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In this article, synthesis, electronic and optical properties of an N-cyclohexyl-

acrylamide (NCA) molecule are described based on different solvent environments and 

supported by theoretical calculations. Theoretical calculations have been carried out using 

a density function theory (DFT). Temperature dependence of the sample electrical 

resistance has been obtained by a four-point probe technique. Experimental and semi-

theoretical parameters such as optical density, transmittance, optical band gap, refractive 

index of the NCA for different solvents were obtained. Both optical values and electrical 

resistance values have shown that NCA is a semiconductor material. The values of HOMO 

and LUMO energy levels of the headline molecule indicate that it can be used as the 

electron transfer material in OLEDs. All results obtained confirm that the NCA is a 

candidate molecule for OLED and optoelectronic applications.  
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1. Introduction 

Organic semiconductors have attracted great attention 

in the past few years due to their low cost and large-scale 

organic device potential. These devices include elec-

tronics, optoelectronics, organic photovoltaic applications 

[1-4], organic light emitting diodes [5,6], sensors [7-10], 

photodetectors [11], transistors [12], radio frequency 

identification tags [13], and large area integrated circuits 

[14]. They are also promising for solid-state lighting that 

emits efficient white light emitting devices (WOLEDs) 

[15]. In this context, we investigated N-cyclohexyl-

acrylamide (NCA), an acrylamide-based semiconductor. 

There are many studies about acrylamide-added gels 

to be used as a glucose sensing material due to their 

structural and optical properties [16-18]. In addition, 

polymers with acrylamide additive have application areas 

in soft electronic devices and sensors with their unique 

properties [19].  

It is known that structural and optical properties of an 

organic molecule strongly influenced the solvent medias 

[20-22]. Solvent environments, which cause important 

changes in the properties of materials, significantly affect 

the designed devices performance [23]. 

In this study, electronic, optical properties of the NCA 

molecule, an organic semiconductor, and its suitability for 

optoelectronic applications in various solvent environ-

ments were investigated. Both experimental techniques 

and theoretical methods were used. Firstly, theoretically 

the most stable structure of the NCA was determined 

using a density function theory (DFT) method. Later, 

ultraviolet-visible (UV-Vis) spectra, frontier molecular 

orbitals (HOMO and LUMO), energy difference between 

these orbitals (Eg) for different solvents: acetonitrile 

(ACN), dimethyl sulfoxide (DMSO) and dimethylform-

amide (DMF) were calculated using a TD-DFT/B3LYP 

method. Calculated Eg values were compared with experi-

mental ones for different solvents. Non-linear optical 
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properties and spectra of a total density of state (TDOS or 

DOS), and a partial density of state (PDOS) were 

calculated and discussed in detail. The refractive index (n) 

was calculated using semi-experimental methods on 

experimental Eg data. It was determined that the solvent 

effect on the (αhϑ)2 curves connected to the photon energy 

(E). Electrical resistance change of NCA with temperature 

was measured using the four-point probe technique [24]. 

Experimental results have been compared with theoretical 

and semi-theoretical values. 

2.  Experimental details 

2.1  Materials 

NCA was previously synthesized and characterized by 

our team and all chemicals required for its synthesis were 

used in analytical purity, including acrylic chloride, 

cyclohexyl amine, triethyl amine, and solvents [25,26]. In 

Fig. 1, the NCA synthesis scheme is given. 

2.2 Experimental details 

Optical measurements of the solutions of the NCA in 

ACN, DMSO and DMF solvents were recorded with a 

solution technique using a UV-1800 Spectrophotometer at 

room temperature. Electrical resistance change of the 

sample depending on temperature was obtained with the 

four-point probe technique [24]. Details on the experi-

mental procedure are available in the above reference.  

3. Computational details 

All calculations were made in the Gaussian 09 program 

[27] using DFT calculations based on a B3LYP change 

correlation which is functionally based on6-311++G(d,p) 

[28]. The NCA molecule optimized with DFT/B3LYP/6-

311++G(d,p) is presented in Fig. 2. Electronic, non-linear 

optical properties and Eg values were calculated and 

compared with the observed ones of the studied molecule. 

GaussSum 2.2 program [29] was used to analyze the 

spectra of DOS and PDOS molecular orbitals.  

 

4. Results and discussion 

4.1 Experimental results 

Absorbance or optical density spectra of the NCA 

molecule in ACN, DMSO and DMF solvents were taken 

and shown in Fig. 3. The absorption spectrum of NCA in 

ACN and DMSO exhibited a maximum peak at 285 nm, 

while for DMF solvent - at 268 nm. Furthermore, the 

NCA molecule showed only a single peak for each of 

three solvents in the respective wavelength as seen in 

Fig. 3. Also, as can be seen, the NCA absorbance curve 

remains constant at the lowest values at wavelengths 

greater than about 300 nm. These results show that the 

absorption spectra of the NCA molecule have a middle 

ultraviolet (MUV) region of the absorption spectrum. 

Transmittance (T) plays an important role in optical 

properties. Figure 4 indicates the transmittance spectra of 

the NCA molecule in ACN, DMSO and DMF solvents. 

As seen in Fig. 4, the transmittance spectra of the NCA 

exhibit a peak characteristic in the MUV region, while 

they remain constant at the maximum values in the near 

visible (NUV) region. In the MUV region, the NCA 

absorption and transmittance values increase as the 

solvent dielectric constant increases. The solvent with a 

larger dielectric constant produces greater stabilization 

energy for polar species [30]. The stabilizing effect of 

DMSO (ε = 46.7) is greater than the DMF (ε = 36.7) and 

NCA (ε = 37.5). As a result, absorbance and transmittance 

values in DMSO were higher than in ACN and DMF.  

 

Fig. 1. Synthesis scheme of the NCA. 

 

Fig. 3. Absorbance spectra of the NCA for different solvents. 

 

 

Fig. 2. Structures of the NCA molecule: a) 2D, b) 3D. 

 

Fig. 4. The transmittance spectra of the NCA for different solvents. 
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Optical band gap (Eg) is a fundamental optical 

parameter and can be obtained from Tauc model [30]. 

Firstly, we determined a type of optical transitions [31], 

where the allowed direct band gap (Egd) is suitable for the 

NCA molecule. Figure 5 shows the (𝛼ℎ𝜗)2 curves vs. the 

photon energy (E) of the NCA in ACN, DMF and DMSO 

solvents, respectively. Egd values of NCA in ACN, DMSO 

and DMF solvents were obtained by extrapolating the 

linear plot to (𝛼ℎ𝜗)2 = 0 and were given in Table 1.  

Table 1.  

The optical band gap (Eg) parameters of the NCA molecule  

for different solvents. 

Solvents Eg (eV) 

ACN 4.2 

DMF 4.2 

DMSO 4.15 

 

The electrical resistance (ρ) change of NCA with 

temperature was measured using the four-point probe 

technique [24]. The sample electrical resistance was 

determined using the following equation [32]:  

 𝜌 = 2𝜋𝑠 ∙ 𝑉 𝐼⁄  , () 

where V is the potential drop, I is the current and s is 

the distance between probe tips. Data on the temperature 

dependent changes of the resistivity of NCA are given in 

Table 2. The resistivity data in Table 2 indicate that 

results change in between 7.10×105 and 5.19×107 Ω·cm at 

ambient temperature. Electrical resistances of the 

semiconductors at room temperature range from 10-2 to 

109 Ω·cm [32]. Table 2 shows that the resistivity of NCA 

falls in this range. Both the optical band gap (Eg) values in  

Table 1 and the electrical resistivity (ρ) values in Table 2 

show that NCA has semiconductor properties.  

Table 2.  

The temperature dependent change of the resistivity of NCA. 

Temperature (K) Electrical resistivity (Ω·cm) 

299 7.10×105 

313 4.47×106 

326 6.23×106 

340 8.74×106 

351 1.08×107 

362 6.64×106 

374 4.83×106 

391 4.43×106 

407 1.10×107 

419 5.19×107 

 

Refractive indices of the NCA in DMSO, ACN and 

DMF solvents and for many semi-theoretical relations 

such as Herve-Vandamme, Kumar-Singh, Moss, Ravindra, 

and Reddy [33] were obtained and given in Table 3.  

Table 3.  

The experimental (1) and semi-theoretical refractive indices 

obtained from Moss (2), Ravindra (3), Herve-Vandamme (4),  

Reddy (5), Kumar-Singh (6) relations and their average values (7)  

of the NCA molecule for different solvents. 

Refractive indices (n) 

Solvents 1 2 3 4 5 6 7 

ACN 2.34 2.18 1.48 2.03 2.51 2.11 2.06 

DMF 2.61 2.18 1.48 2.03 2.51 2.11 2.06 

DMSO  2.40 2.19 1.51 2.04 2.52 2.12 2.07 

 

Fig. 5. The (αhϑ)2 curves vs. the photon energy (E) of the NCA for different solvents. 
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Using these relations, the experimental Eg values 

shown in Fig. 5 were used to obtain the experimental 

results in Table 3, and the theoretical Eg values shown in 

Fig. 6 were used to obtain the semi-theoretical results. As 

seen in Table 3, the refractive index values of NCA are 

the same in DMF and ACN solvents and different in 

DMSO solvent. The average refractive index values of 

NCA appear to vary between 2.06 and 2.07. These values 

can be considered as suitable for semiconductor and 

OLED materials. And the lowest refractive index is 

observed for Ravindra relation, while the highest 

refractive index is observed for Reddy relation. In 

addition, the experimental refractive index values are 

larger than semi-theoretical refractive indices.  

4.2 Theoretical results  

4.2.1 Frontier molecular orbitals analysis 

Eg values were calculated as 4.21 and 4.22 eV for 

ACN, DMF and DMSO solvents, respectively. 

Experimental Eg values were found as 4.20 and 4.15 eV in 

ACN, DMF and DMSO solvents, respectively. When the 

calculated and measured Eg values are compared, it can be 

seen that they are quite compatible with each other (see 

Figs. 5 and 6). 

The frontier molecular orbitals (FMOs) energy was 

obtained by B3LYP/6-311++G(d,p) method in gas phase. 

HOMO-LUMO shapes for the molecule are given in 

Fig. 7. The high value of HOMO indicates that electrons 

have a high interest in a suitable receptor molecule. 

Similarly, the low value of LUMO indicates that there is a 

high interest in accepting electrons [34,35]. HOMO 

orbitals or valence band were mostly spread over the 

acrylamide group, while LUMO orbitals or conductivity 

band were mostly spread over the cyclohexyl group.  

The energy gap, which is the energy difference 

between HOMO and LUMO orbital, is an important 

parameter in determining conductivity. As shown in 

Fig. 7, this value for NCA is of 4.66 eV in gas phase. In 

this context, the NCA molecule is a semiconductor 

material with the energy range of 4.66 eV. 

4.3 NLO (non-linear optical) analysis 

NLO materials have extensive application areas such 

as storage, optical switching, communication, optical 

sensors, displays, and signal processing [36-38]. 

Theoretical calculations provide sufficient and reliable 

results in the investigation of new nonlinear materials. In 

this study, the electrical dipole moment (µ), hyper-

polarizability (β) and polarizability (α) values from NLO 

properties were investigated using the B3LYP/6-

311++G(d,p) basis set to understand the optical and 

electrical response of NCA. This values were provided 

via the Gaussian output file and their atomic units (a.u.) 

were converted to electronic units (esu) (1 a.u. = 

 0.1482×10-24 esu for α; 1 a.u. = 8.6393×10-33 esu for β). 

The values of mean polarizability (α), anisotropy of 

polarizability (Δα), mean molecular hyperpolarizability 

(β), and total dipole moments were calculated using the 

equations below:  

 𝛼𝑡𝑜𝑡 =
1

3
(𝛼𝑥𝑥 + 𝛼𝑦𝑦 + 𝛼𝑧𝑧) () 

Δ𝛼 =
1

√2
[(𝛼𝑥𝑥 − 𝛼𝑦𝑦)

2
+ (𝛼𝑦𝑦 − 𝛼𝑧𝑧)

2
+

(𝛼𝑧𝑧 − 𝛼𝑥𝑥)2 + 6𝛼𝑥𝑧
2 + 6𝛼𝑥𝑦

2 + 6𝛼𝑦𝑧
2 ]

1

2
   () 

⟨𝛽⟩ = [(𝛽𝑥𝑥𝑥 + 𝛽𝑥𝑦𝑦 + 𝛽𝑥𝑧𝑧)
2

+ (𝛽𝑦𝑦𝑦 + 𝛽𝑦𝑧𝑧 +

𝛽𝑦𝑥𝑥)
2

+ (𝛽𝑧𝑧𝑧 + 𝛽𝑧𝑥𝑥 + 𝛽𝑧𝑦𝑦)
2

]

1

2
   () 

 𝜇𝑡𝑜𝑡 = (𝜇𝑥
2 + 𝜇𝑦

2 + 𝜇𝑧
2)

1

2  () 

The calculated values are presented in Table 4. As 

organic light emitting diodes are used, optically active 

materials NLO properties are important to interpret their 

optoelectronic responses. 

For a molecule to behave like a good NLO material, 

the first hyperpolarizability, dipole moment and polarity 

must be large. The magnitude of these values is generally 

interpreted relative to the values of urea. In this study, the 

values of βtot and Δα are calculated as 1850.816685x10-

33esu and 45.1074x10-24 esu, respectively. These values 

for urea are: βtot = 194.7x10-33 esu and Δα = 3.8312x10-

24 esu. It can be seen that the first order hyper-

polarizability value of the NCA is approximately 10 times 

higher than that of urea, and, similarly, the mean 

polarizability is about 12 times larger. These results show 

that the NCA can be used as a high NLO material for 

future applications. 

 

Fig. 6. The (αhϑ)2 curves vs. E for NCA computed from B3LYP/6-

311++G (d,p) level of theory. 

 

Fig. 7. The frontier molecular orbitals of the NCA for gas phase. 



E. Tanış et. al / Opto-Electronics Review 28 (2020) 191-196  195 

 

Table 4.  

The dipole moments  (D), the polarizability  (a.u.), the average 

polarizability o (×10-24 esu), the anisotropy of the polarizability  

(×10-24 esu), and the first hyperpolarizability  (×10-33 esu) of NCA. 

x -0.4241 xxx 4.5418 

y -3.629500 xxy 892.9641 

z -0.013500 xyy -5.6564 

0 3.654219 yyy 991.9187 

xx 25.2057 xxz -2.1735 

xy 0.26668 xyz -2313.4629 

yy 16.1501 yyz 0.0410 

xz 1.2850 xzz 4.2981 

yz 3.6375 yzz -14.0939 

zz 12.4811 zzz 0.7151 

total 11799.3876 x 2.9842475 

 45.1074 y 1250.7888 

  z -2.145689 

     1850.816685 

 

4.3.1 Density of states (DOS and PDOS) 

The energies of molecular orbitals located close to 

each other in the boundary regions of the molecule can be 

semi-degenerate. Therefore, the boundary molecular 

orbitals of a molecule may not be sufficient to describe 

only HOMO and LUMO. [39]. In this frame of reference, 

DOS and PDOS density of states [40-42] were calculated 

and formed via GaussSum2.2 program by convoluting the 

molecular orbital information with Gaussian curves of 

unit height with full width at half maximum (FWHM) of 

0.3 eV. DOS and PDOS graphs are presented in Figs. 8 

and 9. Figure 9 shows the orbital energy values of 

interactions between some selected groups. According to 

this graph, the cyclohexyl group made the biggest 

contribution to all orbitals. 

5. Conclusions 

In this study, firstly, the N-cyclohexylacrylamide was 

synthesized according to literature. Electronic, optical and 

non-linear optical properties of the NCA molecule were 

investigated by both experimental techniques and 

theoretical methods. Both experimentally and 

theoretically, the same results were obtained for ACN and 

DMF solvents, while different results were obtained for 

DMSO solvent. The optical band range of NCA obtained 

both experimentally and theoretically showed that it is a 

material suitable for OLED technology. The electrical 

resistivity of NCA is compatible with that of 

semiconductors. The variation of refractive index with the 

solvent effect was also investigated using semi-

experimental methods. It was determined that the 

refractive index of NCA for all solvents was in 

semiconductor value range. From the PDOS results, it is 

seen that the cyclohexyl group in the molecule contributes 

most to the electronic band structure of NCA. 

Furthermore, header molecule hyperpolarizability, dipole 

moment and polarizability were obtained. The first-order 

hyperpolarizability of NCA was calculated 10 times 

higher than that of urea (β = 0.37x10-30 esu) and the mean 

polarizability was calculated 12 times greater than that of 

urea (Δα = 3.83x10-24). The results showed that the NCA 

could be a good NLO material. Furthermore, DMSO 

solvent can be preferred for the OLEDs device with a 

lower optical band gap.  
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