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1 Introduction

Using algorithmic problems in non-commutative groups for cryptography is a fairly new but very
active field for over a decade (see for instance [1]). In this paper we propose new cryptosystems
using subgroup distortion. The algorithmic problems which are proposed for non-commutative
group-based cryptography so far are: Conjugacy Search Problem, Endomorphism Search Prob-
lem, Word Choice problem, Membership search problem and Twisted Conjugacy Problem among
others. There has not been yet any proposal to use the Geodesic Length Problem or Complexity of
Distortion in Subgroups as we do in this paper. We propose a couple of symmetric cryptosystems
based on these problems, and analyze their security.

The paper is organized as follows: in Sec. 2.1 we discuss the notion of subgroup distortion
and in Sec. 2.2 we discuss the problem of finding the geodesic length of an element in a group in
polynomial time, and explain how in a Gromov hyperbolic group this can be done in polynomial
time. In Sec. 3 we explain two possible protocols based on subgroup distortion, and in Sec. 4
we give a few concrete examples of hyperbolic groups that can be used as platforms for the
cryptosystems described in Sec. 3.
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2 Background from group theory

2.1 Subgroup distortion

Let G be a finitely generated group and S ⊆ G a finite generating set. Then for g ∈ G the word
length associated to S is given by

`S(g) = min{n ∈ N|g = s1 . . . sn, si ∈ S ∪ S−1}. (1)

For any two finite generating sets S, S′ of G, there is a constant C ≥ 1 such that, for any g ∈ G
one has

`S(g) ≤ C`S′(g). (2)

For H < G a finitely generated subgroup, if T ⊂ H is a generating set, then for any h ∈ H

`S∪T (h) ≤ `T (h). (3)

Indeed, there are ‘shortcuts’ to the identity when one is allowed to use both elements from the
generating set from G and H. Those shortcuts may no longer be there when we are restricted
to the generating set of H and hence the other inequality is in general not true. The degree of
failure of this inequality is used to define the distortion. In the rest of the paper we will assume
that T ⊆ S, so that S ∪ T = S.

Definition 1. Let G be a finitely generated group and H < G be a finitely generated subgroup.
The distortion of H in G is the function

DistGH : N→ N
n 7→ max{`T (h) | `S(h) ≤ n}.

(4)

Remark 2. Notice that a priori this function depends on the generating sets S and T for G and
H, but two finite generating sets will give equivalent distortion functions D1 and D2. That D1

and D2 are equivalent means that there is a constant C ≥ 1 satisfying

1

C
D2(

n

C
) ≤ D1(n) ≤ CD2(Cn) (5)

for every n ∈ N.

The following are very natural examples of finitely generated groups with distorted subgroups.

Example 3. The metabelian Baumslag-Solitar group:

G = BS(1, 2) = 〈a, b | aba−1 = b2〉. (6)

If we take H ' Z = 〈b〉, then one checks that for any n ∈ N one has

anba−n = an−1b2a−(n−1) = an−1ba−1aba−(n−1) = an−2b4a−(n−2) = · · · = b2
n
. (7)

Hence `{b}(b
2n) = 2n whereas `{a,b}(b

2n) = 2n+ 1 so that DistGH is equivalent to an exponential.
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Example 4. The integer Heisenberg group, given by

G = HZ = 〈a, b, c | [a, c] = [b, c] = e, [a, b] = c〉. (8)

If we take H ' Z = 〈c〉, this is the center of G and then one checks that for any n ∈ N, using
that ab = cba and that a−1b−1 = cb−1a−1 one has

anbna−nb−n = an−1abbn−1a−nb−n = an−1cbabn−1a−nb−n

= can−1babn−1a−nb−n = can−1b2cabn−2a−nb−n

= c2an−1b2abn−2a−nb−n = · · · = cnan−1bna−n+1b−n

= · · · = c2nan−2bna−n+2b−n = · · · = cn
2
bnb−n = cn

2

(9)

and hence `{c}(c
n2

) = n2 whereas `{a,b,c}(c
n2

) = 4n so that DistGH is equivalent to a quadratic
polynomial.

2.2 The Geodesic Length Problem

For a word w in the alphabet X±1 we denote by |w| the length of w. The geodesic length
of an element g ∈ G relative to S, denoted by `S(g), is the length of a shortest word w ∈
F (S) representing g, i.e., `S(g) = min{|w| |w ∈ F (S), wµ = g}. To simplify notation we write,
sometimes, `S(w) instead of `S(wµ). A word w ∈ F (S) is called geodesic in G relative to S, if
|w| = `S(w). Here we give definitions of the Geodesic Problem and Geodesic Length Problem,
(see [1] for more).

Definition 5 (The Geodesic Problem (GP)). Given a word w ∈ F (S) find a geodesic (in G)
word w̃ ∈ F (S) such that wµ = w̃µ.

The following is a variation of GP.

Definition 6 (The Geodesic Length Problem (GLP)). Given a word w ∈ F (S) find `S(w).

A solution of GP gives a solution to the GLP because once one finds a geodesic representing
a word, its length gives the length of the word. The GLP seems hard in general, and not much
studied. In [2] it is shown that this problem is NP-complete in the free-metabelian group Sr,2.
It is also known that in free groups or Right Angled Artin groups given by standard generating
sets, there are fast algorithms for computing the geodesic length of elements [1]. In braid groups,
or nilpotent groups, the computation of the geodesic length of elements is hard [1].

There are many groups of exponential growth where the Geodesic Problem is decidable in
polynomial time, for example, hyperbolic groups (implicit in [3], see also Theorem 1 below) or
metabelian Baumslag-Solitar group BS(1,n), [4]. Notice that, a priori, the Geodesic Problem
is a bit harder than the Geodesic Length Problem: indeed, once one has found a geodesic,
one automatically has its length, but knowing the length of a geodesic doesn’t give the geodesic.
However, according to Elder and Rechnitzer in [5], those two problems are polynomially reducible
to each other, meaning that a polynomial time solution to one of the problems is equivalent to a
polynomial time solution to the other one.

In the case where G is hyperbolic in the sense of Gromov, the following is easy:

16



Cryptosystems using subgroup distortion (4 of 11)

Theorem 1. Let G be a Gromov hyperbolic group, then the Geodesic Problem (hence the Geodesic
Length Problem as well) is solvable in linear time.

Proof. According to [6] (Part III.Γ.2), in a Gromov hyperbolic group a word w has a normal form
which is a quasi-geodesic q. By stability of quasi-geodesics (see for instance Theorem 1.7 of [6]),
the neighborhood of a quasi-geodesic between two points coincides with the neighborhood of a
geodesic between those two points. In our case this means that there is a constant K ≥ 1 and
the neighborhood

NK(q) = {γ ∈ G | d(γ, q) ≤ K} (10)

of q is contained in a neighborhood NL(g) of a geodesic g representing the word w, for some
constant L ≥ 1. Now, that neighborhood NL(g) has cardinality bounded by a constant times
the length of the geodesic g, which is smaller than the length of w. One then enumerates all the
paths in NK(q) to find the geodesic length.

2.3 The membership search problem

Given G a finitely generated group, with a finite generating set S and H a subgroup with its own
generating set T , one can ask the following.

Question 1 (Membership search problem). Given h ∈ H expressed in terms of the generating
set S, how long is it needed to express h in terms of elements of T?

The difficulty of the membership search problem has been used in cryptography by Shpilrain
and Zapata in [7], but here we will be needing examples in which the membership search problem
is polynomial, see Lemma 7.

3 The Cryptosystems Using Subgroup Distortion

3.1 The protocol I: basic idea

Assume that Alice and Bob would like to communicate over an insecure channel. Here G =
〈g1, . . . , gl|R〉 is a public group and H = 〈t1, . . . , ts〉 ⊂ 〈g1, . . . , gl〉 = G is a secret subgroup of G,
that is distorted and shared between only between Alice and Bob. We further assume that the
geodesic length problem is polynomial both in G and H, and that the membership search problem
is polynomial in H. Then:

1. Alice picks h ∈ H with `H(h) = n, expresses h in terms of generators of G with `G(h) =
m� n and sends h to Bob.

2. Bob then converts h back in terms of generators of H and computes `H(h) = n in polynomial
time to recover n.
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3.1.1 Security

Although H is not known to anyone except to Alice and Bob and h being sent with length m� n
gives infinitely many possible guesses for the eavesdropper Eve, the security of the scheme is
weak since Eve will have intercepted enough elements of H to generate H (one can think of the
group Z of the integers, it is enough to intercept two relatively prime integers to generate the
whole group).

3.2 The protocol I: secure version

We suggest making it impossible for Eve to tell which elements in the sent form belong to H
by sending along h several elements that do not belong to H. To determine how Bob can tell
which elements belong to H to retrieve the correct message we will consider below the subgroup
membership problem and the random number generator.

3.2.1 Subgroup membership problem

Suppose we have a group in which the subgroup membership problem is solved efficiently then
we will send some random words and the receiver first checks whether each word belongs to H
and then computes its length.
Protocol: Let G = 〈g1, · · · , gl|RG〉 be a group that is known to the public and H = 〈h1, . . . , hs〉
be a secret subgroup of G that is exponentially distorted. Assume that the subgroup membership
problem in G efficiently solvable, and that as in Protocol I the word problem is polynomial in G,
the geodesic length problem and the membership problems are both polynomial in H. Then:

1. Alice picks h ∈ H with `H(h) = n, expresses h = g1 · · · gm in terms of generators of G with
`G(h) = m� n. She randomly generates a0, . . . , am ∈ G\H and sends these words to Bob.

2. Since Bob knows the generating set for H, he find h ∈ H (since he could check the subgroup
membership problem efficiently) he only uses h ∈ H, in terms of generators of H and
computes `H(g) = n in polynomial time according to our assumptions to recover n.

3.2.2 Random Number Generator

Suppose we have a random number generator and two parties that share the same random number
generator and the same seed, they will get a same random sequence. We would like to use this
idea but instead on groups.

This notion is possible if we are given a one-to-one correspondence between the countably
infinite set of integers and a countably infinite group G. There is a natural ordering of elements
in the group of integers and so if we are given a one-to-one correspondence with the infinite set
of integers, it will impose this ordering on G. Generating m random numbers is then the same as
generating m elements in group G. The advantage here is that given the same random number
generator and the same seed, two parties would produce the same sequence of random numbers
and by using the ‘same ordering’ in G, they would get the same sequence of random elements
of G.

We will use the idea of random number generator for group in the protocol below.

18
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Protocol: Let G = D1 ∗ D2 ∗ · · · ∗ Dn where each Di is a Gromov hyperbolic group that is
known to the public. Alice and Bob share H = 〈d, . . . , ds〉 ⊂ D1 := 〈d1, . . . , dl|R1〉 which is an
exponentially distorted hyperbolic subgroup of D1 (and hence G), a one-to-one correspondance
between D2 ∗ · · · ∗Dn and the integers, a random number generator and a way to choose a seed.
(For example, they could use the date and time for the seed: 02032016123342 where 02-03-2016
is today date and 12:33:42pm is the current time of message being sent. They could also add to
this the number sent by previous message).

1. Alice picks h ∈ H with `H(h) = n, expresses h = d1 · · · dm in terms of generators of D1 with
`G(h) = m� n. She randomly generates a sequence of (m+ 1) numbers from the random
number generator and picks a0, . . . , am that belong to D2 ∗ · · · ∗Dn that is in a one-to-one
correspondence with the sequence of (m + 1) numbers. She then sends a0d1a1d2 . . . dmam
to Bob (the ai’s are expressed in a fixed generating set for D2 ∗ · · · ∗Dn).

2. Bob knows the random number generator and the seed so he knows which ai’s are sent
along with h. He uses ai’s inverses to get back h = d1 · · · dm. Since he also knows H, he
converts h back in terms of generators of H and computes `H(g) = n in polynomial time
according to Theorem 1 to recover n.

3.2.3 Security

The security of the scheme relies on the fact that:

• H < G is not known to anyone except to Alice and Bob.

• Since h is sent with length `G(h) = m � n, there are infinitely many guesses for Eve that
are greater than m.

• For both protocols, only Bob can tell which elements sent in the form of h belong to H. For
the second protocol, the random number generator and the seed are known to only Alice
and Bob, so there is no way for Eve to tell which elements among {h, ai} belong to H to
try to generate H.

3.3 The protocol II: basic idea

Let G = 〈S|R1〉 be a secret group that is only known only to Alice and Bob and that has
polynomial geodesic length problem. Let H = 〈T 〉 be a public distorted subgroup of G. Here T
is a subset of S.

1. Alice wants to send a message n ∈ N to Bob. She picks g ∈ G with `G(g) = n. She then
expresses g = t1t2t3 · · · tm, where m� n and ti ∈ T and sends to Bob.

2. Bob converts g back in terms of generators of G and by assumption computes its length in
polynomial time to recover n.
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3.3.1 Security

Although G is not known to anyone except Alice and Bob, the security of this scheme is not
strong since the eavesdropper could potentially guess the value of n based on the upper bound m.

3.4 The protocol II: secure version

Instead of sending g with `G(g) = m� n we can embed H exp(exp) distorted in another group
K so that we can transmit message of size ≤ log n < m. For the cryptosystem below, we need
the following groups:

G = 〈g1, . . . , gl|RG〉, (11)

H = 〈h1, h2, . . . , hk|RH〉, (12)

K = 〈k1, . . . , kq|RK〉, (13)

where H is a distorted subgroup of G and embedded exp(exp) distorted in K. The group H is
known to the public whereas G and K are known to only Alice and Bob.

1. Alice wants to send a message n ∈ N to Bob.

(a) She picks g ∈ G with `G(g) = n, g = g1g2 · · · gn.

(b) Since H is distorted in G, there is m > n with `H(g) = m. Alice then expresses
g = h1h2 . . . hm, in terms of generators of H.

(c) Since H is embedded exp(exp) distorted in K, there exist p �� m and k1, k2, . . . kp
in the generating set of K such that g = k1k2 · · · kp.

(d) Alice sends g in this form to Bob.

2. Bob will do the following:

(a) He uses his knowledge of K and H and the fact H is exp(exp) in K to convert g =
k1k2 · · · kp (p� m) to g = h1h2 . . . hm.

(b) Since he knows that H is distorted in G, he converts g = h1h2 . . . hm to g = g1g2 . . . gn
back in terms of generators of G.

(c) He then computes the length of h to recover n.

3.4.1 Security

The security of the scheme relies on the fact that finding the geodesic length problem in H for
the eavesdropper is impossible due to the fact that:

• G and K are not known to anyone except to Alice and Bob.

• g is sent in terms of generators of K so there is no way for Eve to figure out H.

• With `K(g) = p � n, there are infinitely many choices of numbers greater than p for
guessing.
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4 Possible platforms

For both protocols, Gromov hyperbolic groups seem to provide interesting platforms. Indeed,
according to Theorem 1 the geodesic length problem is solvable in polynomial time. There are
many examples of hyperbolic groups with exponentially distorted hyperbolic subgroups, see for
instance [8] for geometric examples such as surface subgroups in fundamental groups of hyperbolic
3-manifolds, but we do not know about membership search problems there.

4.1 Free-by-cyclic platforms for protocol I

One possible weakness of Protocol I is that the public group G does not contain enough exponen-
tially distorted subgroups H, so Eve could make a group theoretic search and find all the distorted
subgroups. To avoid that problem, one could use hyperbolic groups which can be written as free-
by-cyclic groups in infinitely many ways. Such groups are constructed in [9]. More precisely, the
authors construct groups G which are hyperbolic, and have infinitely many homomorphisms to Z,
with free kernel. Given any such homomorphism, one has an expression G = Fn(a1, . . . , an)oφ 〈t〉,
where the first factor is the free group on the generators a1, . . . , an, and φ is an automorphism of
Fn(a1, . . . , an) such that tait

−1 = φ(ai) for all i.
We fix one such G = Fn(a1, . . . , an) oφ 〈t〉 (including a choice of generators a1, . . . , an, t) as

the public group G.
Now Alice and Bob together choose one of the (infinitely many) other homomorphisms of G

to Z, say G = Fm(b1, . . . , bm) o 〈s〉 and take H = Fm(b1, . . . , bm) < G.

Lemma 7. The membership search problem for H < G is solvable in polynomial time.

Proof. Given a word w = w(a1, . . . , an, t) a word in the public generators a1, . . . , an, t of G, which
represents an element h ∈ H, we need to show that there is a polynomial time algorithm to write
h in terms of the generators b1, . . . , bm of H.

Since G = Fn(a1, . . . , an) oφ 〈t〉 = Fm(b1, . . . , bm) o 〈s〉, each ai can be written as a word in
b1, . . . , bm, s. Thus by hyperbolicity, w can be changed into a word v = v(b1, . . . , bm, s) in linear
time, and there is a constant K, depending only on H, such that |v| ≤ K|w|.

The word v may have some powers of s and s−1, but since it represents the element h of H, it
has an expression u which is a word in just b1, . . . bm. Applying Britton’s lemma (see for instance
Ch IV of [10]) to u−1v, we see that v must have an innermost s, s−1 pair: i.e., v must have a
subword of the form sxs−1 or s−1xs, where x is a word in just b1, . . . bm. Replace this subword
with φ(x) or φ−1(x) respectively, to get a word v1 representing h with fewer s’s and s−1’s than v.
Continuing this procedure, after finitely many steps we will have written down an expression for
h in terms of b1, . . . , bm. Since tait

−1 = φ(ai) for all i, applying the automorphism φ increases
the length linearly only. Moreover, the number of steps is bounded above by the number of s, s−1

pairs, which is at most |v|/2 < K|w|.

4.2 Exponential and Exp(exp) distortion for protocol II

We now provide concrete examples of hyperbolic groups with an exponentially and an exp(exp)
distorted subgroup that could be used in protocol II (improved version). Those examples are a
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particular case of the more general techniques developed in [11]. Here we describe a specific type
which may fit our needs, although it is not clear that they have a fast enough membership search
problem.

Let
G1 := 〈a1, a2, . . . , a14, t1|t−11 ajt1 = w1j(1 ≤ j ≤ 14)〉 (14)

and
G14 := 〈a1, a2, . . . , a142 , t1, . . . , t14|t−1i ajti = wij(1 ≤ i ≤ 14, 1 ≤ j ≤ 142)〉, (15)

where w1j ’s are positive words on aj ’s, of length 14 such that aiaj appears at most once as a
subword of w1j and similarly for wij . We obtain w1j by noting that the following word

(a1a1a2a1a3a1 · · · a14)(a2a2a3a2 · · · a14) · · · (a13a13a14)a14 (16)

has length 142 so we can split it into 14 subwords of length 14, each corresponding to w1j .

4.3 Exponentially Distorted Subgroups

The subgroup
F1 := 〈a1, · · · , a14〉 (17)

is free of rank 14 and is exponentially distorted in G1.
Here is an example. The word t−n1 a1t

n
1 has length 2n+ 1 in G1. On the other hand,

t−n1 a1t
n
1 = t−n+1

1 t−11 a1t1t
n−1
1

= t−n+1
1 w11t

n−1
1

= t−n+1
1 a1a1a2a1 · · · a7a1tn−11

= t−n+2
1 t−11 a1t1t

−1
1 a2 · · · t−11 a7t1t

−1
1 a1t1t

n−2
1

= t−n+2
1 w11w11w12 · · ·w17w11t

n−2
1

= · · · a(1)j · · · .

(18)

Since lG1(t−n1 a1t
n
1 ) = 2n + 1 and lF1(t−n1 a1t

n
1 ) = 14n, the subgroup F1 is at least exponentially

distorted in G1.

4.4 Exponentially Exponentially Distorted Subgroups

Define H := G1 ∗F1 G14. Denote

F1 := 〈a(1)1 , · · · , a(1)14 〉 (19)

and
F2 := 〈a(2)1 , · · · , a(2)14 , · · · , a

(2)
142
〉. (20)
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Let w1 = t−na
(1)
1 tn and

w2 = w−11 a
(2)
1 w1

= (t−na
(1)
1 tn)−1a

(2)
1 t−na(1)tn ∈ H

= (· · · a(1)j · · · )
−1a

(2)
1 (· · · a(1)j · · · )

= (· · · tj · · · )−1a(2)1 (· · · tj · · · )

= · · · a(2)k · · · ,

(21)

where a
(2)
1 ∈ F2, w1 ∈ F1 and the third equality follows by the previous computation and the

fourth equality follows since F1 is identified with the subgroup of G14 generated by 〈t1, . . . , t14〉.
There are 14n elements in each of (· · · a(1)j · · · ) so 14n tj ’s on each side of a

(2)
1 . Since lH(w2) = 4n+2

and lF2(w2) = 1414
n
, F2 is at least exp(exp) distorted in H.
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