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Abstract
Liquid-gas flows in pipelines appear inmany industrial processes, e.g. in the nuclear, mining, and oil industry.
The gamma-absorption technique is one of the methods that can be successfully applied to study such flows.

This paper presents the use of the gamma-absorption method to determine the water-air flow parameters
in a horizontal pipeline. Three flow types were studied in this work: plug, transitional plug-bubble, and
bubble one. In the research, a radiometric set consisting of two Am-241 sources and two NaI(TI) scintillation
detectors have been applied. Based on the analysis of the signals from both scintillation detectors, the gas
phase velocity was calculated using the cross-correlation method (CCM). The signal from one detector
was used to determine the void fraction and to recognise the flow regime. In the latter case, a Multi-Layer
Perceptron-type artificial neural network (ANN) was applied. To reduce the number of signal features, the
principal component analysis (PCA) was used. The expanded uncertainties of gas velocity and void fraction
obtained for the flow types studied in this paper did not exceed 4.3% and 7.4% respectively. All three types
of analyzed flows were recognised with 100% accuracy. Results of the experiments confirm the usefulness
of the gamma-ray absorption method in combination with radiometric signal analysis by CCM and ANN
with PCA for comprehensive analysis of liquid-gas flow in the pipeline.

Keywords: two-phase flow, void fraction, gamma-ray absorption, flow regime identification, artificial neural
network.
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1. Introduction

Two-phase liquid-gas flows often occur in technology, e.g. in the chemical, petrochemical
and mining industries as well as in environmental and energy engineering. This type of flow
is particularly important in many devices, such as reactors and bioreactors, heat exchangers,
and absorption, rectification and distillation columns. The method and parameters of gas-phase
transport by a liquid in liquid-gas flow are often very important because they affect the course of
technological processes.

It is known that flows with the gas phase are difficult to describe mathematically [1]. For this
reason, experimental research and development of existing and newmethods are highly desirable.
Currently, measurements of liquid-gas flows can be performed using tomographic methods (re-
sistivity, optical, capacitance, X-ray and γ-ray tomography) [1–6], Coriolis flow meters, Particle
Image Velocimetry (PIV), Laser Doppler Anemometry (LDA), high-speed cameras, magnetic
resonance imaging and radioisotope methods [7–10]. The latter, especially the γ-ray absorption
method, are also utilised by the authors of this paper in the evaluation of two-phase liquid-solids
and liquid-gas flows [11–14]. Other scientific teams use radioisotope methods to study the flow
of liquids [15–17] and various multiphase mixtures [18–20].

Signals from scintillation detectors in a radiometric measurement set can be applied to
determine the velocity of the dispersed phase and other important flow parameters, e.g. void
fraction and the rate of dispersed-phase flow. The measurements using gamma absorption are
non-invasive, have a simple basis and are relatively accurate. They allow to simultaneously
determine the velocity of the gas-phase and the void fraction using the same equipment. The
disadvantages of this method include radiological risk and a relatively high cost.

This paper investigates the application of a radiometric set consisting of two Am-241 gamma
radiation sources and two NaI(Tl) scintillation detectors to two-phase liquid-gas flow in a hori-
zontal pipeline. With this set, it is possible to designate the average velocity of the gas phase, void
fraction and to identify the regime of the flow. Section 2 describes the laboratory set-up and the
principle of the gamma-absorption method. Section 3 presents the processing of signals obtained
from scintillation detectors by using the cross-correlation method (CCM) to determine the av-
erage velocity of the gas-phase. Section 4 discusses the procedures for void fraction evaluation.
In Section 5, there is described identification of the flow regime using a Multi-Layer Perceptron
(MLP)-type artificial neural network (ANN) in combination with principal component analysis
(PCA). Section 6 contains a summary and conclusions from the conducted research.

This paper is a significantly extended version of conference publications [21, 22] and sum-
marises the authors’ work on liquid-gas flow evaluation using the gamma absorption method.

2. Experimental installation and measurement principle

In this research studies, experimental data acquired for a hydraulic installation, constructed at
the AGH University of Science and Technology in Kraków (Poland) are presented. A diagram of
the laboratory installation is presented in Fig. 1.

The main part of the installation consists of a 4.5 m long horizontal plexiglas transparent pipe
of inner diameter D = 30 mm. The water from the pump (5) is fed to the pipeline with gas from
the compressor (6) through a gas nozzle (8). The water-air mixture flowing through the horizontal
measuring section of the pipe forms two-phase and enters the gas-removing tank (7). The flow
parameters can be calculated using signals from radiometric sets and appropriate data analysis
software “Convolution”. Each set includes a radiation source X.103 (AEA Technology QSA)
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Fig. 1. Diagram of the experimental set-up: 1 – sealed radioactive source; 2 – scintillation probe;
3 – ultrasound flowmeter; 4 – mass flowmeter of air, 5 – pump with power inverter, 6 – compressor,

7 – gas-removing tank, 8 – gas nozzle, 9 – source and probe shifting system [12].

(1) with an energy of 59.5 keV and activity of 100 mCi, and a NaI(Tl) scintillation detector (2)
type SKG-1 (TESLA). The shifting system (9) allows sliding of the radiometric sets (sources and
probes) along the pipe. The measurement setup also includes a Uniflow 990 ultrasound flowmeter
(3) and a Brooks 4800 air mass flowmeter and controller (4) for liquid and gas phase flow control.
In the installation, it is possible to obtain a water flow velocity the range from 0.5 m/s to 2.5 m/s.
For data acquisition, a counter card connected to PC was used. In addition, a Panasonic NV-GS75
video camera was used for recording the flow structures. A view of the measurement section of
the installation is shown in Fig. 2.

Fig. 2. A view of the measurement section of the installation.

With appropriate pump settings and air dosing from the compressor, different flow structures
can be obtained in the pipeline measuring section [12, 13]. Three examples of such structures
analysed in this work: plug, transitional plug-bubble, and bubble are presented in Figs. 3a–3c.
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(a)

(b)

(c)

Fig. 3. Examples of analysed liquid-gas flow structures: (a) plug flow, (b) transitional plug-bubble flow, (c) bubble flow.

The radioisotope method of measurement of gas transport parameters is based on the ab-
sorption of gamma rays by the flowing two-phase mixture. The phenomenon of gamma radiation
absorption by matter is described by the Lambert–Beer principle. The output radiation intensity
I is calculated from the equation:

I = I0 exp (−ηµx) , (1)

where: I0 – intensity of input radiation, η – density of absorbent, µ – gamma-ray mass attenuation
coefficient, x – thickness of absorbent material.

When the basic expression (1) is applied to a mixture of gas and liquid, the corresponding
equation is:

I = I0 exp
[
−
(
ηL µL xL + ηG µG xG + ηPµP xP

)]
, (2)

where subscripts L and G and P denote the liquid, gas and pipe wall respectively.
The principle of measurement of liquid-gas mixture flow in the horizontal pipeline with the

gamma-ray absorption method is presented in Fig. 4.
Two sources of gamma radiation (2), placed at distance L = 97 mm, emit γ – radiation

beams (5) shaped by collimators (1). Photons pass through liquid-gas mixture in the pipeline (5).
Two scintillation probes (4) are equipped with collimators (3). Detectors are placed at the same
distance L from each other as the sources on the opposite side of the pipe. The distance between
the probes was selected experimentally to obtain a visible maximum of the cross-correlation
function (CCF) and to avoid interference from the scattered gamma-ray beams from both sources.
Count signals Ix (t) and Iy (t) are registered at the outputs of the first and second detector,
respectively.

The sequences of voltage pulses Ix (t) and Iy (t) are counted during sampling interval ∆t=1 ms
and giving discrete signals x(n) and y(n), n = int(t/∆t). The exemplary records of x(n) sig-
nals, acquired for the plug flow, transitional plug-bubble flow, and bubble flow are presented in
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Fig. 4. The idea of measurement of liquid-gas flow in the pipeline using the gamma-ray absorption method:
1 – collimator of the radioactive source, 2 — linear radioactive source, 3 – collimator of the detector,

4 – scintillation detector, 5 – pipe, 6 – main γ – radiation beam [27]. Dimensions are given in mm.

Figs. 5a–5c respectively. By analysing these signals it is possible to determine several different
flow parameters, e.g. average dispersed phase velocity, the void fraction (possible due to the
calibration for a given medium), as well as identifying the flow regime.

(a)

(b)
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(c)

Fig. 5. Examples of signals x(n) for (a) plug flow, (b) plug-bubble flow, and (c) bubble flow.

3. Calculation of gas-phase average velocity

The signals obtained from the scintillation detectors in the measurement of the liquid-gas
flow are mutually delayed stochastic waveforms. Statistical methods are usually used to analyse
these signals.

Average gas phase velocity vG is calculated from the following equation:

vG =
L
τ̂0
, (3)

where τ̂0 is a time delay estimator which can be calculated with the CCM, phase or other
methods [13, 23, 24].

Through the use of the most known CCM, the transportation time τ̂0 is usually determined
based on the position of the global waveform maximum of the CCF Rxy (τ), which can be
calculated using equation (4) [23]:

Rxy (τ) =
1
N

N−1∑
n=0

x(n)y(n + τ) , (4)

where: N is the number of samples of the signal (in the presented studies, N = 480 000), τ is the
time delay.

Figures 6a–6c show samples of cross-correlation functions obtained for the plug, transitional
plug-bubble, and bubble flow. It can be seen that for the CCFs shown in these figures it is difficult
clearly determine the position of the main maximum, especially for the bubble flow (Fig. 6c).
For this reason, smoothing of the calculated CCF or additional signal preprocessing before
correlation analysis is highly required. This issue is thoroughly discussed in [25]. Figures 6d–6f
show CCFs achieved by band-pass digital filtering of the x(n) and y(n) signals. The pass-bands
fBP were selected individually for each analysed signal: fBP = (0.1−17.0) Hz for plug flow,
fBP = (0.1−45.0) Hz for plug-bubble flow and fBP = (0.1−50.0) Hz for bubble flow [25].

One can infer fromFig. 6 that the signal filtering greatly facilitates the location of themaximum
CCFs and determination of transportation time delay τ̂0. The dispersed phase flow velocities are
calculated using (3). Following the law of propagation of uncertainty [26], the combined standard
uncertainty uc (vG ) of the gas phase velocity can be determined from the formula:

uc (vG ) =

√(
∂vG
∂L

)2
u2
B (L) +

(
∂vG
∂τ̂0

)2
u2
A

(τ̂0) , (5)
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Sample CCFs obtained directly for signals x(n) and y(n) for the plug flow (a), plug-bubble flow (b) and bubble (c)
flow and after applying digital signal filtering (d)–(f) respectively [25].

where uB (L) is the standard uncertainty of measurement of the distance L, and uA(τ̂0) is the
standard uncertainty of time delay estimation [13, 25]. Indexes A and B denote the uncertainties
of types A and B, respectively [26].

With the resultant normal distribution, the corresponding expanded uncertaintyU (vG ) for the
coverage factor kp = 2.00 (which corresponds to approximately 95% probability of expansion),
is calculated according to the following formula:

U (vG ) = kpuc (vG ). (6)

For the case presented in Figs. 6d–6f, the results vG ±U (vG ) are: vG = (0.71± 0.03) m/s for
the plug flow, vG = (1.06 ± 0.05) m/s for the plug-bubble flow, and vG = (1.45 ± 0.07) m/s for
the bubble flow, respectively. When the pipeline geometry is known, it is possible to calculate the
dispersed phase flow rate.

4. Void fraction determination

Void fraction is a very important parameter in liquid-gas flow measurements [27–33]. It gives
information about the gas content in the flowing mixture. The amount of gas affects the velocity
of individual phases and determines the flow regime. Void fraction α is defined by the equation:

α =
VG

V
, (7)

where: VG is the volume of gas and V is the total mixture volume in the pipeline.
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In the radioisotope method, a gamma-ray beam passes through the measuring cross-section
of the pipe. For this selected cross-section, (7) can be replaced by the relationship:

α =
AG

A
, (8)

where: AG – the surface area occupied by air, A – surface area of the internal cross-section of the
pipeline.

Figure 7 shows a cross-section of the pipeline and geometrical quantities used to evaluation
of the void fraction.

Fig. 7. Cross-section of the pipe: R – inner radius of the pipe, h – water level.

According to the geometrical parameters shown in Fig. 7, two cases can be considered [27]:
a) h < R:

α = 1 −
R2 arccos

(
1 −

h
R

)
− (R − h)

√
2Rh − h2

πR2 , (9)

b) h > R:

α =

R2 arccos
(

h
R
− 1

)
− (h − R)

√
2Rh − h2

πR2 . (10)

Calibration was performed under static conditions. The set of water levels in the pipe and
gamma radiation intensity I recorded by one detector gave the points as shown in Fig. 8. The
straight line was fitted to the measuring points using the LMS algorithm. The obtained calibration
relation was as follows:

ln (I) = 0.3977α + 3.0562 . (11)
The standard uncertainties of the slope coefficient and the translation vector were 0.0116 cpch

(counts per channel) and 0.0082 cpch respectively. The value of the coefficient of determination
r2 was equal to 0.992. Equation (11) can be applied in order to evaluate the void fraction α
values on condition that the following parameters are known: background radiation, and radiation
attenuated in a pipeline completely filled with water.

The slope of the fitted straight line depends only on the energy of gamma rays passing through
the pipe and on the properties of the flowingmixture. It is, therefore, possible to use the previously
defined function in different conditions (e.g. at different ambient temperatures). For the analysed
plug, plug-bubble and bubble flows the following void fraction values α ±U (α) were obtained:
α = (0.043 ± 0.002), α = (0.037 ± 0.002), and α = (0.027 ± 0.002) respectively.
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Fig. 8. Graph of dependence ln(Iy ) = f (α).

5. Flow regime identification

Identification of the liquid-gas flow regime is important for the course of technological
processes related to heat, momentum or mass transfer. For this purpose, we can use the same
signals from the radiometric set that are applied to measure gas velocity or determine the void
fraction. To identify two-phase flow structures, artificial intelligence methods, including various
types of ANNs can be applied [29–35]. To effectively apply an ANN, we need to extract the
features of the measurement signals that can be used as predictors. Statistical parameters of the
signals from scintillation probes determined in the time and/or frequency domain can be used as
these predictors (e.g. mean value, skewness, variance, kurtosis, selected power spectral density
or cross-spectral density values, the surface area of these densities in a selected frequency range).
Methods for extracting these parameters are described in [36] and [37]. Fig. 9a–9d shows selected
predictors for the three liquid-gas flow regimes analysed: mean values, standard deviation values,
kurtosis values, and autocorrelation function (ACF) values, determined for signals from Fig. 5
divided into 20,000 sample-long segments.

The predictors determined in this way (16 in total) were applied as input parameters of
the Multi-Layer Perceptron-type ANN. The output parameters were the three analyzed flow
structures. Various software environments can be used to build and analyse of artificial neural
networks [34,36,39]. In this work, Statistica software was applied to construct, train and test the
ANN. Various ANN configurations were analysed using Statistica Automated Neural Networks,
and finally, the MLP 16-8-3 network was chosen [38]. The numbers given indicate the numbers of
neurons in the input layer (16), hidden layer (8) and output layer (3). Description and test results
of the above-mentioned network are presented in Table 1.

For the three flow types analysed: plug flow, transitional plug-bubble flow, and bubble flow
100% proper recognition results for testing and validation were obtained. To simplify the network
structure, a reduction in the number of predictors can be applied. One of the methods is the PCA.
It expounds the correlation structure of a given set of predictors by using a smaller set of linear
combinations of them. The first principal component is the best summary of correlations between
the predictors. This peculiar linear combination of the features accounts for more variability
than any other conceivable linear combination. The second principal component is the second-
best linear combination of the predictors, on the condition that it is orthogonal to the first
principal component. The third component is the third-best linear combination of the features,
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(a) (b)

(c) (d)

Fig. 9. Values of selected parameters of signals for three flow types analysed as a function of data segment number:
(a) arithmetic mean, (b) standard deviation, (c) kurtosis, (d) ACF value.

Table 1. Specification and results of ANN 16-8-3 MLP.

Parameter Description

Learning algorithm BFGS 16

Specification Activation function (hidden) Tanh

Activation function (output) Linear

Quality (training) 99.57%

Results Quality (test) 100%

Quality (validation) 100%

on the condition that it is orthogonal to the first two components, and so on [40]. To apply
the PCA, first the predictors must be standardised, which is done using the Statistica software.
The number of gained principal components was then limited based on the scree plot [38]. The
principal components obtained in this way were used as new predictors for ANN. The final
results and specification for the chosen MLP 4-4-3 ANN with the best properties are presented
in Table 2.

All three types of flow analysed were recognised with 100% accuracy, and the MLP ANN
structure using the PCA has been significantly simplified.
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Table 2. Specification and results of ANN 4-4-3 MLP.

Parameter Description

Specification
Learning algorithm BFGS 23

Activation function (hidden) Exponential

Activation function (output) Softmax

Results
Quality (training) 100%

Quality (test) 100%

Quality (validation) 100%

6. Conclusions

This paper presents the application of the gamma absorption method for evaluation of liquid-
gas flow in a horizontal pipeline. The proposed analysis of measurement signals from scintillation
detectors allow to determine the number of important flow parameters. The average gas phase
velocity vG can be determined using two signals and the cross-correlation method. The expanded
relative uncertainty U (vG ) obtained for the three flow types studied in this paper (plug flow,
transitional plug-bubble flow, and bubble flow) did not exceed 4.3% which is more than sufficient
in numerous industrial applications. The signal from only one scintillation probe is sufficient
for void fraction α evaluation (after calibration). The maximum value of the expanded relative
uncertainty values U (α) obtained in this work was approx. 7.4%. In addition, it has been found
that artificial intelligencemethods, such as ANN, can be applied for recognition of the flow regime
in dynamic conditions. In this case, one signal analysis is also sufficient. To use the artificial neural
network, we need to determine the signal characteristics that will be used as predictors, and to
train the network for the flows analysed. Application of a predictor reduction method (e.g. the
PCA) makes it possible to simplify the network structure. All three types of flow analysed in this
research studies were recognised with 100% accuracy using the MLP ANN.

The comprehensive analysis of liquid-gas flows presented in this article can be used, for
example, in the mining industry to study the transport of the oil-natural gas mixture.
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