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Abstract Identification of working fluids and development of their math-
ematical models should always precede construction of a proper model of
the analysed thermodynamic system. This paper presents method of devel-
opment of a mathematical model of working fluids in a gas turbine system
and its implementation in Python programming environment. Among the
thermodynamic parameters of the quantitative analysis of systems, the fol-
lowing were selected: specific volume, specific isobaric and isochoric heat
capacity and their ratio, specific enthalpy and specific entropy. The devel-
opment of the model began with implementation of dependencies describing
the semi-ideal gas. The model was then extended to the real gas model using
correction factors reflecting the impact of pressure. The real gas equations of
state were chosen, namely due to Redlich-Kwong, Peng-Robinson, Soave—-
Redlich-Kwong, and Lee—Kesler. All the correction functions were derived
analytically from the mentioned equations of real gas behaviour. The philos-
ophy of construction of computational algorithms was presented and rele-
vant calculation and numerical algorithms were discussed. Created software
allowed to obtain results which were analysed and partially validated.
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Nomenclature

A, B,C,D
a,b

ap, a1, 0a2,0as, a4

b1, b2, b3, ba,
C1,02,63,C4,d1,d2
Cp

Cv
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f
h

k1, ko, ks, ka, ks, ke
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Greek symbols

coefficients of cubic or Lee—Kesler equation of state
characteristic constants in cubic equations of state
coefficients of approximation polynomial for specific isobaric
heat capacity

constants in Lee—Kesler equation of state

specific isobaric heat capacity

specific isochoric heat capacity

auxiliary function for departure functions of Lee—Kesler equa-
tion of state

function of acentric factor

specific enthalpy

auxiliary constants for departure functions derived from cubic
equations of state

molar mass

molar fraction

pressure

gas constant

auxiliary coefficient for solutions of cubic equation
specific entropy

thermodynamic temperature

coefficients of canonical form of cubic equation
specific internal energy

molar volume

specific volume

gas compressibility factor

«@ — correction coefficient for cohesive pressure in cubic equations of state
B,y —  coefficients of Lee—Kesler equation of state

A — increment or canonical form discriminant

K — ratio of specific isobaric and isochoric heat capacities

A — air-fuel equivalence ratio

™ — number 3.14

p,x,% — auxiliary coefficients for calculations of departure functions
w — acentric factor

Subscripts

- — reference conditions

cr —  critical conditions

) — component identification

id — ideal or semi-ideal gas

m —  mixture

ref — reference gas

s — simple gas
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Abbreviations

EoS — equation of state

CSP - corresponding states principle

LK — Lee—Kesler equation of state

PR —  Peng—Robinson equation of state

RK —  Redlich-Kwong equation of state

SRK - Soave—Redlich—-Kwong equation of state

1 Introduction

Identification of working fluids, analysis of physical model and development
of their mathematical model should always precede development and anal-
ysis of proper mathematical model of thermodynamic systems and power
engineering equipment. In many applications the properties of the work-
ing fluids are determined by the ideal gas equation of state and appear
to be inaccurate. This applies in particular to applications in areas close
to the critical point of the fluid, but also when exposed to high pressures
and temperatures. Limits for which the ideal gas equation of state may be
a sufficient approximation are defined as 2 MPa and 1473 K for atmospheric
air and exhaust gas [1-3]. Advanced mathematical model of working fluid
should therefore have a reliable accuracy in a wide range of temperature
and pressure. It should also include a change in the thermodynamic prop-
erties of the working fluids due to a change in the fractions of the mixture
components.

Quantitative analysis of the gas turbine system requires determination
of the thermodynamic parameters of the working fluid at characteristic
points. Among the most important thermodynamic parameters, the follow-
ing should be pointed out: specific volume, specific isobaric and isochoric
heat capacity and their ratio, specific enthalpy, and specific entropy. In
contemporary gas turbine systems it is possible to indicate points where
the working fluid parameters are higher than those mentioned above. Fur-
thermore, for a more detailed analysis, variable composition of the working
fluids must be taken into account: relative humidity of the atmospheric air
directed to the axial compressor, air-fuel equivalence ratio in the combus-
tion process and the mixing of different fluids streams in the expander.

The vast majority of commercially available programs allow to determine
thermodynamic parameters with the use of equations of state describing
the behaviour of real gases. However, it should be noted that the calcu-
lation of deviations for particular thermodynamic parameters (difference
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between real gas and ideal/semi-ideal gas) is usually performed using nu-
merical methods. This means that components in equations — presented
later in this publication: (18), (20), (26), and (31) — expressed by deriva-
tives and integrals, but also solutions of non-linear equations — e.g. pre-
sented later in this publication: (36), (46), and (47) — are approximated
by iterative numerical methods. As a result, the calculation time of the
entire thermal-flow system is extended, especially for issues related to cy-
cle optimisation. It should also be remembered that any approximation of
analytical relations by numerical methods leads to distortion of the final
results and to a decrease in the accuracy of calculations. What is more,
it turns out that using the same mathematical model of gas in different
applications (e.g. commercial Aspen Hysys and GateCycle software [4, 5])
leads to discrepancies in the results achieved [6]. The quality of the math-
ematical model of working fluids ultimately affects the whole quantitative
analysis of thermal-flow cycles. Moreover, it is not always possible to mod-
ify the composition of mixtures (e.g. natural gas in GateCycle). Programs
often rely on libraries of default mixtures that cannot be freely changed
in composition. In addition, the determination of pseudocritical parame-
ters for mixtures is usually done in a simplified way, e.g. in GateCycle
with the use of Kay’s rule. As will be discussed later in this publication,
the equations describing real gas are particularly sensitive to the qual-
ity of the pseudocritical parameters obtained. Another group of programs
are applications based on a grid of limited experimental data. Determi-
nation of thermodynamic parameters in points between the points of the
extended grid is done by interpolation of values from the nearest points
described by experimental data. Lastly, computational modules contain-
ing mathematical models can only be used in the environment of which
they are part. It is not possible to use them outside of the master soft-
ware.

Mathematical model was built with the use of equations of state describ-
ing the behaviour of real gas. These equations should be as accurate as pos-
sible, not difficult to implement and have relatively low calculation costs.
From a number of analysed equations of state describing real gas behaviour,
the models due to Redlich—-Kwong, Peng—Robinson, Soave—Redlich—-Kwong,
and Lee—Kesler were selected. Those equations provided a foundation for
the development of mathematical models of fluids working in a classic gas
turbine system. Similar approach and modelling attempts can be found in
the literature: [1-3, 7-10]. However, these publications are only concerned
with selective equations of state for real gas (e.g. the Berthelot equation of
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state [1-3], no longer so commonly used) and are mostly based on numerical
— not analytical — calculations (e.g. [7]). The only attempts to determine
analytical relations focus on one selected gas equation and concern indi-
vidual selected thermodynamic parameters (e.g. only specific enthalpy or
specific entropy) [8-10]. There are no publications which present univer-
sal analytical relations for real gas equations with respect to all thermo-
dynamic parameters necessary for a complete description of working fluids
(e.g. specific isobaric heat capacity). The vast majority of models are there-
fore based on numerical calculations, which use general formulas describing
thermodynamic parameters. As in the case of specialised software for the
modelling of thermal-flow cycles, the models available in the literature refer
to numerical methods of calculating integrals and derivatives and solving
non-linear equations.

A novelty proposed in this paper is to use fully analytical relations to de-
scribe all thermodynamic parameters of real gases. This refers in particular
to the pressure correction factors. The universal formulas that can be ap-
plied to all cubic equations originating from the van der Waals equation of
state were derived analytically. These include equations describing: specific
isobaric and isochoric heat capacity and their ratio, specific enthalpy and
specific entropy. Therefore, the approximation of the pressure correction
factors by numerical methods has been eliminated in order to achieve more
accurate results by analytical methods. In addition, the use of all iterative
methods has been reduced to the minimum necessary. It is worth noting
that also solutions of cubic equations of state are fully analytical using
algorithms available in the literature. The rejection of numerical and iter-
ative methods, in addition to the accuracy of the results obtained, should
also have a positive impact on calculation costs. The publication therefore
describes in detail each subsequent step in the development of the math-
ematical model, both for ideal/semi-ideal and real gases, with particular
consideration of mixtures.

A new solution is also the use of Python programming environment as
a tool to create applications [11]. All thermodynamic dependencies, calcula-
tion algorithms and numerical methods were implemented in this program-
ming environment. The choice of this language was determined by a num-
ber of advantages concerning the possibility of using it and the dynamic
development of this tool over the last years. Python is an object-oriented
general-purpose programming language. It excels in simplicity, conciseness
and intuitiveness. Python allows to create complex applications that are
highly computationally efficient due to the language architecture. Moreover,
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it offers the possibility of integration with other programming environments
and is independent of the operating system. Numerous specialist services
indicate Python as the second most popular programming tool [12].

2 Mathematical model of the working fluid based
on the ideal gas equation of state

2.1 Physical model of ideal and semi-ideal gas

The ideal gas model is a physical model that fulfils a number of condi-
tions [13]:

1) gas particles are constantly in chaotic movement,

2) volume of gas molecules is negligible compared to the volume of the
whole gas,

3) there is no interaction between the gas molecules except for repulsion
at the moment of collision,

4) collisions of gas particles are perfectly elastic,

5) energy of the gas molecules is distributed evenly over all degrees of
freedom of movement of the molecule in accordance with the principle
of energy equipartition.

These assumptions indicate the limited applicability of the ideal gas equa-
tion of state, as mentioned in the introduction, in particular for conditions
significantly deviating from standard conditions:

1) as the pressure increases, the distances between the gas molecules
decrease and the intermolecular interactions become more important,

2) as the temperature increases, the collisions of molecules are no longer
perfectly elastic,

3) as the temperature decreases, the importance of intermolecular inter-
actions increases, especially around the condensation temperature.

In technical applications the concept of semi-ideal gas is introduced. It is a
physical model that satisfies the requirements for ideal gas, although it is
extended by the dependency of specific heat capacity and temperature.
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2.2 Mathematical model of ideal and semi-ideal gas
2.2.1 Ideal gas equation of state

Ideal gas law is an equation of state that bounds pressure, temperature and
molar volume of the ideal gas

pV =RT. (1)

Using the molar mass of the fluid, the specific volume of the ideal gas can
be determined in the form of

_RT

U_pw'

(2)

2.2.2 Specific isobaric heat capacity

Specific isobaric heat capacity is a parameter that determines the amount
of heat provided to a unit of substance in an isobaric process in relation to
the temperature change of that substance. Specific isobaric heat capacity of
ideal gas is constant and independent on other thermodynamic parameters,
whereas for semi-ideal gas it depends on gas temperature [14].

Specific isobaric heat capacity is a critical parameter that allows to cal-
culate the remaining thermodynamic parameters of ideal and semi-ideal gas
and to develop a complete mathematical model of the working fluid. On the
basis of knowledge of the function of specific isobaric heat capacity, other
relationships describing thermodynamic parameters of the working fluids
can be determined: specific isochoric heat capacity, specific heat capacities
ratio, specific enthalpy and specific entropy. For these thermodynamic pa-
rameters, the analytical equations resulting from the thermodynamics of
ideal and semi-ideal gas can be determined only by the function of specific
isobaric heat capacity, temperature and pressure, which will be discussed
in detail later in this paper.

There are many models available in the literature which approximate the
specific isobaric heat capacity as a function of temperature. However, the
use of dependencies describing the entire mixtures of dry atmospheric air,
natural gas and stoichiometric exhaust gas was rejected. Models have been
implemented as mixtures of individual simple compounds, which allowed to
consider variable mass or molar fractions. Functions approximating specific
isobaric heat capacities differed in the accuracy of results and the temper-
ature range of application. It is also worth adding that the vast majority



www.czasopisma.pan.pl P N www journals.pan.pl

S

30 P. Trawinski

of available approximation equations takes into account the influence of
atmospheric pressure. The general formula defining specific isobaric heat
capacity of a semi-ideal gas can be written as

Cp(T
pé) =ao+ a1l + a2T2 + CLgT3 + CL4T4 . (3)

Table 1: Coefficients of approximation polynomials for specific isobaric heat capacity of
selected compounds [10, 11].

Temperature

Compound ag a1 x103 | azx109 azx10° | agx1012 Source
range, K
Argon Ar 2.5000 0 0 0 0 50-3000 [10, 11]
3.5390 | —0.261 0.070 1.5700 | —0.9900 50-300 10
Nitrogen | Na 3.7250 | —1.562 3.208 | —1.5540 0.1154 | 300-1000 11
2.4690 2.467 | —1.312 0.3401 | —0.0345 | 1000-3000 11
3.6300 | —1.794 6.580 | —6.0100 1.7900 50-300 10

Oxygen O2 3.8370 | —3.420 | 10.990 | —10.9600 3.7470 300-1000
3.1560 1.809 | —1.052 0.3190 | —0.0363 | 1000-3000

Methane | CHy 4.5030 | —8.965 | 37.380 | —36.4900 | 12.2200 300-1000
—0.6992 | 15.310 | —7.695 1.8960 | —0.1849 | 1000-3000

[10]
[11]
[11]
[10]
[11]
[11]
4.5680 | —8.975 | 36.310 | —34.0700 | 10.9100 |  50-300 [10]
[11]
[11]
[10]
[11]
[10]
[11]
[11]

4.2210 | —8.782 | 57.950 | —67.2900 | 25.1100|  50-300 10
Ethane CoHg

0.8293 | 20.750 | —7.704 |  0.8756 0| 300-1500 11

3.2590 | 1.356 | 15.020 | —23.7400 | 10.5600|  50-300 10
S.ar]?‘m COs | 22270 | 9.992| —9.802| 5.3970 | —1.2810 | 300-1000 11
ioxide

3.2470 | 5.847 | —3.412| 0.9469 | —0.1009 | 1000-3000 11

Three approximation formulas were selected for each compound (two for
ethane), which described specific isobaric heat capacity in different temper-
ature ranges. Argon as a noble gas has properties very similar to those of
ideal gas (constant specific isobaric heat capacity regardless of tempera-
ture).

The analysis of the initially obtained results showed discontinuities and
surge in changes of specific isobaric heat capacity at the ends of particular
temperature ranges. In order to eliminate them, additional intervals were
identified in the neighbourhood of the discussed points. In these areas, the
specific isobaric heat capacity was calculated on the basis of two dependen-
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cies from adjacent intervals, proportionally to the distance from the end
of the interval. Obtained mathematical models of temperature variability
cover the range from 50 to 3000 K (to 1500 K for ethane). However, the use
of the specific isobaric heat capacity model over such a wide temperature
range may raise some doubts. For example, because certain compounds
(e.g. hydrocarbons) are not physically existing in such a high temperature
range — they decompose. In this case, the interpretation of specific isobaric
heat capacity makes no physical sense. The final mathematical model of the
working fluids will be limited by the values of the input parameters (tem-
perature and pressure). The boundaries will be determined based on the
accuracy of the results in the different ranges of input data and the scope
of parameters that can practically be found in the gas turbine systems. Re-
sults generated from the computational modules for particular compounds
are presented in Figs. 1 and 2.

¢, KI/(kgK)
1.50

1.25

1.00

Figure 1: Specific isobaric heat capacity of nitrogen, oxygen, argon and carbon
dioxide [14, 15].

Specific isobaric heat capacity of semi-ideal gas is a function that in-
creases with temperature. In these figures, however, it can be observed
that in the lowest temperature range for particular compounds (e.g. nitro-
gen, carbon dioxide, methane) this function reaches its minimum. Further
temperature reduction leads to an increase in the specific isobaric heat
capacity. This is due to the fact that the implemented approximation equa-
tions, although they are solely temperature dependent — Eq. (3), also take
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Figure 2: Specific isobaric heat capacity of methane and ethane [14, 15].

into account the effect of atmospheric pressure, as mentioned above. For
higher temperatures, the specific isobaric heat capacity models should not
vary significantly from the semi-ideal gas model (due to relatively low pres-
sure). The mechanism of influence of pressure on the specific isobaric heat
capacity will be discussed in more details in Subsec. 10.1.

2.2.3 Specific isochoric heat capacity

Specific isochoric heat capacity is determined as the amount of heat pro-
vided to a unit of substance in an isochoric process in relation to the tem-
perature change of that substance. Similarly to the specific isobaric heat
capacity, it should be indicated that for ideal gas it is a constant value in-
dependent of other thermodynamic parameters, whereas for semi-ideal gas
it is a function of gas temperature. Specific isochoric heat capacity of ideal
and semi-ideal gas can be determined using the relation [13]

C,=C,—R. (4)

2.2.4 Heat capacity ratio

Heat capacity ratio is a ratio of specific isobaric to specific isochoric heat
capacity. It is an important parameter in the analysis of compression and
expansion processes of the working fluids in flow systems of thermal ma-
chines. For the ideal gas model it depends only on the molecular structure
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(number of atoms forming a single molecule). Value of the heat capacity
ratio can be determined from relation [13]

Cp
=& (5)

K

2.2.5 Specific enthalpy

Enthalpy is a sum of internal energy of the system and work done upon
environment to create space for this system. Specific enthalpy (related to
the unit of substance) can be described as [13]

h=u+pV. (6)

Specific enthalpy of ideal and semi-ideal gas if a function of temperature — it
is independent of pressure. Specific enthalpy of ideal gas can be calculated as

h=C,T. (7)

For semi-ideal gas — after taking into account that specific isobaric heat
capacity is a function of temperature:

T
hWT) = / C,(T)dT. (8)
0

In engineering practice, the reference enthalpy values at given temperatures
are used. It significantly improves calculations and eliminates the problem
of unknown specific isobaric heat capacity function in the entire tempera-
ture range

T
Mﬂ:%+/@@mf ()
To

2.2.6 Specific entropy

Entropy is defined as a measurement of system disorder. It indicates the
direction of spontaneous processes in an isolated thermodynamic system.
Entropy as a function of state provides information about the irreversibility
of thermodynamic processes. Specific entropy of ideal gas can be also related
to the reference parameters [13]

V

T
S—SQ‘f‘CvlnfO"‘RanO (10)
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or
T p
s=s590+Cp,In— — Rln —. 11

P T, Po D
Specific entropy of semi-ideal gas can be obtained by taking into account
the variability of specific isobaric and isochoric heat capacities in relation
to temperature. In practical calculation tasks (as in the case of specific
enthalpy) the values of the reference specific entropy are used

T
C,(T 1%
S(T):So+/ 7(, )dT+R1nVO (12)
To
or
[ Cy(T)
p
s(T) = s +/p—dT—Rln—. 13
(T') = s0 J T - (13)
0

3 Mathematical model of real gas

Dependencies of the discussed thermodynamic parameters are definitely
the strongest in relation to the fluid temperature. Relationship between
these parameters and pressure is significantly lower and is often neglected
in technical applications that require less accuracy.

Advanced mathematical model of dependencies defining real gas was
obtained by extending the semi-ideal gas model. The approach of pressure
correction factors — functions describing the deviation of the analysed pa-
rameters from the ideal gas was applied [1, 3]. This allowed for a transparent
presentation of thermodynamic dependencies as a sum of two components:
for semi-ideal gas and pressure correction factor for real gas. Pressure cor-
rection factors were applied for all thermodynamic parameters, which were
discussed for ideal and semi-ideal gas.

3.1 Specific isobaric heat capacity

Specific isobaric heat capacity of real gas can be presented as a sum of two
components [1, 3]

Cp(p, T) = CRU(T) + ACy(p, T). (14)
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Pressure correction factor for specific isobaric heat capacity is defined as

p
aC.
a1 = [ (%) ap (15)
P/ T=idem
0
Having regard to
2
O 1)
ap T=idem orT p=idem

component related to pressure impact on specific isobaric heat capacity is

obtained s
AC,(p,T) = —T / dp. 17
<8T2 )p:z’dem g ( )

Finally, the original formula can be presented in the form

Cp(p,T) = CIN(T T/<6T2> ~dp. (18)

p=idem

3.2 Specific isochoric heat capacity

Specific isochoric heat capacity of real gas can be presented as a sum of
two components

Cu(p,T) = Ci{(T) + ACy(p, T). (19)

Finally, by using thermodynamic relations (similarly as for the specific iso-
baric heat capacity) the above formula can be presented as [14]

(57,
Cy(]?, ) Czd +T/ oT —=idem dp (20)

0 ( ov ) T=idem

3.3 Heat capacity ratio

Heat capacity ratio can be expressed as

k(p, T) = (21)
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3.4 Specific enthalpy

Specific enthalpy of real gas can be also presented as a sum of two compo-
nents [1, 3] ‘
h(p,T) = h*(T) + Ah(p,T). (22)

Pressure correction factor for specific enthalpy is defined as

P
oh
Ah(p, T) = / () dp. (23)
ap T=idem
0
Having regard to
h
)07 ()
ap T=idem oT p=idem
component related to pressure impact on specific enthalpy is obtained as
p
Ah(p, T) = / VoT (W> dp. (25)
0 or p=idem

Finally, the original formula can be presented in the form

ov

h(p, T) = h¥(T) +/p V-T (6T) y ] dp. (26)
s p=idem

3.5 Specific entropy

Specific entropy of real gas can be also presented as a sum of two compo-
nents [1, 3] '
s(p,T) = s'"/(T) + As(p, T). (27)

Pressure correction factor for specific entropy is defined as:

Having regard to

0s ) ( ov )
=== 29
(ap T=idem or p=idem ( )
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component related to pressure impact on specific entropy is obtained as

As(p,T) = —0/p (g;)p:idem dp. (30)

Finally, the original formula can be presented in the form:

S(p,T) :sid(T)—/p@;) o (31)
J\OT) item

4 Cubic equations of state

Cubic equations of state are equations describing the behaviour of real gas,
which derive from the van der Waals equation of state (1873). Common fea-
tures of this group of equations are the presence of the molar volume in the
third power and the characteristic coefficients defining the intermolecular
interactions (cohesive pressure) and the volume of the molecules (covol-
ume). Redlich-Kwong, Peng-Robinson, and Soave-Redlich-Kwong equa-
tions were chosen to build a mathematical model of working fluids. These
cubic equations are also applied in commercial areas.

4.1 Redlich—-Kwong equation of state

Redlich-Kwong equation of state (1949) is considered to be the first sig-
nificant improvement of van der Waals equation of state. It introduces ad-
ditional empirical relation between cohesive pressure and fluid tempera-
ture [16]
|:+ < }(V b) = RT (32)
PV v -
Correction factor related to the cohesive pressure is a function of the tem-
perature of the working fluid

(33)
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Characteristic constants for Redlich—-Kwong equation were determined ex-
perimentally depending on the critical parameters of gas:

2m2.5
a= 0.427480107” , (34)
RT,,
b= 0.086640— . (35)

Redlich—-Kwong equation was written as follows due to further considera-
tions and implementation into computational algorithms

pV3 = RTV? 4+ (a = b’p — bRT) V — ab = 0. (36)

4.2 Soave—Redlich—-Kwong equation of state

Soave-Redlich-Kwong equation of state (1972) is a modification of Redlich—
Kwong equation of state (32). Correction factor related to the cohesive
pressure, which is a function of the temperature of the working fluid, was
extended by the dependence on acentric factor of the gas molecule [17]

o(T) = a |1+ f(w) (1 - f)] , (37)
where
f(w) = 0.48508 + 1.54171w — 0.15613w?. (38)

Characteristic constants for Soave-Redlich-Kwong equation were deter-
mined experimentally depending on the critical parameters of gas:

22
o — 0.427480 F Ter : (39)
Per
T,
b= 0.086640R <. (40)
pCT

Soave-Redlich—Kwong equation was written in identical form as Redlich—
Kwong equation (36) due to further considerations and implementation into
computational algorithms.
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4.3 Peng—Robinson equation of state

Peng—Robinson equation of state (1976) is another improvement of van der
Waals equation [18]

<p + V2+2(Zv_b2) (V —b) = RT. (41)

Correction factor related to the cohesive pressure, similarly to the Soave—
Redlich—-Kwong equation, is dependent on the temperature of the fluid and
acentric factor of the gas molecules

T
a=a|l+ f(w) (1— )] , (42)
Tcr
where
f(w) = 0.37464 + 1.54226w — 0.2699w?. (43)

Characteristic constants for Peng—Robinson equation were determined ex-
perimentally depending on the critical parameters of gas

22
o = 0.45724 Ler , (44)
Per
RT,
b=0.07780—=" . (45)
Per

Peng—Robinson equation was written as follows due to further considera-
tions and implementation into computational algorithms

pV3+(bp — RT) TV?+ (@ = 3b%p — 2bRT) V +bp— ab+ 2RT = 0. (46)

5 Corresponding states principle equations
of state

This is a group of equations of state based on corresponding states prin-
ciple (CSP). It postulates that different gases behave identically while be-
ing exposed to the same reduced parameters (pressure, temperature, mo-
lar volume) [14]. The most popular CSP-based equations of state include
Benedict-Webb-Rubin and Lee-Kesler equations.
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5.1 Lee—Kesler equation of state

Lee—Kesler equation of state (1975) is a modification of empirical equation
of state by Benedict—-Webb-Rubin (1940). General form of equation can be
written as [19]

Ve B C D c4 Y Y
2= () =1+ yp e (4 ) o) - (a0

r

Coefficients of Lee—Kesler equation of state are given as

by b3 by
B=b — 2 _ 23 _ 4
b T, T2 T3’ (48)
(&) C3
C_CI_TT. Ti'?, (49)
d
D:dﬁfi, (50)

and the values of the constants are given in Table 2.

Table 2: Constants in Lee—Kesler equation of state [19].

Constant Simple fluids Reference fluids ‘
b1 0.1181193 0.2026579
ba 0.2657280 0.3315110
b 0.1547900 0.0276550
ba 0.0303230 0.2034880
c1 0.0236744 0.0313385
c2 0.0186984 0.0503618
c3 0 0.0169010
c4 0.0427240 0.0415770

dy x 10% 0.1554880 0.4873600

da x 10% 0.6236890 0.0740336
B 0.6539200 1.2260000
v 0.0601670 0.0375400

Compressibility factor of a real gas is a combination of compressibility
factors of simple and reference gases. Solving Lee—Kesler equation of state
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requires the twofold solution of non-linear equation (47) with constants for
simple and reference gases. Finally, obtained results are included in relation

w
7=7+ (2~ z*), (51)

where acentric factor of a reference gas

w™ =0.3978. (52)

6 Mixing rules

Considering multicomponent mixtures requires establishing appropriate ru-
les of calculating pseudocritical parameters such as pressure, temperature,
specific volume, compressibility factor and acentric factor. These rules should
also include calculations of equivalent characteristic constants and coefhi-
cients for real gas equations of state applied to mixtures. There are numer-
ous approaches for calculations of pseudocritical parameters. It was decided
to use the relations detailed in [14]:

Ter = Z niTeri (53)

Loy = Z NiZeri s (54)

‘/cr = Z ni‘/;:ri ) (55)
LRIy

Per = T ) (56)

Wy, = anwz (57)

For calculations of equivalent constants and coefficients for real gas
equations of state for multicomponent mixtures it is recommended to use
a combination of geometric (coefficient ) and linear (constant b) approach
[16-18].

a= Z anj« /0G0 (58)
v
i
Calculations of pseudocritical parameters should be carried out in a careful

manner. Otherwise, incorrectly obtained values may have a decisive influ-
ence on the accuracy of calculations based on real gas equations of state.
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This is due to the fact that the characteristic parameters of real gas equa-
tions of state are directly dependent on the values of critical parameters:
Egs.: (34), (35), (37)—(40), (42)—(45), and (47). Imprecise determination
of pseudocritical temperature and pressure may lead to distortion of the
results and consequently to significant errors in the calculations. This ap-
plies in particular to calculations related to the pseudocritical pressure of
the mixture, which in most commercial programs (e.g. GateCycle) is calcu-
lated on the basis of the Kay’s rule. It turns out that more accurate results
for real gas mixtures can be obtained using relation (56).

7 Departure functions

Based on the general real gas model defined in section 3 and the respective
real gas equations of state discussed in sections 4 and 5, analytical relations
for pressure correction factors were developed. They are a measurement of
the deviation of the behaviour of real gas and semi-ideal gas.

7.1 Departure functions determined using cubic equations
of state

The general form of the cubic equation with the use of the compressibility
factor of the real gas can be written as

Z3+ AZ* + BZ +C =0, (60)
where equation coefficients are defined as:

N —RT — bp-f- kilp'f‘ k‘gp

A 1
T (61)
—RTkop + ap — bk2p2 + k1k2p2 + k3p2
B= o7 , (62)
_ —RTksp* — abp® + akip? — bksp® + kiksp®
C = =577 . (63)

Characteristic constants and coefficients for particular real gas equations
of state are discussed in Sec. 4. Values of the auxiliary coefficients for de-
parture functions are presented in Table 3.
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Table 3: Characteristic constants and coefficients for real gas equations of state and aux-
iliary coefficients for departure functions.

Parameters| Redlich-Kwong ‘ Soave—Redlich—Kwong ‘ Peng—Robinson ‘
T : T ?
a
« — a|l+ f(w)y|1-— all+ f(w)|1—
\/T ( ) < TCT )] ( ) < TCT )}
fw) - 0.48508 + 1.54171w—0.15613w? | 0.37464 + 1.54226w—0.2699w?
2T2.5 R2T2 R2T2
a 0.427480 —<— 0.427480 ——<- 0.45724 ——<
DPer DPer Per
RT, RT, RT,
b 0.086640 —" 0.086640 —" 0.07780—=—
Per Per Per
k1 0 0 0
ko b b 2b
ks 0 0 —b2
ka b b b
ks 0 0 b(v2-1)
ke —b -b —b(V2+1)

Moreover, certain auxiliary coefficients were defined for the calculations:

Y= \/ k% - 4k3 9 (64)

2RTZ
v+ + ko
X= 2RTZ , ° (65)
-+ + ko
0z
—4¢Rp [T <> + Z]
. oT p=idem
V= (66)

2RTZ — p (¢ — ka))*

Algebraic transformations allowed to obtain general formulas for the de-
parture functions for cubic equations of state.

7.1.1 Specific isobaric heat capacity

0z Iny d*a
Xy (pdo )
+ X (T “ ). (67)
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7.1.2 Specific isochoric heat capacity

ACy(p, T) = Th;xfl;oz‘ . (68)
7.1.3 Specific enthalpy
da
Ah(p,T) = pV — RT + ak;fg;—f’ In (K = :Z> . (69)
7.1.4 Specific entropy
da
As(p,T) = Rln [;T(v - m)} - k;l_TkG In (“; - ZZ) . (70)

7.2 Departure functions determined using CSP-based
equations of state

For Lee—Kesler equation of state departure functions defining the influence
of pressure on subsequent thermodynamic parameters and the order of
calculations are given directly in [19]. Additional relations include:

1) auxiliary function

E:%[,@ﬂ—(ﬂﬂﬂt%)exp(—‘zzﬂ, (71)

r

2) partial derivative of pressure with respect to temperature at constant
volume

b3 2b4 263

by 4 -5 4 =74 _
(3pr) Ll 1+T7?+T§+C1 Ly d
8TT’ Vir=idem V;“ V;“ ‘/;"2 ‘/;“5

lee =]
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3) partial derivative of pressure with respect to volume at constant tem-

perature
(8]%) __E{1+28+w+w
a‘/r Tr=idem B ‘/;2 V:/‘ ‘/;“2 ‘/7“5
C4 v 2 v
e [ (-2 (0 ) el e ()} @
7.2.1 Specific isobaric heat capacity
b Opr \?
2 (b3+?;F4) 3c3 (3%)‘/ —id
AC,(p,T)=R T,?VTT — 5172 —6F —1— T’"apr—r . (74)
(aVvT'>Tridem
7.2.2 Specific isochoric heat capacity
3b
2 (bg + T4> 33
AC,(p,T)=R 7, r 2 — 5772 —6E] . (75)
7.2.3 Specific enthalpy
2b3 3b4 363
b+ T, + 2 C2— i d
Ah(p,T)=RT|(Z -1 — TV, — STV + BTV5 +3E|. (76)
7.2.4 Specific entropy
bg 2b4 203
b1 + Ti,? + TT{S c1 — Tiﬁ d
As(p,T)=R|InZ — v ~ oy T RS +2E|. (77)

Determining pressure correction factors for Lee—Kesler equation requires
the twofold solution of equation of state — with parameters for simple and
reference gas. The final stage is the use of relation (51), which in a similar
way allows to determine all departure functions, e.g. for specific enthalpy

Ah = AR® + %c (An™ — Ans). (78)
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8 Calculation algorithms and numerical methods

Calculation algorithms of the program required the implementation of own
functions using the necessary numerical methods. They were collected in
a separate calculation module. The chosen numerical methods are discussed
below. Detailed description of the implemented numerical methods and
theoretical background can be found in the literature, e.g. [20, 21].

8.1 Solving cubic equations

The algorithm of analytical solution of cubic equations is based on calcu-
lating the value of the discriminant of the canonical form and examining
the existence of real solutions. Implemented function uses values at suc-
cessive powers of the unknown variable as an input — hence the algebraic
transformations of the equations in Sec. 4. The output value is the solution
of the equation — specific volume. General form of cubic equations of state
can be written in a form

AV3 + BV? +CV + D = 0. (79)

The first step is to determine the canonical form coefficients of the cubic
equation.

C B?
b= A 3427 (80)
2B3 D BC
+= - (81)

UEoras T AT 342

It is possible to determine the value of the discriminant of canonical form

12 w3

A=—+4—. 82

4 * 27 (82)
Then the existence of real solutions of the equation should be examined.
Depending on the value of the canonical form discriminant (¢ and w coef-

ficients) three cases are considered:

1) A > 0 — there is only one real solution (the other two roots are complex
numbers):

_ 3w 3f W B
V_\/2+\/Z+ 5 VA A (83)
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2) t =0and w =0 (A = 0) — there is one real solution (triple root)

o/ D
V:—¢A, (84)

3) A < 0 — there are three different real solutions (the final solution is
chosen as the maximum of the three obtained roots):

v
7 = arccos 2 , (85)
3
27
—t r B
1) _9, /2 )y =2
V 2 5 cos (3) 34 (86)
—t T+ 27 B
2 —9, /"~ _ =
\% 2 3 c s( 3 ) 34 (87)
(3 =9,/ " T+“>_B
Vv 2 3 cos( 3 34 (88)

8.2 Solving non-linear equations

Algorithms for numerical solving of non-linear equations are based on iter-
ative methods of bisection and Fibonacci (golden-section search) [20, 21]. It
is also possible to use other optimisation algorithms (e.g. Newton—Raphson
20, 21]). Selected methods require the determination of: an equation trans-
formed in such a way that all the expressions are on one side, the start and
end point of the solution-searching interval, the desired calculation accu-
racy (bisection method) or the number of iterations (Fibonacci method).
Moreover, according to Bolzan—Cauchy’s theorem, the starting and end-
ing point of interval should be chosen in such a way that the value of the
function at these points has opposite signs [20, 21]. Then it is guaranteed
that inside this interval the continuous function has at least one root. Al-
gorithms of iterative solving of non-linear equations were used especially
to solve the Lee—Kesler equation of state. Another application are the re-
verse functions, which calculate the temperature on the basis of pressure
and specific enthalpy or specific entropy. Algorithms for solving non-linear
equations can also be used for other equations.
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8.3 Numerical integration

Two most popular and intuitive methods were used for numerical calcula-
tions of integrals: rectangular and trapezoidal methods. Implemented calcu-
lation algorithms require specifying the input data: subintegral function, in-
tegration interval endpoint, interval discretisation step and reference point.
Integration is performed forwards or backwards from the reference point,
depending on the value of the endpoint. Algorithms of numerical integra-
tion were used especially for calculations of specific enthalpy and entropy
of a semi-ideal gas. The reference point is a chosen temperature and refer-
ence value is the corresponding specific enthalpy or specific entropy at that
temperature.

8.4 Discretisation of the interval and integration step

Discretisation of the intervals were performed using calculation algorithms
based on equal division. A list of nodal points was determined with the use
of start and end point of the interval and the discretisation step.

Algorithm for determining the integration step was also based on the
method of division into equal parts. Calculations required definition of the
start and end point of the interval and the desired division multiplication
factor. The last parameter specifies on how many parts one unit of the
interval length needs to be divided into, e.g. if the required division multi-
plication factor is set to 100, each single unit of the interval length will be
divided 100 times.

Algorithms related to the discretisation of intervals were used mostly as
auxiliary algorithms for calculations of numerical integration.

9 Calculation program

9.1 Additional assumptions

Physicochemical constants (molar masses, critical temperatures and pres-
sures, acentric factors and others) as well as specific enthalpies and entropies
of reference for particular components were assumed according to the data
available in literature and thermodynamic tables [14, 15].

Properties and thermodynamic parameters of water and steam were cal-
culated on the basis of publications of the International Association for the
Properties of Water and Steam (IAPWS) [22]. Approximation equations
cover the range: 0-1073 K for pressures up to 100 MPa and 1073-2273 K
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for pressures up to 50 MPa. Steam was considered as one of the components
of humid atmospheric air and exhaust gas.

Molar and mass fractions of particular components of working fluids
mixtures were obtained according to the thermodynamics of wet gas (hu-
mid atmospheric air) and stoichiometry of combustion process (exhaust
gas) [13]. Properties of mixtures were calculated according to equations
describing ideal and semi-ideal gas mixtures [13, 23].

9.2 Architecture of the program

Calculation program was divided into separate modules according to the
working fluid:

1) dry and humid atmospheric air,
2) high-methane natural gas,
3) exhaust gas.

In addition a separate module for water and steam properties was developed
based on the mentioned IAPWS publications. All numerical methods and
computational algorithms (e.g. algorithm for solving cubic equations) were
also collected in a separate computing module.

Functions calculating thermodynamic properties require the tempera-
ture and pressure of the working fluid as input data. Reverse functions,
which determine the temperature of the fluid on the basis of pressure and
specific enthalpy or specific entropy, were also implemented. Each function
requires the specification of fractions of particular components and equation
of state.

9.3 Exemplary calculations

The philosophy of program was illustrated by an example. The purpose is to
calculate specific enthalpy of dry atmospheric air as a real gas with defined
parameters of pressure and temperature. Calculations for the properties of
natural gas and exhaust gas are carried out in a similar way. Following
steps illustrate the calculation process inside the called function.

Step 1: Loading the input parameters of pressure and temperature.

Step 2: Checking if the given parameters do not exceed the limits of the
developed mathematical model of the working fluid properties.
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Step 3: Identification of mass or molar fractions of the particular compo-
nents of dry air as a gas mixture.

In this case nitrogen, oxygen and argon were taken into account. For calcu-
lations related to humid atmospheric air or exhaust gas, mass fractions are
determined on the basis of relative humidity /moisture content and air-fuel
equivalence ratio, respectively. Program also allows to manually determine
mass fractions of particular components as an optional input data vector.

Step 4: Determination of reference temperature, Ty and corresponding spe-
cific enthalpy, hg of dry atmospheric air. The values of specific enthalpies of
reference for particular components were taken from literature and available
thermodynamic tables. Specific enthalpy of reference for dry atmospheric
air mixture was obtained as for ideal gas mixture: as sum of products of
mass fractions and specific enthalpies of reference of particular mixture
components.

Step 5: Calculation of the integration step on the basis of the temperature
range (from the reference temperature to the temperature given in the input
parameters) and the required division multiplication factor (the default
value is 10 — each unit of the interval length is divided into 10 equal parts).

Step 6: Defining the subintegral function as an auxiliary internal function.
For specific enthalpy the proper subintegral function is specific isobaric heat
capacity, Cp(T).

Step 7: Calculation of the specific enthalpy of dry atmospheric air as a semi-
ideal gas, h**(T), by numerical integration in one of three intervals. For an
input temperature lower than the reference temperature backward inte-
gration, for an input temperature higher than the reference temperature
forward integration. For an input temperature equal to the reference tem-
perature, the integral value is zero.

Step 8: Consideration of the pressure impact, Ah(p,T), based on the se-
lected equation of state. For the case of the Clapeyron equation, the pres-
sure impact is equal to zero and no calculations are performed in this step.
For the Redlich—-Kwong, Soave—Redlich—-Kwong, and Peng—Robinson equa-
tions of state following properties are determined:

1) specific volume on the basis of chosen equation of state,

2) characteristic constants and coefficients o and b of particular compo-
nents and whole mixture,
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3)

)

o
auxiliary coefficients k5 and kg and partial derivative T

departure function Ah(p,T") — pressure correction factor.

For LK equation of state following properties are determined:

10

)
1)
)
)

—_

[

2

13

pseudocritical temperature T, and pressure p.. of dry atmospheric
air mixture,

reduced temperature 7). and pressure p, of dry atmospheric air,
specific volume in pseudocritical conditions v,

characteristic coefficients of Lee—Kesler equation of state B®, C*¢, D*
for simple gas,

reduced specific volume V? for simple gas as a solution of Lee-Kesler
equation,

auxiliary function E? for simple gas,
departure function of specific enthalpy Ah® for simple gas,

characteristic coefficients of Lee—Kesler equation of state B™/, C"/
D" for reference gas,

reduced specific volume V" for reference gas as a solution of Lee—
Kesler equation,

auxiliary function E™ for reference gas,
departure function of specific enthalpy AR for reference gas,
acentric factor w of dry atmospheric air mixture,

departure function Ah(p,T") — pressure correction factor.

Step 9: Calculation of specific enthalpy at given conditions as a sum of:
specific enthalpy of semi-ideal gas, h**(T'), and departure function — pres-
sure correction factor, Ah(p,T), for real gas. Parameters can be expressed
in mass (default) or molar.

Step 10: Return of the calculated value.
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10 Results

Developed calculation modules were used to determine thermodynamic
properties of the working fluids of a gas turbine system. The impact of
pressure, temperature, fractions of particular components of the mixture
and chosen equation of state were studied. For dry atmospheric air, the
results obtained with calculation modules were compared with available
experimental data.

10.1 Specific isobaric heat capacity of dry atmospheric air

Values of specific isobaric heat capacity for dry atmospheric air obtained
from program were compared with experimental data [20]. Calculations
were performed for levels of pressure 0.1, 0.5, 1, 2, and 3 MPa for all im-
plemented equations of state. Differences between each model equation and
experimental data were represented by the mean square error (Table 4).

Table 4: Mean square error for results obtained with different equations of state.

Pressure, Mean square error Number

MPa IG RK PR SRK LK of points
0.1 0.0197 0.0164 0.0166 0.0165 0.0170 65
0.5 0.0519 0.0167 0.0195 0.0194 0.0174 62
1.0 0.0966 0.0197 0.0245 0.0258 0.0172 60
2.0 0.2370 0.0310 0.0299 0.0471 0.0170 58
3.0 0.3858 0.0170 0.0721 0.0643 0.0307 56

Results indicate unambiguously that as the pressure increases, the semi-
ideal gas model generates more significant errors. Among the real gas
models, Redlich-Kwong and Lee—Kesler equations present high accuracy
in a wide range of parameters. However, it should be noted that the model
based on the Lee—Kesler equation requires considerably more mathematical
operations. Models based on the Peng—Robinson and Soave—Redlich—-Kwong
equations become less accurate as the pressure increases.

Specific isobaric heat capacity for the low pressure range indicates a be-
haviour similar to that of semi-ideal gas; it is a function that generally
increases with temperature — Fig. 3. However, as the working fluid pres-
sure increases, its influence on this thermodynamic parameter is notice-
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able. This is particularly the case in the low temperature range, and as the
temperature increases, the pressure impact decreases. Such behaviour can
be explained by reference to the basic principles of thermodynamics. As
the pressure increases, the distances between the gas molecules decrease,
which results directly in an increased role of intermolecular interactions.
The equations describing the real gas reflect the influence of the inter-
molecular interactions directly through the characteristic coefficients for
each of them (cubic equations derived from the van der Waals equation of
state). Significant values of intermolecular interactions lead to an increase
in the amount of heat that has to be supplied to the gas to increase its ki-
netic energy (absolute temperature) — hence the increased specific isobaric
heat capacity, especially in the low temperature range, where the kinetic
energy of the molecules is much lower. As the temperature increases, the
kinetic energy of the gas molecules also increases. Therefore, an additional
further increase in pressure no longer has a significant effect on this value
and the effect of pressure on the specific isobaric heat capacity ceases to
hold a significant role.

C,, kI/(kgK)
130 1
) ——0.1 MPa
[ TR 0.5 MPa
125 (Y 1 MPa
S 2 MPa
11 ——-3MPa
1.20 H 1 ¢ 0.1 MPa, experimental data
\

4 1 MPa, experimental data
3 MPa, experimental data

1.10

1.05

1.00

120 320 520 720 920 1120 1320

Figure 3: Specific isobaric heat capacity of dry atmospheric air (RK EoS).

The obtained curves of specific isobaric heat capacity for dry atmospheric
air for particular pressure levels correspond very adequately to the experi-
mental data [24]. The empirical values are located on successive model data
lines corresponding to the subsequent pressure levels.
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10.2 Specific isobaric heat capacity of exhaust gas

Values of specific isobaric heat capacity for exhaust gas obtained from pro-
gram were compared at different levels of air-fuel equivalence ratio. Model
based on Lee—Kesler equation of state was used for this comparison. Fig-
ure 4 includes also values for the specific isobaric heat capacity of dry
atmospheric air.

C,, kI/(kgK)
1.50

420 620 820 1020 1220 1420 1620 1820
T,K

Figure 4: Specific isobaric heat capacity of exhaust gas at different levels of air-fuel
equivalence ratio (LK EoS; 2 MPa).

Specific isobaric heat capacity of the exhaust gas increases with the
temperature, similar to dry atmospheric air. It is noteworthy that with
the increase of the air-fuel equivalence ratio for exhaust gas, the properties
of this working fluid approach those of dry atmospheric air in the same
conditions. As the air-fuel equivalence ratio increases, the proportion of
air to the stoichiometric exhaust gas also increases, therefore: fractions of
the particular components of exhaust gas mixture approach those of the
corresponding dry atmospheric air components.

10.3 Specific enthalpy of high-methane natural gas

Impact of pressure on specific enthalpy is illustrated with the example of
high-methane natural gas in Fig. 5. Study analysed the results generated
by the model based on the ideal gas equation and the models based on the
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real gas equations. For the considered case the pressure of the fluid was set
at 5 MPa.

h, kl’kg

870

850

830

810

790

770

273 278 283 288 293
T,K

Figure 5: Specific enthalpy of high-methane natural gas (5 MPa).

A narrower temperature range was used to show the differences between
particular real gas models. The most significant difference can be seen be-
tween the semi-ideal gas model and the real gas models. Distance between
each real gas model and the semi-ideal gas model illustrate the impact of
pressure on the specific enthalpy of high-methane natural gas resulting from
the applied equation of state.

For the semi-ideal gas model, specific enthalpy is a function of the fluid
temperature only — Eqs. (8) and (9). Calculation in this case comes down
only to the integration of the specific isobaric heat capacity function in
a given temperature range for semi-ideal gas. Gas model based on the
equations describing the real gas introduces a pressure correction factor il-
lustrating the effect of pressure — Eq. (26), which occurs in addition to the
part responsible for integrating the specific isobaric heat capacity function
of semi-ideal gas. Taking into account the influence of pressure at constant
temperature reduces the specific enthalpy of the working fluid, as can be
seen in Fig. 5. This may seem to be in contradiction with Figs. 3 and 4 —
an increase in pressure causes an increase in specific isobaric heat capacity,
which should also result in an increase in the sum of these values (specific
enthalpy). However, it should be noted that for the real gas model, the spe-
cific isobaric heat capacity function at a given pressure (e.g. 5 MPa) is not
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being integrated but the function describing the semi-ideal gas (pressure in-
dependent) is. The value of the pressure correction factor in Eq. (26) takes
negative values, which results from the values of the subintegral expression
— so the specific enthalpy of the real gas will be equal to the specific en-
thalpy of the semi-ideal gas reduced by the value of this coefficient reflecting
the effect of pressure. As the pressure increases, the distances between the
molecules decrease, leading to an increase in intermolecular interactions.
The increase in the energy of the intermolecular interactions reduces the
amount of heat that can be used from the working medium. Therefore, an
increase in the pressure will result in a decrease in the specific enthalpy of
the working fluid.

10.4 Specific entropy of humid atmospheric air

The impact of the fractions of particular components on the values of ther-
modynamic parameters of mixture was illustrated on the example of humid
atmospheric air in Fig. 6. For different levels of relative humidity the value
of specific entropy was studied. Model based on Peng—Robinson equation
of state was used for this comparison.
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Figure 6: Specific entropy of humid atmospheric air (PR EoS; 0.1 MPa).
As the water vapour content of the humid air mixture increases, the value

of specific entropy also increases. The increasing content of water vapour
visibly affects the value of thermodynamic properties of the whole mixture.
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The fraction of water vapour in the atmospheric air is one of many factors
that affect the performance of gas turbine systems. The variable relative
humidity value should therefore not be ignored in detailed analyses of the
performance of axial compressors and expanders. The increasing fraction
of water vapour content in the stream of air taken into the system results
directly in thermodynamic parameters of the working fluid at characteristic
points of thermal-flow cycle.

11 Summary and conclusions

Developed program allows to determine the thermodynamic parameters of
working fluids in a gas turbine system. For a classic system, these are: humid
atmospheric air, high-methane natural gas, and exhaust gas. The basic
parameters necessary for quantitative analysis of thermodynamic systems
were included: specific volume, specific isobaric and isochoric heat capacity
and their ratio, specific enthalpy, and specific entropy.

The program started with the implementation of dependencies defining
the semi-ideal gas model. This allowed to describe mentioned thermody-
namic properties in function of temperature. In order to obtain more ac-
curate results, it was decided to include the impact of pressure. For this
purpose, a wide range of equations describing the behaviour of real gas were
analysed. The cubic equations of state by Redlich-Kwong, Peng—Robinson
and Soave-Redlich—-Kwong, and based on the corresponding states principle
the Lee—Kesler equation of state were finally chosen.

On the basis of relations defining thermodynamic properties of real gas,
general forms of pressure correction factors were determined. They repre-
sented the impact of pressure. Then, using the selected real gas equations
of state, the departure functions were determined fully analytically.

Therefore, the semi-ideal gas model (dependence of thermodynamic pro-
perties on temperature) was extended to the real gas model (additional
pressure influence). All relationships for the real gas model were determined
fully analytically. This reduced calculation time and improved the accuracy
of the results compared to approach where integration and differentiation
operations are performed numerically.

Moreover, the variability of fractions of particular components of the
mixtures was also included (relative humidity /moisture content in humid
atmospheric air, and air-fuel equivalence ratio for exhaust gas). Thermo-
dynamic properties of mixtures were determined on the basis of thermody-
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namics of semi-ideal gas mixtures. The use of real gas equations of state
required additional clarification of the methods of calculating pseudocriti-
cal parameters (pressure, temperature, acentric factor, characteristic coef-
ficients of equations of state).

Results generated in the program were analysed and partially validated.
Above all, the results obtained for dry atmospheric air were compared with
experimental data available in the literature. The accuracy of the results
was estimated on the basis of mean square error. The most accurate for this
case were Redlich—-Kwong and Lee—Kesler equations of state. However, it
should be noted that the second one involves a significantly higher number
of mathematical operations. Impact of pressure on thermodynamic prop-
erties of all indicated working fluids was also analysed. Additionally, the
impact of relative humidity and air-fuel equivalence ratio on thermody-
namic properties of humid atmospheric air and exhaust gas, respectively,
was studied.

On the basis of the obtained accuracy of the results of the mathematical
model and the values of the input parameters which can be encountered
in the gas turbine systems, it was decided to determine the limits of the
input temperature and pressure. It should be noted that for extremely high
temperatures certain compounds do not exist physically (as mentioned in
subsection 2.1.2), which implies difficulties in the physical interpretation of
thermodynamic parameters (e.g. specific isobaric heat capacity). Moreover,
extremely high and low values, both for temperature and pressure, do not
occur in the thermal-flow cycles of gas turbine systems. The particular
mathematical models of working fluids are therefore recommended to be
used in range:

1) dry atmospheric air — pressure: 0.05-5 MPa, temperature: 120-1770 K,
2) humid atmospheric air — pressure: 0.05-5 MPa, temperature: 120-1770 K,

3) high-methane natural gas — pressure: 0.05-5 MPa, temperature: 220
770 K,

4) exhaust gas — pressure: 0.05-5 MPa, temperature: 350-2270 K.

Calculations made outside these ranges may result in higher calculation
errors. Special attention should also be paid to the possibility of conden-
sation. A suitable example is the mathematical model of exhaust gas. The
minimum temperature is the temperature of the dew point defined by the
mass fraction of water vapour, which results directly in the partial pressure
of this component and the possibility of condensation.
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An important element of the program is the module that contains the cal-
culation algorithms of the numerical and computational methods. It turned
out to be necessary to implement functions solving cubic and non-linear
equations, methods of numerical integration and differentiation, as well as
interval discretisation and integration step calculation. Gathering numer-
ical methods in a separate calculation module allows to maintain clarity
of the calculation code and allows to use implemented algorithms in other
modules of the program or as an independent stand-alone application.

The use of Python programming environment allowed to create a very
efficient computing program. The architecture of the language and the way
the memory is utilized make the implemented computing code effective and
fast. In addition, the language syntax allows for intuitive and efficient devel-
opment of computing code by the user. Python’s features make it possible
to create software independent of the operating system. Moreover, such
a program can also operate as an extension to other applications, includ-
ing commercial software. The calculations are made quickly and precisely.
Complex calculation algorithms and threads are handled effectively. This
is decisive for the analysis and optimisation of thermal-flow systems, where
the thermodynamic parameters of the working fluid are calculated at nu-
merous independent points.

All relationships describing thermodynamic parameters of real gas were
derived in the analytical way. The proposed universal relationships for pres-
sure correction factors of all thermodynamic parameters (specific isobaric
and isochoric heat capacity and their ratio, specific enthalpy and specific
entropy) allow the use of any cubic equation of state of real gas. The num-
ber of iterative and numerical operations has been reduced to a minimum.
In combination with the advantages of Python described above, it allowed
to develop a program characterized by high accuracy of results while min-
imizing calculation costs.

Program can be used as a stand-alone application or as part of larger
software. The purpose of the developed application is to support modelling
of gas turbine systems. It can also be used for all types of technologies based
on the combustion of natural gas. Moreover, the way of implementing the
calculation algorithms allows to expand modules and functions with new
working fluids. Application can become the foundation for the development
of working fluid models for other thermodynamic systems.

Received 29 April 2020
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