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1. Introduction

Economic development of a country is dependent on its access
to energy, that is why energy security is a strategic matter for
every country. Despite the CO2 emission requirements [1], the
coal power industry is still developing dynamically. The basis
of the energy sector in Poland are steam units burning coal fu-
els. At the moment, 80% of electric energy in Poland is gener-
ated by two types of fuels – hard coal and brown coal [2]. The
condition for constant and effective supply of energetic units in
fuel is the correct operation of coal mills which are responsible
for pulverizing, drying and transport of coal dust to the boilers.
The pulverised coal combustion process in power boilers is a
complex technological process [1].

Operation of the mill depends on the quality of the fuel (coal
or a blend of coal and biomass) and the wear of exploitation
elements, as well as the implemented diagnostic system, whose
purpose is early detection of any disturbances and preventing
them by undertaking actions securing the power unit without
the need to stopp the mill. An example of a disturbance desta-
bilising the operation of the control system is a disruption in
the fuel supply to the mill. A low level of the coal in the bunker
or its lack may lead to overheating of the mill and, as a con-
sequence to the fire of the mill and the carburizing installa-
tion. Monitoring of the crucial parameters of pulverizing pro-
cess may significantly affect its exploitation security and main-
taining continuity in delivery of electric energy [1, 3, 4].
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The models simulating the operation of coal mills are crucial
during the implementation of control, optimization or diagnos-
tic tasks. The models commonly used in the power industry are
analytical models based on the laws of physics and chemistry,
occurring when pulverizing raw coal and delivering a dust-air
mixture to the boiler. Such models are based on the balance of
the coal physical mass and thermal balance dependencies [5–7].
Due to the complexity of the processes occurring in the pulver-
izing, drying and burning of the coal processes, the construction
of such models is often very difficult.

Modelling of undetermined processes occurring in complex
energetic installations requires the use of simplified models us-
ing multimodal parameters distribution depending on the distin-
guished space of the object. In order to recreate the behaviour of
a coal mill in different pulverizing conditions, the paper [8] pro-
poses the use of dynamic model where the internal area of the
mill is divided into 4 zones and carbon particles are divided into
10 size groups. The authors of [9] in turn suggested the division
of the internal area of a mill and carbon particles into 5 zones
and 5 size groups. Paper [10] also describes a simple model
determining 11 parameters of the model. The authors of [11]
developed a six-segment model of a coal mill for different oper-
ating stages (startup, steady state, shutdown and stopping). The
models of thermal balance and the balance of the coal mass are
then constructed depending on the particular zones and stages
of mill operation.

Analytical models can be difficult to implement due to
some parameters such as calorific value and moisture level of
raw coal delivered to the mill being determined experimen-
tally [12, 13]. Literature describes numerous improvements of
balance models [11,14,15], which when basing on genetic algo-
rithms allow for efficient estimation of these parameters, which
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Z.M. ŁABĘDA-GRUDZIAK1∗ and M. LIPIŃSKI2
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are difficult to calculate analytically. However, due to the sim-
plified modelling and a huge set of parameters, the possibilities
to use such models are limited.

The development of metrological technologies and computa-
tional methods allowing for collecting, storing and processing
of a large amount of process data, provided new possibilities
in testing thermal-flow energetic installations. Among the intel-
ligent computational methods, a crucial role is played by arti-
ficial neural networks and fuzzy logic systems, which may be
used in monitoring and optimization of the processes occurring
in a coal mill, its control or fault diagnostics [16–18]. High ac-
curacy of neural and neural-fuzzy models is usually obtained at
the expense of the appearance of dimensionality problems. The
increase of the number of process variables rapidly increases
computational inputs in neural modelling and the number of
rules in fuzzy modelling.

The paper presents an alternative technique overbearing lim-
itation related to nonlinear multidimensional modelling. These
are additive models [19] used to estimate and predict the motor
power signal of a mill during its regular operation, startup and
shutdown.

2. Description of a pulverized coal-fired boiler
and its principle of operation

Tests were carried out on the basis of real measuring data. These
are the archival data from DCS control system from a Polish
power unit with a capacity of 200 MW. The power station is
equipped with an OP-650 boiler drum with a natural circulation
of water, hard coal dust-fired.

2.1. Description of a coal mill. The object separated from the
technological installation is one of the 4 ball-and-race MKM
type coal mills with a nominal capacity of 33 t/h. Its air de-
mand is 34÷55 kNm3/h, and the maximum permissible air tem-
perature is 370◦C. This is a medium speed mill powered by a
400 kW and 37.3 rev./min. electric motor.

The MKM-33 mill consists of the base on which the mill
chamber is located, with a sifter mounted on it with an outlet
head. A gear is attached to the foundation plate of the mill. The
gear’s task is to transfer torque from electric driving motor to
the coal mill. The main shaft of the gear is connected to the
shackle to which pyrite scrapers are attached in the lower part.
A crushing ring with balls is located on the shackle. A thrust-
pressure ring with 4 sets of pressure springs rests on the balls.
A through ring is placed inside the mill’s chamber. The rotating
classifier is mounted on the cover of the mill chamber. A coal
chute pipe runs through the centre of the mill. An example of a
ball-and-race mill is presented in Fig. 1.

Torque is transferred from the asynchronous motor through
the clutch, first and second gear stage to the main transmission
shaft, from where the lower and upper shackle to the lower ring
attached to it causing the entire shackle assembly to rotate. The
movement of the lower ring makes the balls roll down the race.
The coal falling in the central chute pipe access the rotating ring

Fig. 1. A schematic drawing of a ball-and-race MKM type coal mill

and under the rolling balls. The pressure of 4 sets of pressure
springs on the pressure ring results in the coal pulverizing. The
pulverized coal is lifted by a stream of hot air and directed to
the sifter, where the separation of too large coal fractions is per-
formed and they go back to pulverizing. The final coal dust-air
mixture is supplied to the output head and then – through the
dust channels – to the mill burners where it is burnt.

3. Identification of the coal mill motor signal
model

The description of the actions aimed at developing a statisti-
cal model is called model identification and is conducted on
the basis of measuring data, thus it is based on the data min-
ing and machine learning methods. Each stage, starting from
data preparation and analysis, the choice and transformation of
the variables, through the choice of the structure of the model
and the technique of its estimation, ending with the evaluation
ensures its correct course. The quality of the measuring data
determines the success of calculations and the quality of the
resulting model.

3.1. Data preparation and analysis. The available real data
come from a few months period (February 2016–May 2016) of
the coal mill operation in different conditions – during regu-
lar operation, startup and shutdown. Among the available mea-
suring signals, those have been distinguished that describe the
model of the mill motor power. The symbols of the particular
signals along with the description and measuring range are in-
cluded in Table 1. The sampling time for all data is the same –
5 seconds (average number of samples obtained in 1 second).

The correlation between power of the mill’s motor and height
of the coal level in the bunker was very week. Our research
studies have demonstrated that instead of developing an ex-
plicit recurrent dependency may use rescaling of the signals.
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Table 1
The description of the selected control signals and process variables

Symbol Description Range Unit

Peng Power of the mill’s motor 0-400 kW

Hcoal Height of the coal level in the
bunker

0–12 m

Fcoal Quantitative fuel flow to the mill 0–80 t/h

Pair Air pressure to the mill 0–20 kPa

Fair Quantitative air flow to the mill 0–55 kNm3/h

Th Temperature of hot air to the mill 0–400 ◦C

Tout Temperature of the dust-air mix-
ture on the outlet of a mill

0–200 ◦C

Vc Feeder speed 0-100 %

Pset Set power unit (regular operation,
no deep disturbances)

0–200 MW

Psel Chosen power unit (regular oper-
ation, no deep disturbances)

0–200 MW

The three new most important variables were selected and
added to the database:

FMOD
coal = Fcoal ·Peng ,

HMOD1
coal = Hcoal ·Peng , (1)

HMOD2
coal = Hcoal ·Pair ,

which are the rescaling of the values of the original signals
by the corresponding values of the mill’s motor power and air
pressure inside the mill. The modifications of the signals were
aimed at improving the quality of modelling and increasing the
sensitivity of the model to the disturbances in the form of over-
hangs in the coal bunker.

The criterion for the selection of training and testing data
were the largest possible ranges of input and output data. The
training set consisted of the data registered during the startup,
regular operation (with no disturbances) and shutdown between
1–2.03.2016, approximately 31 thousand samples in total. Test
sets cover 7 days of the object operation (13–17.03, 10.02 and
01.04). The last two contain information on the occurrence of
the disturbance.

The results and measurements from measuring transducer
are usually encumbered with noise-derived errors. In practice,
when using reconstruction or prediction algorithms, satisfac-
tory results reducing the noises are achieved by the use of filter-
ing as a form of signal smoothing. In the tests a locally weighted
scatterplot smoothing [20] was used. For each measuring point,
a locally adjusted simple regression in the neighbourhood of
5% of data was used. Smoothing was applied to the most noisy
signals: Peng, Pair, Fair. Moreover, data with negative values of
the motor power registered during the startup of the mill were
eliminated.

3.2. The choice of the machine learning algorithm. Ma-
chine learning is a branch of artificial intelligence, which on
the basis of the knowledge in the samples attempts to imitate
intelligent behaviours that can be described by numerical algo-
rithms. The solution of the task of machine learning consists
in the use of learning algorithm and transferring training data
in order to develop a model. The developed model describes
the relations between the variables and is of predictive nature.
Its quality is validated on the basis of testing data. The general
scheme of machine learning is presented in Fig. 2.

Fig. 2. The general scheme of machine learning

The tests utilized nonparametric regression included in the
group of supervised training algorithms. Nonparametric regres-
sion methods is an alternative approach to the classic methods.
Neither the knowledge of the analytical forms of the input and
output signals, nor the knowledge of the random component
distribution in the model is assumed. As a result, the described
methods are characterized by greater flexibility and a wider
range of applications.

In order to develop a model of a coal mill motor power signal,
an additive regression model was proposed. For output variable
Y and input variables Xi the additive model AD with k parame-
ters is defined by:

Y =
k

∑
i=1

φi(Xi)+ εt , (2)

where εt is independent random error of zero expected value
and constant variance, and φi(·) are one-dimensional real func-
tions, not necessarily linear. Hence prognosis models can be
nonlinear towards input variables, but are still linear in regard
to φi(Xi).

This method has not been used so far in the context of mod-
elling energetic installations, but has potentially great possibili-
ties and advantages [21,22]. First of all, it overcomes limitation
related to nonlinear multidimensional modelling, as the regres-
sion function is modelled by the sum of the functions of par-
ticular input variables. Hence the estimation of the parameters
of the additive model is much easier than when the model is a
nonlinear function of the parameters.

To identify the parameters of an additive model, an iterative
approach was applied through using backfitting algorithm. In
order to achieve greater flexibility, the relations between out-
put variable and input variables are estimated nonparametri-
cally. For this purpose, the analysis of smoothing techniques
was performed in the function of locally polynomial smoothers
and spline smoothers. The right choice of the smoothing coef-
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ficient is of extreme importance f or the shape of the regression
line as it controls the ’smoothness’ of the estimator of a regres-
sion function [20].

3.3. The choice of the model’s input variables. The accu-
racy of the identification, and as a consequence a reliable pre-
diction of the model, depends to a large extent on the right
choice of the structure of the model, mainly the choice of the
variables describing the power of the motor. Moreover, when
choosing the structure of the model, one should also be guided
by its complexity level, thus – the computational complexity of
the methods of its identification.

In order to choose the right input variables of the model,
which significantly affect the signal of the mill’s motor power,
expert knowledge and correlation analysis were used. With their
help, the input variables were selected in such a way to be the
best correlated with the output variable Peng and the least cor-
related to each other at the same time. It needs to be empha-
sized what we do not assume that input variables are indepen-
dent [19]. For this purpose, Pearson correlation coefficient and
Spearman’s rank correlation coefficient were used allowing to
ascertain any monotonic dependency. Figs. 3 and 4 present the
correlation matrices of both methods for the chosen variables
from the training set.

Fig. 3. Pearson correlation coefficient matrix

The largest mean value of a linear correlation coefficient of
the 0.93 order has a quantitative flow of raw coal to Fcoal and a
modified height of the coal level in the bunker HMOD1

coal . A strong
relation with the mill’s motor power is also exhibited by the
feeder speed Vc. However, due to strong correlation with Fcoal
this signal was not used for modelling. Moreover, the obtained
values of Spearman’s rank correlation coefficient clearly con-
firm that correlation of the air pressure to the mill Pair and mod-
ified height of the coal level in the feeder HMOD2

coal with the sig-

Fig. 4. Spearman’s rank correlation coefficient matrix

nal of the mill’s motor power. The least correlated values were
achieved for the coal level in the bunker Hcoal .

In addition, because some of the input variables may affect
the output variable with different time delay, the calculations
of correlation were performed for different values of lags. The
delay taken into account were from 5 to 360 seconds. When the
correlation of signals is strong, the mill’s motor power reacts to
changes very quickly, with a minor delay – at most 15 seconds.

On the basis of the performed analysis, the following sets of
input data X were proposed, used during the identification of
the signal of the mill’s motor power Y :

Y = Peng , X =
(
Fcoal ,FMOD

coal ,HMOD1
coal ,HMOD2

coal
)
, (3)

Y = Peng , X = (Peng,Fcoal ,Hcoal ,Pair), (4)

The second set uses the signal of the mill’s motor power as an
input variable thus developing an explicit recurrent dependency.
Such models are characterized by higher estimation accuracy,
but greater tendency to overtraining at the same time. In such
case, they may be insensitive to the occurring disturbances.

3.4. The criteria for the model’s quality estimation. The
objective estimation of the model of the signal of the mill’s mo-
tor power is the use of the determined model for the simulation
of the output for the set of test data. It allows us to validate its
operation for conditions different than those in which it was fi-
nally refined and tuned. For training data, a separate verification
procedure can be performed giving only a general view of the
quality of the model.

As the model’s quality estimation criteria, mean square error
(MSE), mean absolute error (MAE), normalized mean absolute
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error (NMAE) and standard deviation (SD) were used:

MSE =
1
N

N

∑
t=1

(
Yt − Ŷt

)2
,

MAE =
1
N

N

∑
t=1

∣∣Yt − Ŷt
∣∣ ,

NMAE =
1
N

N

∑
t=1

∣∣Yt − Ŷt
∣∣

(max(Yt)−min(Yt))
·100%,

SD =

√
1

N −1

N

∑
t=1

(et − e)2,

(5)

where Yt and Ŷt are properly measured and estimated values of
the signal of the motor power in t time, et = Yt − Ŷt is the value
of the fitting error in t time, e is the mean error and N is the
number of data points.

It needs emphasizing that data aimed at determining the
model are of a statistical nature, and therefore the error itself
will be statistical and such should also be its evaluation.

3.5. The choice of the model’s structure. The models with
more developed structure usually have more accurate estima-
tion, but at the same time they have more predisposition to over-
training. In such case, they can react impulsively to the distur-
bances. The models with oversimplified structure in turn, may
give unreliable prediction. To choose the structure of the model,
comparative analysis was also applied of a few models describ-
ing the changeability of a given output variable with the use of
final prediction error (FPE) criterion. Assuming that the model
includes k number of parameters in the model and N number of
data points, FPE criterion utilizes the dependency:

FPE(k) = J · N + k
N − k

, (6)

where J is the sum of the squares of errors. Using the multiplier
(N+k)/(N−k), which increases with a number of variables in
the model, this test imposes penalty for the models with a large
number of the parameters, causing some protection against the
excessively expanded structure of the model.

Let the additive models AD1(4, l1) and AD2(4, l2) have input
variables X from set (3) and (4) respectively, but acknowledged
with different order of delay l1 and l2. Then, the number of the
parameters of particular models is 4 · l1 and 4 · l2 respectively.
Table 2 gathers FPE(k) values and model accuracy coefficients
(5) calculated on the basis of the training test for a few selected
models depending on the used input variables.

On the basis of the obtained results, a conclusion could have
been provided that for the proper modelling of the dynamics
of the signal of the mill’s motor power, it is enough to use
AD1(4,3) structure, or alternatively AD2(4,1). Increasing the
order of the model did not result in the significant improvement
of the results of identification in relation to the increase of the
model’s complexity.

Table 2
FPE(k) values and model accuracy coefficients for the training set

Model k FPE MSE MAE NMAE SD

AD1(4,1) 4 50886.62 1.6421 0.8425 0.3649% 1.2815

AD1(4,2) 8 27064.76 0.8746 0.6268 0.2715% 0.9352

AD1(4,3) 12 19477.87 0.6291 0.5368 0.2325% 0.7932

AD1(4,4) 16 17687.91 0.5059 0.4829 0.2091% 0.7112

AD2(4,1) 4 363.82 0.0115 0.058 0.0251% 0.1073

AD2(4,2) 8 0.4359 0.0001 0.0024 0.001% 0.0037

4. The results of the verification studies

Verification studies were performed in terms of the prediction
quality for the testing data from the period of startup, regular
operation and shutdown, as well as for data with a registered
disturbance in the form of overhangs in the coal bunker.

The paper compares the values of the accuracy indicators of
particular models, and graphic interpretation of the modelled
value of the model’s output in comparison to the real value
of the modelled variable and fitting errors. Identification of the
model was performed with the use of R-project program dedi-
cated to the advanced statistical calculations and data visualiza-
tion [23].

4.1. Models of the signal of the mill’s motor power. All of
the input data from set (3) were taken into account in the model
with a 5-, 10- and 15-second delay, which corresponds to dis-
placement of 1, 2 and 3 samples. In set (4) the delay was of a
1 sample order. The forms of the particular additive models are
the following:
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AD2(4,1):

Peng,t = g1 (Peng,t−1)+g2
(
Fcoal,t−1

)
+g3

(
Hcoal,t−1

)

+g4 (Pair,t−1)+ ε2,t ,
(8)

where ε1,t , ε2,t are independent random errors of zero ex-
pected value and constant variance and fi (·), g j (·) are one-
dimensional real functions. On the basis of models (7) and (8),
the fitting error can be calculated:

et = Peng,t − P̂eng,t , (9)
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which is the approximation of ε1,t and ε2,t errors respectively.
The values Peng,t and P̂eng,t are properly measured and estimated
values of the signal of the motor power in t time.

4.2. The results of the identification of the models. In order
to identify additive models (7) and (8), the backfitting algorithm
with natural cubic spline function was applied with a smooth-
ing parameter d f = 4 aliasing with a number of the degrees
of freedom [20]. The choice of the technique and parameter
of smoothing was dictated as a compromise between obtain-
ing high quality identification and overfitting the model to the
training data.

Fig. 5 presents the estimated values of the mill’s motor power
(red color) along with the measured values of the motor’s power
(black color). The plots were prepared for data registered during
startup, regular operation and shutdown.

The results obtained for the training set were the best for
AD2(4,1). The estimated values of the mill’s motor power al-
most perfectly kept up with the measured values. Detailed sta-
tistical analysis for both models AD2(4,1) and AD2(4,1) is
presented in Table 2. The obtained identification quality did not
exceed 0.5% and 0.05% of the range of changeability of the
modelled output respectively.

The test sets were used to verify the obtained models.
Figs. 6–9 show estimated and measured values for selected mill
operation days with no deep disturbances. For good data visual-
ization the et values have been normalized to the range [−1,1].
The plots of the normalized error along with the marked limits
calculated for training data, prove the correct identification of
the model of the motor power signal. Upper (green color) and
lower (blue color) limits were calculated as follows:

max(ẽt)+ p · sd(ẽt), min(ẽt)− p · sd(ẽt), (10)

where ẽt is the normalized error and sd(ẽt) is standard devi-
ation of the normalized error. For the models AD1(4,3) and
AD2(4,1), p = 3 and p = 5 were accepted respectively.

Fig. 5. The modelled and real signal of the motor’s power for training data registered between 1–2.03.16 during startup (I), regular operation (II)
and shutdown (III): AD1(4,3)

Fig. 6. The modelled and real signal of the motor’s power for test data
registered on 13.03.16 during regular operation of the mill: AD1(4,3)

Fig. 7. The simulation error with upper and lower limits for test data
registered on 13.03.16 during regular operation of the mill: AD1(4,3)

Fig. 8. The modelled and real signal of the motor’s power for test data
registered on 13.03.16 during regular operation of the mill: AD2(4,1)

The obtained results of the simulation of the signal of the
coal mill’s motor power are satisfactory. The developed models
accurately reflect the dynamics of the process, which is con-
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Fig. 9. The simulation error with upper and lower limits for test data
registered on 13.03.16 during regular operation of the mill: AD2(4,1)

firmed by the results presented in Table 3. For the rest of the
test data, registered with no deep disturbances, fitting errors did
not exceed 0.5% of the range of the changeability of the mill’s
motor power as well.

Table 3
Model accuracy coefficients for the test set from 13.03.2016

Model MSE MAE NMAE SD

AD1(4,3) 0.2645 0.3042 0.5033% 0.5084

AD2(4,1) 0.0132 0.0721 0.1182% 0.1138

A phenomenon often encountered during exploitation of the
boiler installation are disturbances occurring as a result of coal
overhanging in the coal bunker. Such overhangs lead to false
information on the current state of the bunker filling, thereby
to destabilization of the operation of the majority of control
systems. Such disturbances may lead to underrepresenting of
electric and thermal power of the unit, as well as blowthrough
of hot air from the mill to the bunker, and as a consequence –
to the fire of the mill and carburizing installation. The signal
of the mill’s motor power is proportional to the signal of the
feeder control. That is why the analysis of the course of simu-
lation error may support the operators in diagnosing the lack of
coal in the mill and thus deciding on relieving or shutdown. The
plots in Figs. 10–17 were prepared on the basis of data contain-
ing information on the occurrence of disturbance in the form of
overhangs in the coal bunker.

Fig. 10. The modelled and real signal of the motor’s power for test data
registered on 10.02.16 during overhang in the coal bunker: AD1(4,3)

According to the predictions, AD2(4,1) model proved to be
insensitive to disturbance and thereby not very useful in the
tasks of industrial processes diagnostics. However, due to high
level of its simulation for test data registered with no deep dis-
turbances – such as overhangs in the coal bunker (Fig. 8), this
model can be used to implement the tasks of model predictive

Fig. 11. The simulation error with upper and lower limits for test data
registered on 10.02.16 during overhang in the coal bunker: AD1(4,3)

Fig. 12. The modelled and real signal of the motor’s power for test data
registered on 10.02.16 during overhang in the coal bunker: AD2(4,1)

Fig. 13. The simulation error with upper and lower limits for test data
registered on 10.02.16 during overhang in the coal bunker: AD2(4,1)

Fig. 14. The modelled and real signal of the motor’s power for test data
registered on 01.04.16 during overhang in the coal bunker: AD1(4,3)

Fig. 15. The simulation error with upper and lower limits for test data
registered on 01.04.16 during overhang in the coal bunker: AD1(4,3)

control (MPC). Predictive control algorithms determine at any
time of the sampling, control by optimization of a certain cri-
terion function, defined on a finite horizon, on which the be-
haviour of the object model is predicted. There are many arti-
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Fig. 9. The simulation error with upper and lower limits for test data
registered on 13.03.16 during regular operation of the mill: AD2(4,1)

firmed by the results presented in Table 3. For the rest of the
test data, registered with no deep disturbances, fitting errors did
not exceed 0.5% of the range of the changeability of the mill’s
motor power as well.
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Model accuracy coefficients for the test set from 13.03.2016

Model MSE MAE NMAE SD

AD1(4,3) 0.2645 0.3042 0.5033% 0.5084

AD2(4,1) 0.0132 0.0721 0.1182% 0.1138

A phenomenon often encountered during exploitation of the
boiler installation are disturbances occurring as a result of coal
overhanging in the coal bunker. Such overhangs lead to false
information on the current state of the bunker filling, thereby
to destabilization of the operation of the majority of control
systems. Such disturbances may lead to underrepresenting of
electric and thermal power of the unit, as well as blowthrough
of hot air from the mill to the bunker, and as a consequence –
to the fire of the mill and carburizing installation. The signal
of the mill’s motor power is proportional to the signal of the
feeder control. That is why the analysis of the course of simu-
lation error may support the operators in diagnosing the lack of
coal in the mill and thus deciding on relieving or shutdown. The
plots in Figs. 10–17 were prepared on the basis of data contain-
ing information on the occurrence of disturbance in the form of
overhangs in the coal bunker.

Fig. 10. The modelled and real signal of the motor’s power for test data
registered on 10.02.16 during overhang in the coal bunker: AD1(4,3)

According to the predictions, AD2(4,1) model proved to be
insensitive to disturbance and thereby not very useful in the
tasks of industrial processes diagnostics. However, due to high
level of its simulation for test data registered with no deep dis-
turbances – such as overhangs in the coal bunker (Fig. 8), this
model can be used to implement the tasks of model predictive

Fig. 11. The simulation error with upper and lower limits for test data
registered on 10.02.16 during overhang in the coal bunker: AD1(4,3)

Fig. 12. The modelled and real signal of the motor’s power for test data
registered on 10.02.16 during overhang in the coal bunker: AD2(4,1)

Fig. 13. The simulation error with upper and lower limits for test data
registered on 10.02.16 during overhang in the coal bunker: AD2(4,1)

Fig. 14. The modelled and real signal of the motor’s power for test data
registered on 01.04.16 during overhang in the coal bunker: AD1(4,3)

Fig. 15. The simulation error with upper and lower limits for test data
registered on 01.04.16 during overhang in the coal bunker: AD1(4,3)

control (MPC). Predictive control algorithms determine at any
time of the sampling, control by optimization of a certain cri-
terion function, defined on a finite horizon, on which the be-
haviour of the object model is predicted. There are many arti-
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Fig. 16. The modelled and real signal of the motor’s power for test data
registered on 01.04.16 during overhang in the coal bunker: AD2(4,1)

Fig. 17. The simulation error with upper and lower limits for test data
registered on 01.04.16 during overhang in the coal bunker: AD2(4,1)

cles discussing the use of MPC for coal mills with quite promis-
ing results [5, 7, 24].

On the basis of the simulation error for model AD1(4,3),
a significant deviation from the zero value is clearly visible.
Hence the model may be useful for developing diagnostic sys-
tems.

5. Summary

Modelling of the undefined processes occurring in complex en-
ergetic installations requires the use of simplified models which
can be the cause of low quality of the object control, as well as
generating false alarms by diagnostic systems. Additive models
are an alternative technique in relation to the commonly used
analytical models, enhancing the possibilities in the field of dy-
namic approximation and multidimensional nonlinear objects.
This is a new approach that has not been used so far in the power
industry.

In order to develop an additive model of the signal of a mill’s
motor power, its theoretical grounds as well as measuring data
from the process have been used. Two alternative structures of
the model were proposed – with the use of explicit recurrent
dependency along with the use of the modified input signals. In
the first case, the model including the delay line in the set in
input data was characterized by much higher accuracy of iden-
tification and simulation, but at the same time – by the use-
lessness to detect disturbances in the form of overhangs in the
coal bunker. The developed model very accurately reflected the
dynamics of the process for the data during regular operation,
startup and shutdown. The accuracy of the reconstructed values
of the motor power ranged up to around 0.5 kW with and av-
erage value of the motor power of around 180 kW. In the case
of the second, more developed structure, the introduced rescal-
ing of the input signals improved the quality of modelling, and

increased the sensitivity of the model on the analysed distur-
bances. The values of the simulation errors for test data in-
cluding information on the disturbance occurrence were at least
three times the assumed threshold values.

The obtained results are satisfactory. Among the most impor-
tant benefits coming from the use of additive models to identi-
fication of the signal of the coal mill’s motor power are lack of
assumptions on the forms of the functions linking the input and
output signals, hence the use of nonparametric estimation meth-
ods allows for identification of the nonlinear systems when the
number of initial information on them is so small that paramet-
ric methods cannot be used effectively. Moreover, their sim-
ple structure and low order significantly reduce training time,
what is of key importance in large measuring databases avail-
able in the contemporary automation systems. Additive models-
based methods do not require to use data with disturbances in
the stage of identification. Particular models provide promising
perspectives for the realization of the tasks of ontrol or diagnos-
tics of the processes taking place in the coal mill (detecting the
disturbances other than those described in the article).

Acknowledgements. This work was partially supported by
the Warsaw University of Technology, Faculty of Mechatron-
ics Dean’s Grant 504/03733.

REFERENCES

[1] W. Wójcik, “Application of fibre-optic flame monitoring systems
to diagnostics of combustion process in power boilers”, Bull.
Pol. Ac.: Tech. 56(4), 177–196 (2008).

[2] Sprawozdanie z działalności Prezesa Urzędu Regulacji Ener-
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bility 18(1), 50–56 (2016).
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