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Approximation of separable numerical range using simulated annealing
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Abstract: In this work we provide a method for approximating the separable numerical range of a
matrix. We also recall the connection between restricted numerical range and entanglement of a quantum

state. We show the possibility to establish state separability using computed restricted numerical range. In
particular we present a method to obtain separability criteria for arbitrary system partition with use of the

separable numerical range.
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1. Introduction

The quantum information science studies the application of the quantum mechanics

to processing, storing and transmitting information. The main trends of research involv-

ing the theoretical aspects of quantum computing are: the quantum information theory,

the quantum computation, the quantum cryptography, the quantum communication and

the quantum games. The origins of the field date back to the first decades of the twentieth

century.

In the last two decades of the twentieth century, the groundwork for quantum com-

puting systems was laid. First in the eighties, Bennett and Brassard [1] proposed quan-

tum key distribution (QKD) protocols paving the way to a whole new field of quantum

cryptography. Feynman’s idea of quantum simulators [2] and Deutsch’s work [3] on

universal quantum computer, followed by Shor’s [4] and Grover’s [5] first quantum al-

gorithms invented in the nineties of the twentieth century, created a whole new field of

research on quantum computing and quantum algorithms.

One of the central concepts of quantum information theory is quantum entangle-

ment [6, 7], which can be understood as non-classical correlations that exists only be-

tween quantum systems. Entanglement is the main physical phenomenon behind i.e the
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quantum communication and cryptography, the quantum algorithms and the quantum

metrology.

Investigation of the geometry of entanglement remains a subject of current scientific

interests in view of applications in the theory of quantum information processing. The

set ΩN of pure quantum states belonging to a N dimensional complex Euclidean space

CN is known to be equivalent to the complex projective space, ΩN = CPN−1, of 2N−2

real dimensions. However, as this set is embedded into the N2 − 1 dimensional set QN

of density matrices of dimension N by a non-linear constraint, ρ = ρ2, the geometric

structure of the set of mixed quantum states is rather involved, and the only simple case

corresponds to the one–qubit system, N = 2.

2. Numerical range and derivative notions

The notion of numerical range of a given operator, also called field of values [8,

Chapter 1], has been extensively studied during the last few decades [9, 10, 11] and

its usefulness in quantum theory has been emphasized [12]. Several generalizations of

numerical range are known — see e.g. [8, Section 1.8]. In particular, Marcus intro-

duced the notion of decomposable numerical range [13, 14], the properties of which are

a subject of considerable interest [15, 16].

Restricted numerical range [17, 18] and numerical shadow [19, 20, 21] are mathe-

matical objects that have many applications in quantum information theory. For exam-

ple it was shown in [18, Sec. E] that the problem of determining the product numerical

range is strongly related to geometric measure of entanglement of any multipartite state

|ψ〉 [22].

Other examples of restricted numerical ranges and restricted numerical shadows ap-

plications are the following:

• the block-positivity of matrices, and entanglement witnesses [18, Sec. IV. A.],

• the n-copy distillability of quantum states [18, Sec. IV. B.],

• the minimal output entropy of quantum channels [18, Sec. IV. C.],

• the local discrimination of unitary operations [18, Sec. IV. D.],

• the problems of local fidelity and geometric entanglement measures [18, Sec. E],

• the local dark spaces and quantum error correcting codes [18, Sec. IV. F],

• the local quantum control [23],

• the study of entanglement sudden death and entanglement revival [21, Sec. 6],

• quantum error correction [24].
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2.1. Quantum states

Quantum states can be viewed as an extension of probability distributions. In order to

set-up the vocabulary and description precision in the following section the main notions

of the quantum information theory were gathered.

Let Cn be the complex euclidean space with standard inner product. By |ψ〉 ∈ Cn

we denote normed column vector, and by 〈ψ| the row vector dual to |ψ〉. With symbol
† we denote hermitian conjugation. The form 〈ψ|φ〉 denotes the vector scalar product of

|ψ〉 and |φ〉, and the form |ψ〉〈φ| denotes their outer product. By L(Cn) we denote the

set of linear operators from Cn to Cn.

Let ρ ∈ Ωn ⊂ L(Cn) be a trace-one positive semi-definite linear operator i.e.: ρ =
ρ†, ρ ≥ 0 and trρ = 1. Such operators are called quantum states. The states that

are rank-one projection operators are called pure states. States, whose all off-diagonal

elements are zero are called classical states and they are identified with probability dis-

tributions.

Joint state ρ of quantum systemsA andB, whose corresponding spaces have dimen-

sions nA and nB , ρ ∈ ΩnA×nB
⊂ L(CnA×nB ) are called separable if and only if, when

for some M the state can be written in the form

ρ =
M∑

i=1

qi ρ
A
i ⊗ ρBi , (1)

where ρAi ∈ ΩnA
, ρBi ∈ ΩnB

, qi > 0 i
M∑
i=1

qi = 1. A state that is not separable is called

entangled state.

One can extend these notions to case of many subsystems. The state ρ of m sub-

systems A1, . . . , Am, whose corresponding spaces have dimensions ni such that, ρ ∈
Ω∏

m

i=1
nAi

⊂ L(C
∏

m

i=1
nAi ) is separable with respect to a given partition {I1, . . . , Ik},

where Ii are disjoint subsets of the indices I = {1, . . . ,m}, ∪k
j=1

Ij = I , if and only if

for some M , it can be written as

ρ =
M∑

i=1

piρ
B1

i ⊗ . . .⊗ ρ
Bk

i , (2)

whereBi denotes subsystem corresponding to the partition Ii, ρ
Bi ∈ ΩnBi

, i = 1, . . . , k,

pi > 0 and
M∑
i=1

pi = 1. A state that is not separable with respect to any non-trivial

partition is called fully entangled. If a state, for some M , can be written as

ρ =
M∑

i=1

piρ
A1

i ⊗ . . .⊗ ρAm

i , (3)
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it is called fully separable.

2.2. Numerical range and restricted numerical range of a matrix

Numerical range [8] of a matrix A ∈ L(Cn) is a subset of the complex plain given

by

Λ(A) = {〈ψ|A|ψ〉 : |ψ〉 ∈ C
n, 〈ψ|ψ〉 = 1}. (4)

In works [18, 17, 23] the restricted numerical range of the matrix was introduced and

investigated. Restricted numerical range with respect to the set ΩX can be defined as

ΛX(A) = {trρA : ρ ∈ ΩX}, (5)

where ΩX is a subset of the set of quantum states. In the aforementioned works the

applications of such a family of mathematical object in quantum information theory was

presented.

As examples of subsets ΩX for which restricted numerical range can be determined

one can enumerate

• the subset of pure separable states

Ωloc = {
N⊗

i=1

|xi〉〈xi| : ∀i=1,...,N |xi〉 ∈ C
(ni), 〈xi|xi〉 = 1},

• the subset of separable states

Ωsep = {ρ : ρ =

N∑

i=1

piρ
A
i ⊗ ρ

B
i }.

Selection of those subsets is motivated by quantum informational properties of a quan-

tum system.

2.3. Relation with entanglement

It was shown in [18, Sec. E] that problem of determining the product numerical

range is strongly related to the geometric measure of entanglement of any multipartite

state |ψ〉 [22]. The measure Eg is defined as

Eg(|ψ〉) = − logmax
Uloc

|〈ψ|U1 ⊗ U2 ⊗ · · · ⊗ Um|0, 0, . . . , 0〉|
2. (6)
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Product numerical radius L(ρ), the maximum absolute value of a product numerical

range max |Λ(ρ)|, is also useful in constructing a natural entanglement test [25]. It has

been shown, that if

L(ρ) < trρ2, (7)

then the quantum state is entangled. Based on the above fact an experimental implemen-

tation was proposed for entanglement detection [25].

3. Algorithm

In this section we provide an algorithm for approximating numerical range of a ma-

trix. We focus on restricted numerical range with respect to the set of separable states.

In this work we will always use the notion of separable states in context of fixed system

partition. In the case of having given subsystems X1, . . . , Xk we will consider the set of

separable states defined as

Ω
sep
X1,...,Xk

= {ρ : ρ =
N∑

i=1

piρ
X1

i ⊗ . . .⊗ ρXk

i }.

The algorithm will also work properly in the case of unpartitioned system giving unre-

stricted numerical range.

Algorithm 1 For given matrix A, fixed k-part partition of a system, and granularity of

approximations T run the following procedure for θ = 2πm/T,m = 1, . . . , T :

1. B = e−iθA

2. H = 1

2
(B +B†)

3. Pmax

1
, . . . ,Pmax

k = argmax
P1,...,Pk

〈ψ(P1)| ⊗ . . .⊗ 〈ψ(Pk)|H|ψ(P1)〉 ⊗ . . .⊗ |ψ(Pk)〉

4. |ψmax〉 = |ψ(Pmax

1
)〉 ⊗ . . .⊗ |ψ(Pmax

k )〉

5. z = 〈ψmax|A|ψmax〉

6. append pm = (ℜ(z),ℑ(z)) to list of results.

Step 3 of the algorithm can be executed using annealing algorithm. The list of elements

(pm)Tm=1
forms the approximation of the boundary of separable numerical range.

After the the procedure is finished, additionally, the convex hull of the points in the

resulting list can be computed in order to approximate the separable numerical range

better.
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The presented method consists of iterative procedure that allows to compute points

at the border of the product numerical range of a matrix A with given system partition.

As restricted separable NR is a convex hull of restricted product numerical range i. e.

Λsep(A) = conv(Λloc(A)) it is sufficient to provide the solution. The computation is

done by computing points that lay on the real axis at the border after appropriate rotation

of the input matrix. To get the points at the real axis we can consider the hermitian part

of the matrix and compute its numerical radius. By performing the computation for

different rotations distributed along the interval [0; 2π] one obtains an approximation of

the whole border of the separable numerical range.

Computing the numerical radius requires the maximization over all product states.

For this purpose we use state parametrization [26] for each of the subsystems separately.

State of a N -dimensional subspace can be parametrized with a sequence of 2(N − 1)
real numbers P = ({ξi}i, {θj}j), i = 1, 2, . . . , N − 1, j = 1, 2, . . . , N − 1. The

parametrization is given by:

|ψ(P)〉 = |ψ({ξi}i, {θj}j)〉 =





√
p0√

p1e
iξ1

...
√
pN−1e

iξN−1



 , (8)

where pi = sin2 θi−1
N−1∏
j=i

cos2 θj and θ0 = π/2. This approach enables us to compute

restricted numerical range by using restricted set of parameters in step 3 of the algorithm.

The state of the whole system is a product of states obtained for local parametrizations.

4. Results

In principle by finding an appropriate matrix and calculating its restricted numerical

range one can provide a proof of the non-separability of a quantum state.

Various matrices can provide different separability criteria. Obviously, for a given

state, finding a matrix that allows to determine that the state is not separable according

to a given partition of the system and thus it is entangled, is a difficult task.
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Fig. 1: Numerical range (blue solid line), and separable numerical range with respect

to partition 2 × 2 × 2 (red dotted line), 4 × 2 (dashed line), 2 × 4 (dot-dashed line) of

(a) matrix A1, (b) matrix A2, (c) a generic (drawn from Ginibre ensemble) non-normal

matrix of dimension 8. Crosses indicate spectrum of the matrix.

Below we provide three examples. Consider three matrices

A1 =

























0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

























, (9)

A2 =





























1 0 0 0 0 0 0 10

0 e
iπ

4 0 0 0 0 0 0

0 0 i 0 0 0 0 0

0 0 0 e
3iπ

4 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 e−
3iπ

4 0 0

0 0 0 0 0 0 −i 0

0 0 0 0 0 0 0 e−
iπ

4





























, (10)

and A3 — a generic matrix drawn from Ginibre ensemble [27]. Illustrations of the

way Algorithm 1 approximates separable numerical ranges for the above matrices are

provided in Fig. 1.
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The figure depicts the numerical range and the separable numerical ranges of var-

ious 8 × 8 matrices. The external border contains images trAρ of all quantum states.

The states whose images lay outside the grey dashed-dotted region are not 2× 4 separa-
ble, similarly those states whose images lay outside of the dashed region are not 4 × 2
separable. Those states whose images lay outside the red dotted region are genuinely

entangled.
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5. Streszczenie

W pracy przedstawiamy metodę przybliżania separowalnego obrazu numerycznego

macierzy. Przybliżamy również związek pomiędzy ograniczonymi obrazami nu-

merycznymi macierzy oraz splątaniem stanów kwantowych. Wskazujemy możli-

wość zbadania separowalności stanu używając wyliczonego ograniczonego obrazu nu-

merycznego. W szczególności przedstawiamy metodę uzyskania kryterium separowal-

ności, dla dowolnego podziału układów kwantowych, używając separowalnego obrazu

numerycznego.
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