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Accepted: 26 October 2020 The rapid global economic development of the world economy depends on the availability of

substantial energy and resources, which is why in recent years a large share of non-renewable
energy resources has attracted interest in energy control. In addition, inappropriate use of
energy resources raises the serious problem of inadequate emissions of greenhouse effect gases,
with major impact on the environment and climate. On the other hand, it is important
to ensure efficient energy consumption in order to stimulate economic development and
preserve the environment. As scheduling conflicts in the different workshops are closely
associated with energy consumption. However, we find in the literature only a brief work
strictly focused on two directions of research: the scheduling with PM and the scheduling
with energy. Moreover, our objective is to combine both aspects and directions of in-depth
research in a single machine. In this context, this article addresses the problem of integrated
scheduling of production, preventive maintenance (PM) and corrective maintenance (CM)
jobs in a single machine. The objective of this article is to minimize total energy consumption
under the constraints of system robustness and stability. A common model for the integration
of preventive maintenance (PM) in production scheduling is proposed, where the sequence
of production tasks, as well as the preventive maintenance (PM) periods and the expected
times for completion of the tasks are established simultaneously; this makes the theory put
into practice more efficient. On the basis of the exact Branch and Bound method integra-
ted on the CPLEX solver and the genetic algorithm (GA) solved in the Python software,
the performance of the proposed integer binary mixed programming model is tested and
evaluated. Indeed, after numerically experimenting with various parameters of the problem,
the B&B algorithm works relatively satisfactorily and provides accurate results compared
to the GA algorithm. A comparative study of the results proved that the model developed
was sufficiently efficient.
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Introduction

Nowadays, as a result of the accelerated progress
of the economy, population growth and globalization,
the energy production sector is experiencing a per-
manent and rapid 30-year increase of 56% between
2010 and 2040 [1]. The industrial sector, including

manufacturing, still accounts for nearly 50 percent
of total global energy consumption. More specifical-
ly, total energy consumption in the industrial sector
will increase from 58.9 PWh in 2010 to 90.4 PWh
in 2040 [1]. As for China, the industrial world con-
sumes about 69.44% of the total energy consumption
in 2014, of which 82.9% comes from the manufactur-
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ing sector [2]. The total energy consumption in Chi-
na’s manufacturing sector is 295,686.4 units in 2014,
with 10,000 tons of standard coal equivalent (SCE)
per unit [3].

One of the main causes of environmental pollu-
tion is the rapid growth of energy expenditure due
to the increasing amount of greenhouse pollutants,
especially carbon dioxide (CO2) [4]. For example, in
the United States, the rate of greenhouse gas emis-
sions is almost 28% [5], while in Germany, it is in the
range of 18–20% [6] and energy consumption in the
manufacturing sector accounts for at least 26% of to-
tal CO2 emissions in China [7], especially in energy-
intensive industries such as mold, chemicals, glass
and petroleum products. For example, the ferrous
metal smelting and pressing industries (i.e. mainly
for injection molding and stamping processes) ac-
count for about 28.8% of the total energy consump-
tion of the manufacturing sector in 2014 [2]. There-
fore, there is a very urgent need to improve the effi-
ciency of energy use in the manufacturing sector, to
reduce energy consumption and to enhance the re-
duction of greenhouse gas emissions [8–10]. In addi-
tion, producing economically and in a timely manner
is growing more and more important in today’s com-
petitive business and global environments. Against
this background, it is essential for many manufac-
turers that production is optimized through efficient
and operationally stabilized planning. Conventional
scheduling documentation requires the assumption
that machines are accessible at all times. Neverthe-
less, these machines and equipment are often inacces-
sible from the planning phase for various factors [11,
12, 20], especially failures and maintenance sched-
ules in traditional industrial environments. All of the
above scheduling problems are complicated by this
availability consideration.

The production environment in continuous plan-
ning is still susceptible to degradation depending on
utilization, reducing machine reliability and affecting
the stability of the machine and equipment system.
The effectiveness of predictive maintainability in the
industry of today extends to the preventive mainte-
nance of machines and systems. In order to main-
tain a machine, it must be serviced after it has been
in permanent use for a certain amount of time. Ac-
cordingly, an extended programming horizon must
include a number of maintenance periods [13].

Considering that both production and main-
tenance tasks require machine uptime, PM tasks
should be scheduled at precisely the same time with
a view to enhancing overall system productivity and
performance. Other than programmed PM, a deter-
ministic aspect affecting machine utilization, some

unexpected downtime (e.g., failures, job reversal, in-
coming or changing deadlines) can quickly disrupt
the schedule. Many production processes in many
manufacturing facilities have an initial production
calendar established to guide workshop operations
during a specific period of downtime. Once an unan-
ticipated interruption arrives, all or part of the orig-
inal calendar schedule is adjusted accordingly to
maintain the practicability and performance of the
originally proposed calendar. When the planning pe-
riod comes to a close, a schedule effectively imple-
mented in the program at the workshop is referred
to as the accomplished schedule [14]. When consider-
ing the interruption of machine failures in this paper,
the interruption of machine failures is considered.

It is a question of robustness and stability [14]:
• To be robust, it is necessary to have a stable per-

formance when something unforeseen occurs.
• It is stable a program whose realized schedule does

not deviate substantially from the initial one be-
cause of disruptions and revisions.
The contribution of this paper is to address the

problem of integrated production scheduling and pre-
ventive and corrective maintenance to minimize the
total energy consumption using several exact and ap-
proximate methods: the B&B Exact Method and the
GA approximate method to provide results of a com-
parative study of the two methods.

The discussion in the paper as described below.
In the next section, a detailed description and mod-
eling of the problem under consideration and formu-
late an improved MILP model and the results of the
computation of the problem using the two methods
of resolution are provided. Finally, the conclusion is
drawn.

Problem description and modelling

The purpose of this section is to propose a solu-
tion to the problem of fully scheduling production,
preventive (PM) and corrective (CM) maintenance
tasks in the single-machine workshop. In order to
minimize the total energy consumption.

By adding energy constraints on the existing
model of the literature that does not address the en-
ergy aspect in their study [13, 20]. In this context,
a common model for integrating production schedul-
ing and preventive and corrective maintenance to
optimize total energy consumption is proposed. Our
model takes into account the different machine down-
time constraints and performance measures men-
tioned above. The indices, parameters and variables
used in this formulation are given in Table 1.
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Table 1
The notation used to formulate the problem.

Indices:

i, j Indices of jobs

Sets:

J Set of jobs; J = {J1, J2, ..., Jn}
Parametres:

n Number of jobs

Tj Processing time of job j

Pj Processing power of job j

P0 The common power, which is consumed by auxiliary equipment and facilities

Cmax The makespan, which equals to the maximum completion time of all jobs

PM Time required to perform PM on the machine

CM Time required to repair the machine of machine

B Shape parameter of failure function of machine

α Scale parameter of failure function of machine

PEC The processing energy consumption of job j

CEC The common energy consumption of auxiliary facilities in the workshop

TEC The total energy consumption in the workshop

Decision variables:

xi,j

{
1 if job j-th performed is job i

0 Otherwise

Yi

{
1 if PM is performed prior to the i-th job

0 Otherwise

ji The i-th job in the sequence

Ti The processing time of the i-th job

Ni The number of breakdowns from the start time of ji to the finish time of ji, which is a discrete random variable

Ci The initially planned completion time of the i-th job

Cr
i The realized completion time of the i-th job

Problem assumptions and formulation

This article analyzes the problem of scheduling n
jobs {j1, j2, ..., jn} executed on a single machine:
• they are available at time zero and do not allow

any preemption,
• let’s assume that when the machine processing the

jobs is affected by a breakdown to schedule pre-
ventive and corrective maintenance periods in the
model.
Since the frequency of malfunctions can be pre-

dicted for a given solution, the B&B and GA meth-
ods have been adopted in this document to man-
age this uncertainty factor and minimize total energy
consumption. First, an initial plan is established at
the beginning of the scheduling horizon. A complete
solution can be subdivided into three parts (X,Y, T )
• first, the list of work sequences X,
• the second is the matrix of the PM, Y positions,
• the third is the time frame for the i-th matrix of
T jobs.
The first example. It is thus possible to program

in a single machine the realization of 4 jobs. For this
problem, the Gantt diagram of the initial schedul-

ing where the list of succession of jobs is defined
by X = {1, 2, 3, 4}, where the matrix of PM posi-
tions corresponds to Y = {0, 0, 0, 1}, on the basis of
a Gantt diagram and where the duration of the i-th
matrix of jobs p is defined by T = {T1, T2, T3, T4}
• xi,j : designates the j-th job performed is the job i,
• Yi: means that a PM is performed just before the
i-th job performed in the machine. On the other
hand, a PM is performed before the idle time,

• Ti: means the processing time of the i-th job.
In order to absorb the unexpected uncertainty of

moving to the line, a dynamic schedule of downtime
is inserted in the calendar. An example of downtime
in the calendar is shown in Fig. 1, some downtimes
do not appear in the calendar if the unplanned down-
time is completely avoided.

Fig. 1. Gant chart of Initial plan.

In other words, the expected beginning of the
works is not completely determined by the schedule,
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and is severely affected by the entered downtimes.
After the initial design has been drawn up at the
commencement, job sequences and PM Positions will
not be changed for the complete period of the design
horizon.

The start times of the realized activities will be
changed, nevertheless. For instance, when a break-
down takes place during J3 as indicated in Fig. 2,
a CM is executed. The operations J2 may be de-
layed. And the operations J3 and PM will not be de-
layed because of the occurrence of downtime. This
rescheduling approach is quite feasible in practice
since the initial schedule is used as a planning basis
for the planning of such external activities as chang-
ing tools and procurement of equipment. If the se-
quence of completed jobs is different from the se-
quence initially scheduled, for example, many prob-
lems will occur in the material procurement system,
because the originally prepared equipment has to be
taken out of production and newly acquired equip-
ment has to be inserted. In addition, if the corre-
sponding equipment is not ready, a job cannot be
started.

Fig. 2. Gantt chart of Realized Schedule one CM period.

The 2nd example. From the first sample the iden-
tical information given in the first example will be
taken, however, this again with a CM value corre-
sponding to j3, as described in Fig. 4.

In order to absorb the fluctuating and unpre-
dictable instability of the right, periods of inactivity
are foreseen. As shown in Fig. 3, there are periods
of inactivity that are not included in programs if un-
expected failures are neglected, as shown in the first
example. The sequence of jobs and the locations of
the maintenance periods will not change after the ini-
tial plan has been drawn up throughout the schedul-
ing period. However, for the activities, the realized
start times will be changed. Thus, if a break occurs
during J3 as shown in Fig. 4, then a CM occurs dur-
ing J3 is executed. Tasks J3 and PM must be post-
poned. In addition, task J4 is not postponed due to
the presence of idle time or rest time. In practice,
this rescheduling is very reasonable since the initial
schedule is used as a basis for scheduling externally
related activities, such as tool changes and procure-
ment of supplies. For example, when the sequence
of tasks performed is different from the one initially
envisaged, this leads to many dysfunctions in pro-
duction management, particularly with regard to the
procurement of materials, since previously prepared

materials must be taken out of the production line
and new materials must be introduced. Similarly, it is
impossible to start a job if the equipment concerned
is not ready, as shown in the first example.

Fig. 3. Gant chart of initial plan.

Fig. 4. Gantt chart of realized schedule one CM period.

Objective function

The target function minimizes as much as pos-
sible the total energy expenditure or consumption
(TEC) of the single-machine workshop, i.e., equip-
ment energy expenditure and general energy expen-
diture [16–18]. In this context, the term “total en-
ergy consumption” is therefore the sum of the to-
tal process energy expenditure and the current ener-
gy expenditure, estimated according to the following
equation:

TEC = PEC + CEC. (1)

Energy consumption of the production process:

PEC =

n∑
i=1

n∑
j=1

Pj .Tj .xi,j . (2)

Collective energy expenditure:

CEC = P0.Cmax. (3)

In this context, the concept of Energy Demand Man-
agement (TEC) is defined as the total process ener-
gy demand and current energy consumption, deter-
mined as follows:

TEC =

n∑
i=1

n∑
j=1

Pj .Tj .xi,j + P0.Cmax. (4)

Within this context, it is expected to minimize the
total energy expenditure:

Fct Obj = TEC, (5)

Fct Obj = PEC + CEC, (6)

Fct Obj =
n∑

i=1

n∑
j=1

Pj .Tj .xi,j + P0.Cmax. (7)
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Modelling of the problem

To definitively establish within this approach
that the Mixed Integer Linear Programming Model:

MinimizeFct Obj, (8)

S.t
C1 ≥ PM.Y1 + T1, (9)

Ci ≥ Ci−1 + CM.Yi + Ti, i = 2, 3, ..., n, (10)

Tj =

n∑
i=1

xi,j .Ti, j = 1, 2, ..., n, (11)

Cr
1 = PM.Y1 + T1 + CM.N1, (12)

Cr
i = Cr

i−1 + PM.Yi + Ti + CM.Ni, i = 2, 3, ..., n,
(13)

Robustness = E.

(
n∑

i=1

Cr
i

)
, (14)

Stability = E.

(
n∑

i=1

|Ci − Cr
i |

)
, (15)

Cmax = Cr
n, i = 1, 2, ..., n, (16)

n∑
j=1

xi,j = 1, i = 1, 2, ..., n, (17)

n∑
i=1

xi,j = 1, j = 1, 2, ..., n, (18)

xi,j binary; i = 1, 2, ..., n, j = 1, 2, ..., n. (19)

The target function (8) focuses on minimizing all
the energy consumed (TEC). The constraints (9) and
(10) build the relationship from task i-th to (i+ 1)th
job. Constraint (11) indicates processing time for
task (i + 1). Mates (12) and (13) specify the real
processing time of i-th job.

Contrasts (14) and (15) set constraints for Sys-
tem Resilience (R) and Stability (S), separately. In
terms of robustness, the real concern is the achieved
scheduling behavior performance as opposed to the
initial scheduling organization performance. There-
fore, an expected scheduling efficiency of system

E.
(

n∑
i=1

Cr
i

)
is used to evaluate the reliability of an

existing system. For stability, the actual planning
must deviate from the original bare minimal schedul-
ing. Therefore, the sum of absolute differences in ab-
solute job completion timings is used as a stable mea-

sure E.
(

n∑
i=1

|Ci − Cr
i |
)

.

Constraint (16) describes the job execution rate.
Constraints (17) and (18) guarantee only one posi-
tion for the sequence and that a single job can be
positioned at only one position in the succession, and

only one job can be positioned at each position, re-
spectively. Constraints (19) and (20) establish the
binary limitations for xi,j and Yi separately.

Branch and bound algorithm

Among all popular approaches to solve program-
ming problems with integers, the branch-and-bound
algorithms are proposed. In general, this algorithm
essentially follows two phases. In the first one, it con-
sists in separating a series of problems into subsets;
whereas in the second phase, it consists in evaluating
the solutions of a subset by valuing the best solu-
tion of this subset. The research process stops when
there are no more parts left to explore in the solution
search area, and the best solution is then recognized
as the best current solution [19]. This procedure is
considered as a downward derivation, as shown in
Fig. 5:
• the branch-and-bound methods are techniques

based on a “smart” inventory of admissible choices
for a problem of combinatorial automation;

• concept: Demonstrate the solution’s optimization
by dividing the solution space;

• “Split and rule”;
• linear programming with integer numbers: using

all the linear programming power to determine
good limits;

• linear expansion of a linear program is called lin-
ear relaxation in program generated by removing
the numbers in the table;

• completeness constraints on variables.

Fig. 5. Branch and bound procedure.

Approximate resolution through (AG)

Genetic algorithms (AGs) represent methods of
stochastic research that enable to overcome a large
variety of problems in the field of combinatorial al-
gorithms. They are based on the genetic biological
mechanism of breeding and selection. AGs are de-
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signed to provide the sustainability of the best and
most prospective instincts, enabling to search suc-
cessfully for a next higher generation of genes with
a superior cost performance. They are very efficient
in their simplicity, known performance in the dis-
covery process and effective even for problems of an
ever increasing complexity. Following the basic con-
cept of AGs, a population of solutions is simulated
to simulate the development process. Starting from
the basic principle of AGs, the change process starts
with a genotype consisting of one or several individ-
ual chromosomes, where each individual is equipped
with a chromosome genotype. The chromosomes are
made up of a set of elements, known as genes, which
may assume several properties, referred to as “allega-
tions”. In such so-called evolutionary algorithms, it is
necessary to use the following three fundamental op-
erators: selection, which eliminates the solutions that
are unlikely to be the most promising. In addition,
to implement a genetic algorithm, it is necessary to
have four pieces of data that practically correspond
to the size of the population, the probability of cross-
ing, the probability of mutation and the total number
of generations.

Procedure of genetic algorithms

Genetic algorithm begins with a stage referred to
as generation in which an initial Pop Size population
of individuals is created. For each individual gener-
ated, an individual fitness function is computed in
order to define the adaptation level of the selection
process. The individuals progress through the cross-
ing application with a probability Pc. Afterwards;
the resulting children are inverted at the gene level
at a probability of Pm mutation. These three evolu-
tion stages allow with a big possibility to generate
a new population that is better than the preceding
population, as shown in Figs 6 and 7.

Fig. 6. Pseudocode of General Genetic

Fig. 7. General Genetic Algorithm Mechanism.

Each new generation, the populations increase
and a cycle are repeated as long as the assessment
estimates that a solution is not optimal already. The
general process of genetic investigation is illustrated
in Fig. 7. The principal actors will be discussed, in
more detail, in subsequent parts of this document.

Computational results

This section is devoted to the exact analysis of
the performance of the linear model corresponding
to the system under study. However, the mathemati-
cal model represents a linear programming for which
an exact method such as Branch and bound inte-
grated in the CPLEX commercial solver of linear
programming, it is necessary to qualify the complex-
ity and optimality state of the problem considered.
In order to evaluate the computational power of the
proposed model, the problem should be examined in
its most difficult cases; in fact, 30 different instances
for each fixed dimension of n jobs in single machine
have been generated. Moreover, in the experimen-
tal design adopted for the problem considered, the
operating times were generated uniformly in the in-
terval [1, 100]. According to [21–24], the generation
of operating times between 1 and 100 is based on two
reasons: The first reason is related to the historical
uniformity, that is to say that the majority of the re-
search work relating to the linear model calculation
tests, including scheduling problems, generate the
operating times from a uniform distribution in the
interval [1, 100]; The second reason is related to the
fact that it is preferable to use data representative of
the real problems of scheduling since the generation
of small intervals will certainly lead very easily to
optimal solutions. These solutions will not necessar-
ily be realistic because of the inadequate conclusions
that may result. Table 2 reports the average com-
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putation times obtained using the CPLEX 12.6 soft-
ware to find the optimal total energy consumption
of the integrated scheduling problems of production
and maintenance jobs. To gain more insight into the
capability of the above model, comparative studies of
average computation times between small and large
problems are performed as shown in Figs 8–10. For
all instances, the common power P0 is set to 8. The
processing powers P are derived from the uniform
distribution [2, 8]. The preventive maintenance time
of the PM machine and the corrective maintenance
time of the CM machine are generated randomly
from the set {5, 9, 12} and {9, 12, 15} respectively.

Tables 3 show the average gap between GA and
B&B in CPLEX, calculated as

(TEC (GA)− TEC (B& B))

TEC (B& B)
× 100%.

TEC (B& B) is the optimal solution or lower bound
found by CPLEX in 3600 seconds. The HIIGA was

run 10 times for each instance, and TEC (GA) is the
average value of solutions.

All MILP formulations are modeled using IBM
ILOG CPLEX12.6 and the OPL language. The 30 in-
stances are resolved on an HP 4300U notebook with
an Intel Core i5 Duo processor clocked at 2.50 GHz
and 8 GB of RAM. The time limit is 300 seconds.
In other words, the analyzes are completed after 300
seconds. If no optimal solution is obtained within
300 seconds, the best current solution is returned.

Based on the results of the literature search, no
article considers the integrated planning of produc-
tion, preventive maintenance (PM) and corrective
maintenance (CM) tasks in a single machine with
minimal total energy consumption. For this reason, a
comparative study with a second method approached
from the genetic algorithm approach is approached,
in order to concretize the results and generate the
best solution concerning our problem in order to min-
imize the total energy consumption.

Table 2
Summary of calculation results.

Jobs PM CM T P0 P Cmax TEC Time [s]

5
Inst. 1 5 9 [10,50[ 8 [2,4[ 110 1140 0,14

Inst. 2 9 12 [50,70[ 8 [4,6[ 270 3350 0,17

Inst. 3 12 15 [70,100] 8 [6,8] 410 5960 0,18

7
Inst. 1 5 9 [10,50[ 8 [2,4[ 150 1520 0,14

Inst. 2 9 12 [50,70[ 8 [4,6[ 380 4720 0,16

Inst. 3 12 15 [70,100] 8 [6,8] 600 8620 0,19

10
Inst. 1 5 9 [10,50[ 8 [2,4[ 230 2340 0,17

Inst. 2 9 12 [50,70[ 8 [4,6[ 550 6810 0,2

Inst. 3 12 15 [70,100] 8 [6,8] 840 11980 0,21

15
Inst. 1 5 9 [10,50[ 8 [2,4[ 350 3540 0,17

Inst. 2 9 12 [50,70[ 8 [4,6[ 830 10270 0,17

Inst. 3 12 15 [70,100] 8 [6,8] 1270 18000 0,21

20
Inst. 1 5 9 [10,50[ 8 [2,4[ 470 4740 0,18

Inst. 2 9 12 [50,70[ 8 [4,6[ 1110 13730 0,19

Inst. 3 12 15 [70,100] 8 [6,8] 1700 24020 0,23

40
Inst. 1 5 9 [10,50[ 8 [2,4[ 940 9480 0,40

Inst. 2 9 12 [50,70[ 8 [4,6[ 2220 27460 0,45

Inst. 3 12 15 [70,100] 8 [6,8] 3400 48040 0,49

80
Inst. 1 5 9 [10,50[ 8 [2,4[ 1880 18960 10,5

Inst. 2 9 12 [50,70[ 8 [4,6[ 4440 54920 11,52

Inst. 3 12 15 [70,100] 8 [6,8] 6800 96080 12,61

100
Inst. 1 5 9 [10,50[ 8 [2,4[ 2350 23700 27,96

Inst. 2 9 12 [50,70[ 8 [4,6[ 5550 68650 39,76

Inst. 3 12 15 [70,100] 8 [6,8] 8500 120100 49,87

200
Inst. 1 5 9 [10,50[ 8 [2,4[ 4700 47400 146,87

Inst. 2 9 12 [50,70[ 8 [4,6[ 11100 137299 149,05

Inst. 3 12 15 [70,100] 8 [6,8] 17000 240199 158,1

400
Inst. 1 5 9 [10,50[ 8 [2,4[

Out of memory
245,87

Inst. 2 9 12 [50,70[ 8 [4,6[ 249,04

Inst. 3 12 15 [70,100] 8 [6,8] 258,05
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Table 3
Average gap between GA and B&B.

Jobs PM CM T P0 P TEC(GA) TEC(B&B) Gap [%]

5
Inst. 1 5 9 [10,50[ 8 [2,4[ 1148 1140 0,7017

Inst. 2 9 12 [50,70[ 8 [4,6[ 3364 3350 0,4179

Inst. 3 12 15 [70,100] 8 [6,8] 5972 5960 0,2013

7
Inst. 1 5 9 [10,50[ 8 [2,4[ 1532 1520 0,7894

Inst. 2 9 12 [50,70[ 8 [4,6[ 4732 4720 0,1617

Inst. 3 12 15 [70,100] 8 [6,8] 8633 8620 0,1508

10
Inst. 1 5 9 [10,50[ 8 [2,4[ 2341 2340 0,0427

Inst. 2 9 12 [50,70[ 8 [4,6[ 6822 6810 0,1762

Inst. 3 12 15 [70,100] 8 [6,8] 11998 11980 0,1502

15
Inst. 1 5 9 [10,50[ 8 [2,4[ 3543 3540 0,0847

Inst. 2 9 12 [50,70[ 8 [4,6[ 10274 10270 0,0389

Inst. 3 12 15 [70,100] 8 [6,8] 18010 18000 0,0555

20
Inst. 1 5 9 [10,50[ 8 [2,4[ 4745 4740 0,1054

Inst. 2 9 12 [50,70[ 8 [4,6[ 13760 13730 0,2184

Inst. 3 12 15 [70,100] 8 [6,8] 24067 24020 0,1956

40
Inst. 1 5 9 [10,50[ 8 [2,4[ 9499 9480 0,2004

Inst. 2 9 12 [50,70[ 8 [4,6[ 27477 27460 0,0619

Inst. 3 12 15 [70,100] 8 [6,8] 48053 48040 0,0270

80
Inst. 1 5 9 [10,50[ 8 [2,4[ 18973 18960 0,0685

Inst. 2 9 12 [50,70[ 8 [4,6[ 54931 54920 0,0200

Inst. 3 12 15 [70,100] 8 [6,8] 96098 96080 0,0187

100
Inst. 1 5 9 [10,50[ 8 [2,4[ 23721 23700 0,0886

Inst. 2 9 12 [50,70[ 8 [4,6[ 68683 68650 0,0480

Inst. 3 12 15 [70,100] 8 [6,8] 120210 120100 0,0915

200
Inst. 1 5 9 [10,50[ 8 [2,4[ 47428 47400 0,0590

Inst. 2 9 12 [50,70[ 8 [4,6[ 137319 137299 0,0145

Inst. 3 12 15 [70,100] 8 [6,8] 240238 240199 0,0162

The best solution can be found in a very short
time thanks to our MILP models. Even better, in
a reasonable time. However, the MILPs models re-
quire an excessive amount of time for a big problem.
Therefore, a genetic algorithm approach (GA) has
been used to solve large problems.

Compared to the various problems treated, the
average calculation times are relatively reasonable
for small problems. As soon as the size of the prob-
lem is larger. Calculation times are becoming more
important, as shown in Fig. 8.

As shown in Figs 9 and 10, the average calculation
times are relatively reasonable (less than 30 seconds)
when the problem is less than 20 jobs. As soon as the
size exceeds 20 jobs, computing times become very
important. For example, for the third instance of the
problem (100 jobs) with the value of the preventive
maintenance time PM is 12, the corrective mainte-
nance time CM is 15, the task processing times have
been generated uniformly in the interval [70, 100] in
this case, the processing powers P are derived from
the uniform distribution [6, 8], followed by the com-

mon power is 8, for this case the results are obtained
for a realization time of 49.87 seconds. Similarly, for
the third instance of the problem (400 jobs), the com-
pletion time is 258.05 seconds. To further illustrate
the impact of TEC on Cmax, a comparative study
of the evolution of total energy consumption and
Makespan as a function of average execution times
is established for small and large problems as shown
in Fig. 11. In addition, because the TEC values are
much larger than the Cmax values, a better illustra-
tion of the Cmax values is shown in Fig. 12.

From Fig. 11, it can be seen that the variation
in energy consumption depends on the type of work-
shop studied and the number of jobs to be performed.
And as shown in Fig. 11, if the processing power of
the jobs is increased, a considerable increase of the
consumed energy is considered, if for example the
change from the first to the second case for the prob-
lem to (80 jobs), For P is determined from the uni-
form distribution [2, 4], the obtained TEC value is
18960 and the second case for the processing power
of all jobs P is determined from the uniform distribu-
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Fig. 8. Average execution times for different instances.

Fig. 9. Comparison of average execution times for SP. Fig. 10. Comparison of average execution times for LP.

Fig. 11. Evolution of the total energy consumption and the Makespan depending on the instances.

Fig. 12. Evolution of the Makespan depending on the instances.
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tion [4, 6], the TEC value is 54920 which confirms
all that is shown. With regard to the Cmax, the val-
ues provided in Table 2 and Figs 11 and 12 shows
that increasing the final completion time of all jobs
results in a significant increase in TEC. As an ex-
ample for the second instance of these problems at
(5 jobs) (10 jobs) (10 jobs) (20 jobs) (80 jobs) and
(200 jobs) the completion time of all jobs Cmax is
equal to (270, 550, 1110, 4440 and 11100); respec-
tively and the TEC follows this variation (3350, 6810,
13730, 54920 and 137299); respectively as shown in
Table 2.

Conclusion

This article addresses the problem of integrat-
ed scheduling of production, preventive maintenance
(PM) and corrective maintenance (CM) jobs in a sin-
gle machine. The objective of this article is to mini-
mize total energy consumption under the constraints
of system robustness and stability. A propose a com-
mon model for the integration of preventive main-
tenance (PM) in production scheduling, where the
sequence of production tasks is considered, as well
as the preventive maintenance (PM) periods and
the expected times for completion of the jobs are
established simultaneously; this makes the theory
put into practice more efficient. On the basis of
the exact Branch and Bound method integrated on
the CPLEX solver and the genetic algorithm (GA)
solved in the Python software, the performance of the
proposed integer binary mixed programming mod-
el is tested and evaluated. Indeed, after numerically
experimenting with various parameters of the prob-
lem, the B&B algorithm works relatively satisfactori-
ly and provides accurate results compared to the GA
algorithm. A comparative study of the results proved
that the model developed was sufficiently efficient.
Despite this, the performance is considered tolera-
ble since the suggested exact solution requires less
than 258.05 seconds of computation time. Further-
more, in the future, studies may focus on extending
the problem to different types of machine environ-
ments, such as the flow shop and the job shop using
multi-objective optimization approaches.
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