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for discrete-time systems with cut-off constraints
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Abstract. In the paper, a design method of a static anti-windup compensator for systems with input saturations is proposed. First, an anti-windup
controller is presented for system with cut-off saturations, and, secondly, the design problem of the compensator is presented to be a non-convex
optimization problem easily solved using bilinear matrix inequalities formulation. This approach guarantees stability of the closed-loop system
against saturation nonlinearities and optimizes the robust control performance while the saturation is active.
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1. Introduction

Actuator saturation, a different name to control input satura-
tion, is the most common nonlinearity encountered when deal-
ing with control systems, and is given rise by finite possibility
to apply calculated control signals due to e.g. safety require-
ments. One can distinguish two major strands in dealing with
this topis. The first approach is based on designing a nomi-
nal linear controller and ignoring the actuator saturation. Af-
ter that, anti-windup compensators are introduced to the sys-
tem to deal with negative effects of the saturation. A frequent
choice is to include some compensator which reduces the dis-
crepancy between the internal controller states and its output.
The second approach is to take the saturation constraint(s) from
the beginning of the design task into account. This usually
calls for nonlinear system analysis or requires some optimiza-
tion procedures for nonlinear programming tasks to be used.
Also, stability criteria, such as the Lyapunov method, can be
used here, to impose additional requirements on the closed-loop
system.

The paper [1] shed some light on the way to evaluate con-
trol quality in anti-windup-compensated (AWC) control sys-
tems. The procedures described there allow one to compensate
windup phenomenon by means of static AWC for continuous-
time control systems. Still, the problem for discrete-time sys-
tems has been open. This paper aims to solve it using optimisa-
tion techniques.

The optimisation problems formulated henceforth have the
form of minimisation of a linear function subject to bilinear ma-
trix inequality constraints (BMlIs) [2]. Such problems cannot be
solved with the use of algorithms dedicated for linear matrix
inequalities (LMIs) [3-5] in any other way as bootstrapping-
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like procedure that is formed by consecutive iterations some
variables are constant and some are computed [1]. Neverthe-
less, such tasks are solved more effectively [2] with the use
of special commercial algorithms, such as PENBMI (PENOPT
suite) [6-8], TOMLAB-PENBMI [9] or freeware toolboxes as
BMlIsolver [10] for some types of BMI constraints. No matter
if the problems are in BMI or LMI-type, the most convenient
tool modeling their structure is Yalmip [11], and CVX [12,13]
in other cases.

The results presented in the literature [14—16] present syn-
thesis algorithms of static AWCs for continuous-time systems
with the use of BMIs for cut-off constraints. This paper presents
the corresponding results in a discrete-time case. A simple,
non-optimized, static anti-windup compensator deployment is
reported, e.g. in [17], where the Authors use it to reduce the
windup effect on the performance of the permanent magnet syn-
chronous motor control system.

In [18], a synthesis method to obtain a globally stable solu-
tion while maintaining high control performance is presented.
The authors also take induced L, norm into account and sat-
urating inputs, though in their approach they aim at perform-
ing simultaneous design of a controller and a static anti-windup
compensator on the basis of LMI conditions. In their paper,
the inequality condition binding v and 7 is used, on the con-
trary to the approach presented in this paper. Their final opti-
mization problem is of weighed-cost function type, taking both
the performance in linear and active-saturation regimes. The
result presented in this paper, presents the final optimization
task as a single-criterion optimization problem. In addition, the
authors of [18] present their results for a single-input single-
output (SISO) case only. Similarly, the authors of [19] use con-
ical sector conditions to present their results in an alike setup
for a SISO system.

A static AWC design is also presented in [20], where the au-
thor considered a piecewise linear system representation, parti-
tioning the state-space description. No optimization procedure
is used, just a hyperplane-based partition between saturated and
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unsaturated behaviour to find the parameters of a static AWC to
satisfy LMI conditions.

On the contrary to the results presented above, the authors
of [21] present their results for the multivariable case, though
for a sliding-mode controller with directionality compensation,
which is a very interesting area of research, present also in the
D.Sc. monograph [22]. They also use LMI conditions to en-
sure stability of the closed-loop system, though the gains of the
AWC obtained there refer to a different structure of the control
system, with a specific controller.

A classical results on the static AWC can be traced back
to [23], where the authors obtain a bilinear matrix inequal-
ity representation, making the problem non-convex. As in the
case of this paper, the authors consider the system with a pre-
designed controller, making the performance in the unsaturated
case acceptable. The representation of the constraints is through
a deadzone nonlinearity though. Making some assumptions,
they reduce (simplify) the problem to a LMI type. In their ap-
proach, the H., gain of disturbance-to-output transfer function
is minimized.

In the approach considered in this paper, we present a BMI-
based derivation (non-convex problem, with no simplifying as-
sumptions made) of the optimal static AWC, making it possi-
ble to consider robustness issues (by introduction of polytopic
representation of the plants), and to perform calculations for ar-
bitrary controllers, obtained from specific control laws, such as
of linear-quadratic type, satisfying some performance require-
ments in a linear case. In addition, the method allows one to
calculate the gains in an off-line manner, where a single choice
of the AWC matrix gain A is done by the optimization algo-
rithm, with the estimate of the performance given by 8. Further-
more, the LFT representation derived in the paper opens possi-
ble research directions to consider directional change in con-
trols, by introducing specific saturation functions into the BMI
conditions. A single solution obtained from the BMI problem
makes the computational burden small, as modern BMI solvers
offer very good performance, and are being continuously de-
veloped, by using efficient interior-point optimization methods.
Of course non-convexity causes some problems from the view-
point of the accuracy of the solution, though due to the frontiers
of optimization still pushed aside, this is not a serious issue of
the approach.

The paper is structured as follows: Section 2 presents sys-
tem description, and its reformulation to the linear fractional
form. In Section 3, stability conditions imposed on the closed-
loop system are defined in terms of the decision variables of the
optimization problem. Section 4 presents an example, and the
summary follows in Section 5.

2. Control system description, linear fractional
form

It is assumed that a plant and a controller are described with the
use of linear continuous-time state-space equations. The fol-
lowing structure description holds for:

e the plant
Xpi+l :Apip,t"‘Bpﬂta (D
Xz :szp,tJerﬂrv (2)
e the controller
Xerrl = AC&CJ +BC€[ +§t ’ (3)
v, =Ccx.;+Dcey, “4)

where the appropriate matrices A, € Z"*", B, € #"*", C,, €
RHP", D, € P, A € B, B € BP, Co € BT
D. € #™*P. 1t is assumed that the vector & modifies the con-
troller state vector, with n, referring to its length. The general
block diagram (with time indices omitted) of the considered
control system is presented in Fig. 1.

ry e v u y

—(—| crL. CUT-OFF PLANT

+

)

Fig. 1. Block diagram of the proposed control system with static
AWC (A)

According to the adopted convention, it holds that: state of
the plant x,, € %", output of the closed-loop system y € Z7,
applied control vector u € #™, calculated control vector v €
Z™, error vector e € ZP, reference vector r € %P, compensator
vector & € Z", withe =r —y.

A
u )4
w z
CONTROL
—— [r——————-
SYSTEM
S n
A

Fig. 2. LFT description of the control system

The cut-off saturation is considered, which in the case of am-
plitude constraints can be presented as a result of the opera-
tion A;v,, where A; = diag{Ay, ..., Ay} with |A;;| <1 for
i=1,...,m[24], and diag is used to represent diagonal matrix
components.

The control vector &, allowing one to modify controller states
is defined as B

E=An=Au-v). Q)

Bull. Pol. Ac.: Tech. 69(1) 2021, e135837



IS

www.czasopisma.pan.pl P N www.journals.pan.pl

Static anti-windup compensator based on BMI optimisation for discrete-time systems with cut-off constraints

On the basis of (1)—(4), with g as the shift operator, e.g. gx; =
Xi+1, and having introduced the notation D = ¢ for compati-
bility purposes with robust control literature, state-space equa-
tions for the linear fractional transformation, LFT, description
(Fig. 2) can be put in the form [25]

Dr— Dx, _ Apx,+Bju _
B Dx, Acx +B.(w—y)+&
| Apx,+Bpu _
ACEC—FBCE_BC(CPEP—"_DPE)—FE
:W§+ﬂuﬂ+e@ww+ﬂfg§7 (6)

where w = r, z = e (note this substitution is not necessary, nev-
ertheless it bridges a gap between standard state-space descrip-
tion notation, and robust-control notation, widely used in the
papers referring to matrix-inequality-involved problems, see
e.g. [4]) and:

Ap e
= ; @)
~B.C, A.
B
e%u = g y (8)
| —B.D,
i 1 ald
B, = , 9
B, ©
i 0 <"e
'@5 = Jexne : (10)

Eventually, the static AWC is to be proposed for LFT descrip-
tion [26].
In a similar way one can write

V= Cclc""ch = CC-XC—’—DC(E_))) =

= Ccéc +D.w— D, (Cplp +Dpﬂ) =

— G x4+ Dout Dyw+D i &, (11
where:
€y =[-D.C),C], Dw=-DD,, (12
D =De, De =0"" (13)
The LFT output vector
z=e=w—y=w—-Cpx,—Dpu=
— G x4+ Do+ Doyw+9.:E, (14)
with:
€. = [-C,, 07 ], Du=-Dy, (15
D =1P7P, D =0""". (16)
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Because it holds that 7 = u— v, one can eliminate é from
LFT form by transforming

E=An=A(u—v)=Au—Av= (17)
:AE_ACKVE_Agvuﬂ_l\ngﬂ—l\@véé,
into
(I+A@v<§)§:AE_A%VK_A@WH_AQVWWa (18)

E=(I+AD,:) 'Au—(I+AD,:) ' AG,x—
—(I+A2,¢) ' ADyu— (1+AD,¢) ' AD,w, (19)
‘§=XZ—X‘5M—X9WM—X9VWE=

:7X%V£+X(179VM)27X@VWE3 (20

X=(I"""+A2,) 'A. @1

Having substituted (20) to the previous LFT description of
(6), (11) and (14), one obtains:

Dizdl‘kguﬂ'f"@ww""@ﬁé:

=dx+B,u+B,wt+
+ By (XG4 X (I~ D)~ XDy w) =
=Ax+B,u+B,w, (22)
v=F\x+Dus+Dw+D,: &=
=Cvx+ D u+Dw+
+ D (—XC x+X(I~Dy)u—XDyyw) =
=Cyx+Dyu+Dy,w, (23)
1=Cx+Duut+Douww+D 8§ =
=€ x+Duut+ Dy wt
+D (—XCox+ XU ~Dw)u—XDww) =
=Cx+Dyu+Dyw, (24)
where:
A=o —B:XE,, (25)
B, =#B,+B:X(I-Dw), (26)
B,=B,— B:XD, 27)
C, =€, 9,:X%,, (28)
Dy=2u+2D,:X(1—Dw), (29)
Dy =D~ D e XD, (30)
C.=€.~D.:X%,, 31)
Du=2u+2:X(1-2.), (32)
D=0~ D.:XD. (33)
3
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One can obtain the value of A on the basis of X according to
the formulae:

(I+A2,:)X =A,

X +A2,:X = A,

AI-92,:X) =X,
A=X(I""-92,:X) . (34)

3. Stability condition

3.1. Mean-square stability. Stability of the closed-loop sys-
tem will be tested with the use of the small gain theorem in
the mean-square sense [27]. Based on the derivations presented
in detail in the Appendix, the final matrix-inequality condition
takes the form

ATPA-P+cC,TC, *
B,"PA+D,'TC, B,PB,+D,'TD,,—T
B,"PA+D,,'TC, B,”PB,+D,,’TD,,

*
* <0, (35
B,”PB,+D,,'TD,,

where I = diag {T'1, ..., I';;}. The condition (35) is synony-
mous to mean-square stability of the closed-loop system.

3.2. High control performance condition. The compensator
is designed with the assumption that whenever the constraints
become active, the nonlinear system’s behaviour should be as
close as possible to the performance of the linear system. Ac-
cording to [4] it is assumed that the high control performance
condition can be imposed as the task to achieve the supremum
of the induced L, norm (time indices omitted again)

Izl 6

lwllo0 [[wll2

If for all z and w it holds that (8§ € %)
V(x1) = Vix)+2'z—8w'w<o0, 37)

the gain (36) estimated by the use of L, norm is not greater than
V.

Following the procedure presented in the Appendix, condi-
tion (37) takes the matrix form

ATPA—P+C.1C. *
B,”PA+D.’C. B,”PB,+D.'D.,
B,”PA+D.,"C. B,"PB,+D. D.,
*
* <0. (38)

BwTPBw +DszDzw - 5

3.3. Mean-square stability condition with high control per-
formance requirement. Using the same approach as in the
prior derivation, the condition u! u; <vIv; (fori=1,...,m)is
incorporated into (38), and for every ¢ one gets

ATPA—-P+cC.'C.+C,TC,
BuTPA + DzuTCz +DvuTFCv
B,"PA+D,,'C.+D,,'TC,

*
BuTPBu +DzuTDzu +DvuTrDvu - r
B, PB,+D,," Dy + Dy, " TDy,

*
* <0.
T T T
B, PB,+D,,' D,,—6+D,,' I'D,,

(39)

Using Schur complement the above inequality can be re-
written as

ATPA—P * *
B,”PA B,”PB,-T * +
B,"PA B,”PB, B,"PB,-§
c.'c,+c,'Ic, *

+| o,'c,+pb,'Irc, b,'D,+D,,'TD,,
DZWTCZ +DVWT1—‘CV DZWTDZM +DVWTFDVM

*
* -
p,'pb, +D,'TD,,
ATPA—P * *
=| B/PA B,/ PB,-T * -
B,"PA B,”PB, B,”PB,—§
rc, ro,, TD,, | l ! % ]X
c. D, D, o I
rc, ro, ID,, |
C. D. D, |
ATPA-P * * x
B,"PA B,”PB,-T * -
=| B,”PA B,”PB, B,'PB,—8 x =« |<0
rc, ID,, ro,, -T «
C. D., D., 0 —I
(40)

In order to obtain the final form of the matrix inequality con-
ditions, the following notation has been adopted:

PA=P (o - B:XE,), 1)
PBu = P('@u +£§X(1_@W¢)) 5 (42)
PB, =P (B, - B:XD,.) . 43)
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The optimization task which is related to the optimal com-
pensator

min o
PX T8
s.t. (40) (44)
P>0, I'>0, 6>0

is solved using the algorithms taking BMI conditions into ac-
count. The optimal solution corresponds to the minimal value
of 6.

4. Simulation results

Two simulation models are taken into consideration. The first
one is the TITO (two-input, two-output) plant with:

and the controller (n, = 1) given by:

A =1, 49)

B. = [7.0710, 7.0710] , (50)

C. = [0.0318, 0.0247]", (51)
20 25

D, = 52

¢ [1.5 2.0] (52)

It is assumed that for + = 0 in accordance with [1] a step
change in reference vector takes place between w = 0 and
w =[0.63,0.79]7, and the control vector is saturated using a
cut-off function at the level pml, see Fig. 3. As remarked in [1],
the shape of the plot 6 (A) corresponds to a scaled version of the
integral of the squared error, ISE performance index plot as a
function of A.

In addition, Fig. 4 shows the results for a cut-off case. As

[ 0.9048 0O indicated in [1] the level sets of the ISE index have the same
A, = , (45) . . .
0 0.9048 shape, and no compensation results in performance deteriora-
- tion in comparison to the situation where the AWC compensator
B, = 9.516 0 , (46) has been introduced.
0 9.516 In the second case,
c._| 04 05 ] 7 08528  0.0019 —0.0412  0.0135
p )
| 03 04 4 | 00019 09173 00051 —0.0056
D [0 0 48 P~ —0.0412  0.0051 0.8952  0.0110 |’
P7lo oo %) 0.0135 —0.0056  0.0110  0.9132
2
‘§ g f |
8 05 —
) .l, ||0 1‘5 2|0 25
sample no.
11— |
0.95— |_ _u;:
| i
g 0.75— —
g o7l T —
© el i —
06— —
sol ! B b I N
0 5 10 15 20 25
sample no.

Fig. 3. Tracking performance and constrained control vector (example 1)
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Fig. 4. Values of /8 with a cut-off control constraint

S .
".*\‘\‘“\\“\‘N\\\\\\“\\\\\
% x\}\‘{{\“\“ﬁ:&ﬁ N

Output signal

60 80 100 120
sample no.

200

Control signal

08 L | |
0 20 40 60 80 100 120 140 160 180
sample no.
Fig. 5. Tracking performance and constrained control vector (example 2)
—0.0127 —0.07%4 02612 —1.2507
B, — —0.0146  —0.0003 D,= 0.4434 01,
—0.0491 —0.0655 0 0
0.1604 —0.0010
- ith th inal troll
—0.1922 —02490  1.2347 —0.4446 WITH The Rominat controtier
C,=| —-02741 —1.0642 —-0.2296 —0.1559 |, A — 0.3000 0
1.5301 0 —1.5062 0.2761 ‘ 0 0.6000 |’

200

Bull. Pol. Ac.: Tech. 69(1) 2021, 135837



www.czasopisma.pan.pl P N www.journals.pan.pl
=

POLSKA AKADEMIA NAUK

Static anti-windup compensator based on BMI optimisation for discrete-time systems with cut-off constraints

5 _ | 0:5000 0 0
1 01000 —0.3000 1.6000 |’
[ 1.0000 0
Cc: )
0 0.2500
D, = 00 0 7
00 0

and the step change at t = 0 is w = [1, 0, 0]7, with a cut-off
function at both control inputs at the levels =0.4 and 0.6, re-
spectively. For the tracking performance see Fig. 5.

5. Summary

A method to obtain the optimal compensator feedback matrix
has been proposed, in a sense of a supremum of the induced
norm, ensuring high control performance and mean-square sta-
bility of the closed-loop system. This approach is applicable in
all systems where the modification is carried out over the state
of the controller, not the calculated control vector directly, as
in the other case no optimization algorithm exists to solve the
problem (products of the fourth order). Possible solution meth-
ods include sequences of BMI problems in bootstrap series, re-
sulting in optimal AWC parameters.

Another possibility is to introduce a nonstationary compen-
sator with a variable feedback matrix, whose parameters A
would be chosen on the basis of a look-up table.
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Appendix

Mean-square stability. The Lyapunov function is sought
V(x,) for which V(x,,;) —V(x,) < 0 holds subject to (time
indices omitted) uTu, < vTv, and fori =1, ..., m, for every ¢
o =[x 7,;,, Xe t] ). Lyapunov function w1th Eqs (22) and (24)
taken into account satisfies

V(X)) =Vix,) =
=y .p —xI'px, =
X Xy — X, LX
= (Ax+B,u+B,w) P(Ax+B,u+B,w)—x"Px=

= (x"ATP+u" BT P+ w" Bl P) x
X (Ax+B,u+B,w)

=x"ATPAx+x"ATPB,u+x"ATPB, w+
+u'B'PAx+u"B'PB,u-+u" B PB, w+
+w'Bl,PAx+w'B]PB,u+w"B\PB,w—x"Px=

—x"Px=

1=

+

(N

=x" [ATPA-P,A"PB, A" PB,|

I<

X
" [BIPA,B!PB, BIPB,] | u ] +
" [BlPA, Bl PB, BLPB,] | u ]

w
and
X ATPA—P * * X
u B.,"PA B,”PB, * u | <0. (53)
w B,”PA B,"PB, B,”PB, | |w
8

From the condition u! u; < vI'v; fori=1, ..., m and for ev-
ery t it holds that v/ v; —ulu; > 0, thus for i = 1,..., m one
can write the constraints in the terms of the rows of appropriate
matrices, with the use of (23),

T

X Qv,iTgv,i * *
u 4vu,iTgv,i dvu,devu,i -1 * X
w de,iTgv,i de,devu,i de,devw,i
X
X | ul|>0. (54)
w

According to the S-procedure (the name of the procedure
dates back to 1979, see [28], where some matrix § was used
to represent quadratic forms with symmetry property), the in-
equality (53) holds if the inequalities (54) hold fori=1, ..., m
The formula (53) can now be rewritten to

— (V@) = Vix,)) =

x "rA"PA-P * * X
—|u B,"PA B, PB, * u| >0,
w B,”PA B,’PB, B,’PB, | |w
from where having applied the S-procedure [4,29]
ATPA—P * *
-| B,”PA B,/ PB, * >
B,”PA B,"PB, B,”PB,
. c, ch ; * *
> g d Cyi dvu,devu i —1 * ] !
=1
de i vz de szvu i de,devw,i
CVTFCV * *
= | p,'rc, b,'rD, -T * (55)
DVWTFCV DVWTFDVM DVWTFDVW

one obtains (35).

High control performance condition The expression z/ z —
S w! w taking (24) into account can be rewritten using the nota-
tion as below:

=7z-8ww=
:( x+Dyu+Doyw)" (Cox+Doyu+Dayw) — Sw'w=
X ! C, C * * X
=lu D, ’c. p.,'D., * ul, (56)
w| |D.'C.D.,’D., D, 'D.,—5| |w

and then the inequality (37) corresponds to (38).
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