Then the probability that by measuring the projection of the
spin on the l direction, we obtain a positive (negative) value,
equal to:

p±l =
∣∣< ψ±

l

∣∣ψ)
>
∣∣2 . (5)

In the case of magnetic field absence, the state vector ψ has
the most general form, since there are no reasons for guiding the
electron spin in a particular direction. Therefore, by averaging
the values p±l at angles θ and ϕ , we obtain that the probability
of a positive (negative) value of the spin projection of an elec-
tron in an arbitrary direction, averaged over many dimensions,
is equal to 1/2

P+ = P− =
1
2
. (6)

This is a completely predictable result, since in the absence
of a magnetic field there is no direction that would have been
allocated.

If you apply a magnetic field, then all spin electrons in the
well will be oriented in this direction. Let the direction of the

magnetic field to form an angle χ with the direction of magne-
tization of the barriers. Then probabilities P+ and P− will be
equal to

P+ = cos2(χ/2), P− = sin2(χ/2). (7)

and the energy of the particle in the well will be

E = E1 cos2(χ/2)+E2 sin2(χ/2), (8)

where E1 is the energy of a particle in a potential well with
walls of finite height V0, and E2 is the energy of a particle in
a potential well with infinitely high walls, since with a negative
projection magnitude on the direction of magnetization of barri-
ers, the mentioned barriers become impenetrable to the particle.
Let’s find energy using the method of quantum impedance. In
this case, the equation for finding its own energy levels has the
form:

tan(ka) =
cot(aeb)

|Z0/Z|− |Z/Z0|
=

√
E(V −E)cot(aeb)

E −0.5V
, (9)

where a is the width of potential well, and b is the width of bar-
riers, Z and Z0 are quantum mechanical impedances of potential
barrier and potential well, respectively.

Z = 2
√

2E/m , Z0 = 2
√

2(E −V )/m , (10)

k = i

√
2mE
�

, ae =

√
2m(V −E)

�
, (11)

For certainty we consider the ground state, considering that
V � E

Then

tan

(√
2mE
�

a

)
= 2

√
E
V

cot

(√
2mV
�

b

)
. (12)

Let: √
2mE
�

a = x, E =
�2x2

2ma2 =
x2

α2 . (13)

Then

tan(x)
x

=

cot
(

α
√

V
b
a

)

α
√

V
. (14)

Numerically solving this equation for the given parameters
a, b, and V0 and finding the value x using which it is easy to
calculate the average electron energy in the cell in the case of
the absence of a magnetic field (E0) and its presence (Em)

E0 =
�2

4ma2

(
x2 +π2) , (15)

Em =
�2

2ma2

(
x2 cos2(χ/2)+π2 sin2(χ/2)

)
, (16)
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The coexistence of the thermovoltaic and spin EMF, the ef-
fect of the accumulation of charge from the external source in
the GaSe<SmCl3> clathrate of the third stage of the separation,
gives reasons for representing it as a prototype of a new class
of substances as multivolaics, and with the functional hybridity
of the inductive element.

The conditions under which the energy accumulation in
a magnetic field or EMF generation effect during a certain time
are discussed and assumed that they depend on the properties
of the GaSe<SmCl3> clathrate.
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