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PREDICTING AND MINIMIZING THE BLASTING COST IN LIMESTONE MINES USING 
A COMBINATION OF GENE EXPRESSION PROGRAMMING 

AND PARTICLE SWARM OPTIMIZATION 

Blasting cost prediction and optimization is of great importance and significance to achieve optimal 
fragmentation through controlling the adverse consequences of the blasting process. By gathering explosive 
data from six limestone mines in Iran, the present study aimed to develop a model to predict blasting cost, 
by gene expression programming method. The model presented a higher correlation coefficient (0.933) 
and a lower root mean square error (1088) comparing to the linear and nonlinear multivariate regression 
models. Based on the sensitivity analysis, spacing and ANFO value had the most and least impact on 
blasting cost, respectively. In addition to achieving blasting cost equation, the  constraints such as frag-
mentation, fly rock, and back break were considered and analyzed by the gene expression programming 
method for blasting cost optimization. The results showed that the ANFO value was 9634 kg, hole dia-
meter 76 mm, hole number 398, hole length 8.8 m, burden 2.8 m, spacing 3.4 m, hardness 3 Mhos, and 
uniaxial compressive strength 530 kg/cm2 as the blast design parameters, and blasting cost was obtained 
as 6072 Rials/ton, by taking into account all the constraints. Compared to the lowest blasting cost among 
the 146-research data (7157 Rials/ton), this cost led to a 15.2% reduction in the blasting cost and optimal 
control of the adverse consequences of the blasting process.
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1. Introduction

Optimal fragmentation and displacement of crushed rocks are the initial purposes of the 
blasting process. It has been reported that only 20 to 30% of the total energy from explosion 
is spent on fragmentation and rock displacement while the remaining energy is wasted as the 
environmental destructive phenomena such as ground vibration, air blast, fly rock, and back 
break (Singh & Singh, 2005). Calculation of blasting cost (BC) is meaningless and unreasonable 
without considering the adverse consequences of the blasting process. The impact of blasting 
on the cost of minerals extraction has necessitated providing a model to predict BC. Therefore, 
calculating the optimal cost of a blasting process is regarded as a fundamental problem in the 
mining industry in order to achieve optimal fragmentation by observing the blasting constraints.

In the following, the most important studies conducted by researchers regarding BC and 
related issues are reviewed. In an article entitled „Optimum Blasting? The minimum cost or 
maximum value per ton of broken rock“, Kanchibotla (2003) studied maximum profitability, 
costs, and optimum blasting in a gold mine and an open-pit coal mine by computer simulation 
models and field studies. Rajpot (2009) surveyed the effects of fragmentation characteristics on 
BC and presented a model for examining the impact of hole diameter on the blasting require-
ments in order to achieve the d80 fragmentation and calculate the blasting design parameters for 
a grain size of 75-350 mm. Through optimizing the blasting process and using the Kuz-Ram 
model, Afum & Temeng (2015) studied reducing the cost of drilling and blasting operations in 
an open-pit gold mine in Ghana in three pits, and finally, obtained the moderate fragmentation 
of 25 to 56 cm. Adebayo & Mutandwa (2015) addressed the relationship between the blasting 
hole diversion and the size of the rocks and the fragmentation cost. They used the ANFO, heavy 
ANFO, and emulsion in holes with a diameter of 191 to 311 mm. The results indicated that an 
increase in the hole deviation decreases the average size of the rocks, resulting in increasing the 
cost of drilling and blasting processes. By collecting the data from three copper mines in Iran 
as a function of the hole diameter, bench height, uniaxial compressive strength, and joint set 
direction, Ghanizadeh Zarghami et al. (2018) calculated BC in m3 as a linear model using the 
Comfar software and statistical methods. Bakhshandeh Amnieh et al. (2019) proposed a math-
ematical model for estimation of BC at the gypsum mine of Baghak. The used input variables 
were burden, spacing, hole diameter, stemming length, charge density and charge weight. Finally, 
the nonlinear model was optimized considering the constraints by the simulated annealing.

During the last few decades, Artificial Intelligence (AI) methods such as Artificial Neural 
Network (ANN), Fuzzy Inference System (FIS), Support Vector Machine (SVM), and Neuro-fuzzy 
Inference System (ANFIS) have been widely used in earth sciences to predict target parameters. 
These methods have significant features comparing to the traditional methods (Singh & Verma, 
2010; Sharma et al., 2017). Although these intelligent techniques are considered as powerful 
methods in predicting parameters, they do not provide mathematical equations for engineering 
operations (Faradonbeh et al., 2016c). Gene Expression Programming (GEP) is able to solve non-
linear engineering problems by suggesting a formula to predict a specific output using the related 
inputs of its model. In a study in Malaysia, Faradonbeh et al. (2016a) used 76 blast data of three 
granite mines and the GEP model to predict the flyrock caused by the blast. They employed the 
firefly algorithm to minimize the flyrock. Again in Malaysia, Hasanipanah et al. (2016a) applied 
76 blast data of three granite mines to predict flyrock using particle swarm optimization (PSO) 
and linear multivariate regression (LMR). The proposed PSO equation was more reliable using 
several statistical functions. Faradonbeh et al. (2016b), with the help of GEP model, attempted to 
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predict ground vibration caused by 102 blasting of a granite mine in Malaysia. They concluded 
that GEP has a higher R2 than the nonlinear multiple regression (NLMR) model. Faradonbeh et 
al. (2016d) used genetic programming (GP) and GEP models to evaluate the flyrock caused by 97 
stages of a blast in Delkan iron ore mine in Iran. The input data were burden, spacing, stemming, 
hole depth, and powder factor. It was finally revealed that GEP outperformed the other models. In 
the Pahang-Selangor water transfer tunnel in Malaysia, Armaghani et al. (2017a) employed GEP 
to evaluate the penetration rate of the tunnel boring machine (TBM) and compared the obtained 
results with those of the LMR model. The results indicated that GEP equation can be introduced 
as a new equation in predicting TBM performance. In a comprehensive review, Hajihassani et al. 
(2017) examined the application of PSO in geotechnical engineering (slope stability analysis, soil 
and rock mechanics, tunneling, etc.). They concluded that PSO has been used more in geotechnical 
engineering than in other fields of civil engineering due to the uncertainty and complexity of issues.

The above studies have been, generally, conducted on calculating the drilling cost, evaluat-
ing the relationship between BC and the cost of carrying minerals, considering the impact of 
fragmentation on BC, reducing drilling and BCs, and presenting the BC model in a particular 
mine and adverse effects of the blast. By reviewing the previous research, it is necessary to 
provide a model for predicting and optimizing BC in limestone mines. In the present study, GEP 
was used to predict BC in limestone mines and the results were compared with the actual data 
collected from six limestone mines in Iran, as well as LMR and NLMR. Finally, the ratio of spac-
ing to burden (S ≥ B), the relation of hole length and burden (H = (3 – 4) × B), BC, and optimal 
design parameters were obtained using PSO algorithm and applying the constraint functions of 
fragmentation, fly rock, and back break.

2. Methodology

2.1. GEP method

This method is a combination of the two methods of genetic algorithm (GA) and GP (Fer-
reira, 2001). In this method, linear and simple chromosomes with constant length are combined 
similar to GAs and branch structures with different size and shape are integrated similar to parse 
trees in GP, which are known as an expression tree (ET) in GEP (Steeb, 2014).

In this method, various phenomena are modeled using a set of functions and terminals. The 
set of functions usually contain the main Arithmetic functions {+,–,×,/}, trigonometric functions, 
mathematical functions {√, x2, exp, log, sin, cos, ...}, or functions defined by the user, who believes 
they can be suitable to change the model. On the other hand, the set of terminals are composed of 
constant values and independent variables of the problem (Ferreira, 2001; Khandelwal et al., 2016).

In GEP algorithm, the genes consist of two head and tail components; the former can contain 
functions and terminals while the latter can only contain terminals. The codes related to each 
gene result in the formation of a sub-expression tree (sub-ET). The sub-ETs interact together to 
form a larger and more complex ET. They are linked together by a function called linking func-
tion in order to form this complex structure. Addition (+), subtraction (–), multiplication (×), and 
division (/) are the most pronounced linking functions in this regard (Ferreira, 2001; Ferreira, 
2006). As for GEP algorithm, the operators of mutation, inversion, transposition and insertion 
sequence elements, and recombination are applied on the chromosomes, respectively (Ferreira, 
2001; Ferreira, 2006; Brownlee, 2011; Steeb, 2014). 
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2.2. PSO algorithm

PSO algorithm, invented in 1995 by James Kennedy (a social psychologist) and Russell 
C. Eberhart (an electrical engineer) is regarded as one of the meta-heuristic algorithms inspired 
by the principles governing the behavior of social species in nature, such as the group of birds 
and fishes (Kennedy et al., 2001; Tian et al., 2019). In the PSO algorithm, there are a number 
of particles distributed in the search space. Each particle calculates the objective function value 
in its location in the space. Ultimately, the particle chooses a direction for movement using the 
combination of the current location information, the best previous location contained in the space, 
and the information of one or more particles of the best available particles. After a collective 
movement, one step of the algorithm ends, and this trend is repeated several times until reaching 
the desired result (Kennedy et al., 2001; Tian et al., 2019).

3. Database

In the present study, the data of six limestone mines in Iran were collected to analyze the 
prediction results and validate the GEP method and the PSO meta-heuristic algorithm. Table 1 
presents the geographic coordinates and specifications of these mines. The BC data of six lime-
stone mines related to the period of 2011-2018 were collected to obtain real data. Then they were 
updated based on the price of explosives and costs in January 2019, which eventually became 
the basis for the research. According to the available data, the cost of purchasing explosives was 
62.9%, the total cost of transport, escort, personnel, consumption monitoring, and container was 
16.8%, the salary of blasting company was 8.5%, and the cost of secondary fragmentation and 
adverse effects of blasting was 11.8% of the total cost of each blasting. Table 2 reports the input 
and outputs parameters, as well as their constraints and statistical data, which have been recorded 
and collected in these case studies.

The outlier data were identified and eliminated from the collected data so that the number 
of data reached 146 patterns. The Laser distance meter and the Total Station surveying camera 
were used for measuring back break and fly rock, respectively, and the image analysis was done 
for rock fragmentation measurement using the Split Desktop V.5 software.

TABLE 1

Geographical coordinates and specifications of the studied limestone mines
(Source: http://ime.org.ir)

Geographical coordinates (WGS 84)Annual extraction 
capacity (ton)

Proven reserve 
(ton)Name of mineRow

LongitudeLatitudeNearest city
53° 21’ 3“36° 38’ 5“Neka400000089340000Abelou1
48° 29’ 44“33° 30’ 5“Khorramabad1500004300000Tajareh2
48° 54’ 22“34° 39’ 37“Hamedan3000007000000Moslem Abad3
47° 46’ 43“33° 1’ 24“Pol Dokhtar100000900000Tang Fani4

51° 28’ 
4.63“

32° 26’ 
28.37“Esfahan60000013500000Sepahan 

Mobarakeh5

48° 12’ 53“34° 3’ 8“Nurabad1600001600000Barkhordar16
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4. BC prediction

4.1. Modeling with GEP

In the first stage, for the performance measurement of BC prediction equation based on 
the gathering data, the correlation between the input variables was measured by the Pearson’s 
correlation coefficient (Table 3). Considering the 146 blastings recorded in the six limestone 
mines, 80% of the data were used for modeling and 20% were applied randomly to test the 
model. This section aims to find a function in the form of BC = f (AN, Det, EM, H, N, D, B, S,
T, J, Yr, HA,σc) to predict BC, in which AN, Det, EM, H, N, D, B, S,T, J, Yr, HA and σc represent 
independent (inputs) variables and BC indicates the dependent variable (Steeb, 2014).

Given that the input and output parameters have different units and range of variations, 
data should be normalized in intelligent methods before any modeling; this increases the speed, 
decreases the error of modeling, and prevents over-fitting phenomenon. In this research, the data 
were normalized by Equation 1 at interval (0-1):

 
iX X

X
X X

 (1)

Where, Xi represents the initial data, Xmin indicates the minimum variable value, Xmax shows the 
maximum variable value, and Xnorm is the normalized value.

TABLE 2

Input and outputs parameters and their constraints and statistical data

Standard 
DeviationMeanMinMaxSymbolUnitParameter type 

2598.58551.3102012400ANKgANFO

Input

122.434845650Det—Number of electric 
detonators

115.4295.440600EMKgEmolite
136.6271.529553N—Hole number
3.29.5420.5HmHole length
8.28376100DmmHole diameter

0.532.361.73.5BmBurden
0.612.81.94SmSpacing
0.531.830.853.6TmStemming
0.420.820.21.5JmSub-drilling
0.042.662.62.7Yrton/m3Specifi c gravity
0.163.2733.5HAMhosRock hardness

49.9600.6530671σcKg/cm2Uniaxial compressive 
strength

7.94362047FrcmFragmentation
Constraints 19.29760140FlmFly rock

1.43.416BBmBack break
399513468715723481BCRials/tonBlast costOutput
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The modeling process can be expressed using the GEP algorithm in the following five steps 
(Faradonbeh & Monjezi, 2017; Faradonbeh et al., 2016b):

A) Step 1: The cost function is determined to evaluate the fitness of the generated chromo-
somes (problem responses). For this purpose, RMSE function is used as follows:

 

n

i i
i

RMSE O T
n

 (2)

 Where, Oi depicts the i-th real value, Ti demonstrates the i-the predicted value, and n is 
the number of data series.

B) Step 2: The terminals (problem inputs) and functions are determined to generate the GEP 
chromosomes. In the present study, the terminals have 13 input parameters, as presented 
in Table 2. By studying the structure of experimental relations and examining the cor-
relation relationship between the inputs and outputs, the following important functions 
were selected: 

 
sqrt Inv Rt Rt Not  (3)

Where, 3Rt and 4Rt are the cube and fourth roots of the variable, respectively.
C) Step 3: The structure of the chromosomes should be determined at this stage. The 

structure of each chromosome depends on the size of the head and the number of genes 
(sub-ETs). In general, an increase in the number of genes and chromosomes improves 
the performance of the GEP model to a certain extent. However, the increase of the 
number of genes beyond the optimal number raises the complexity of modeling and the 
possibility of the occurrence of over-fitting phenomenon. In this study, the number of 
genes and head sizes were considered 4 and 10, respectively to obtain BC function, and 3 
and 8 to derive the functions of fragmentation, fly rock, and back break (Faradonbeh & 
Monjezi, 2017).

TABLE 3

Pearson’s correlation coefficients matrix for input parameters

σcHAYrJTSBDHNEMDetANVaria-
bles

0.1940.3760.424–0.031–0.037–0.254–0.1940.2060.2950.340.5670.5541AN
0.4940.5810.423–0.35–0.559–0.598–0.59–0.473–0.3940.8450.75910.554Det
0.7230.7850.704–0.105–0.431–0.526–0.518– 0.34–0.2410.69910.7590.567EM
0.510.5790.294–0.542–0.765–0.711–0.724–0.6810.70310.6990.8450.34N
–0.27–0.2540.0610.5790.7570.5350.5690.67510.703–0.241–0.3940.295H

–0.319–0.249–0.0140.470.6470.5140.63110.675–0.681– 0.34–0.4730.206D
–0.384–0.544–0.1970.7470.8020.96410.6310.569–0.724–0.518– 0.59–0.194B
–0.391–0.574–0.2170.7450.78710.9640.5140.535–0.711–0.526–0.598–0.254S
–0.377–0.47–0.0740.76910.7870.8020.6470.757–0.765–0.431–0.559–0.037T
0.1140.070.39810.7690.7450.7470.470.579–0.542–0.105– 0.35–0.031J
0.8480.84210.398–0.074–0.217–0.197–0.0140.0610.2940.7040.4230.424Yr
0.94510.842–0.07–0.47–0.574–0.544–0.249–0.2540.5790.7850.5810.376HA

10.9450.8480.114–0.377–0.391–0.384–0.319– 0.270.510.7230.4940.194σc
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D) Step 4: Genetic operators and their rates are determined at this step. In the present study, 
all genetic operators were considered according to Ferreira’s suggestion and other re-
searchers (Ferreira, 2001; Teodorescu & Sherwood, 2008; Güllü, 2012; Keshavarz & 
Mehramiri, 2015). To determine the operators’ rate, Ferreira proposed values, which are 
suitable for most engineering issues (Ferreira, 2001; Ferreira, 2006). The research has 
shown that the values proposed by Ferreira are suitable for the present study. Table 4 
presents the rate of genetic operators for BC, and fragmentation limitations, fly rock, 
and back break.

TABLE 4

Genetic operators’ rate of BC function and limitations

Value
ParameterType of 

setting BBFLFrBC
RMSERMSERMSERMSEFitness function

Basic 
settings

30303030Number of chromosomes
9000900090009000Number of generations

88810Head size
3334Number of genes

AdditionAdditionAdditionAdditionLinking function
0.001380.001380.001380.00138Mutation rate

Genetic 
operators

0.005460.005460.005460.00546Inversion rate
0.005460.005460.005460.00546IS transposition rate
0.005460.005460.005460.00546RIS transposition rate
0.002770.002770.002770.00277Gene transposition rate
0.002770.002770.002770.00277One-point recombination rate
0.002770.002770.002770.00277Two-point recombination rate
0.002770.002770.002770.00277Gene recombination rate

E) Step 5: A linking function is required to connect the genes. The four basic functions of 
addition, multiplication, subtraction, and division are the most common linking func-
tions in this regard. In the present research, the addition function was used for better 
performance. In BC function, the superior chromosome has four genes, and each gene 
represents a sub-ET (see Fig. 1). The connection of these four sub-ETs by the addition 
function forms a large tree. Equations related to each gene can be extracted as Equa-
tions 4-7. Finally, GEP equation for BC prediction can be expressed as Equation 8:

 
Sub ET H N HA c B c  (4)

 

DSub ET D H N
D O

 (5)

 
Sub ET S D B AN B  (6)
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 Sub ET S H  (7)

 BC Sub ET Sub ET Sub ET Sub ET  (8)

In addition, using the GeneXproTools software and following the above steps, Equations 9-11 
were used to obtain fragmentation, fly rock, and back break, respectively:

 

D
AN

Fr
H B HA B N

H c

 (9)

 

c H

FL c c S

AN B c S AN

 (10)

 

B N H
BB AN c B HA c  (11)

Fig. 1. The tree structure related to each gene in the GEP model for predicting BC
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Regarding the models presented for BC function and constraint functions of fragmentation, 
fly rock, back break, the values of the decision variables (AN´, N´, H´, D´, B´, S´, HA´, and σc´) 
are normal numbers between zero and one, and the outputs represent a natural value by apply-
ing the coefficients and the entered integer. In order to simplify the process and to enter natural 
numbers, the following equations were used instead of decision variables (AN´, N´, H´, D´, B´, 
S´, HA´, and σc´):

 
ANAN  (12)

 
NN  (13)

 
HH  (14)

 
DD  (15)

 
SS  (16)

 
HAHA  (17)

 
BB  (18)

 
cc  (19)

4.2. Modeling with multivariate regression

Multivariate regression is a statistical method, which is used to find out the relationship 
between dependent and independent variables, as well as for data analysis in modeling. It al-
lows predicting the dependent variable from the independent variables and their relationship 
(Jakubowski & Tajduś, 2014; Enayatollahi et al., 2014; Esmaeili et al., 2014; Jakubowski et al., 
2017). Given 146 blastings recorded in the studied six limestone mines, 80% of the data were 
utilized for modeling while the other 20% were randomly used to test the model. Regarding the 
constraints of fragmentation, fly rock, and back break, LMR models were constructed in the 
form of Equations 20-23 using the SPSS 24 software and the Forward method to predict BC:

 BC S AN D T  (20)

 Fr D S AN  (21)

 FL T S D  (22)

 BB AN T D S  (23)
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In addition to linear model, polynomial, power, exponential, and logarithmic nonlinear 
models were also processed with these data. Considering the higher R2 of logarithmic model 
comparing to other nonlinear models, this model was used for predicting BC and other constraints 
as Equations 24-27:

 
BC

S N H
 (24)

 Fr H S  (25)

 
FL

H
 (26)

 

NBB  (27)

5. Comparison of BC prediction models

Comparing the results with each other and with actual data is the basis for evaluating the 
performance of models in the present study (Majdi &Rezaei, 2013). For this purpose, the statis-
tical indicators of RMSE, decision coefficient (R2) and variance account for (VAF) were used. 
In addition, a newly proposed engineering index, namely a10-index, has been used to assess the 
reliability of the developed models (Hasanipanah et al., 2019; Duan et al., 2020):

 
ma index
M

 (28)

Where, M is the number of dataset sample, and m10 is the number of samples along with a value 
of experimental rate value/estimated value between of 0.90 and 1.10. It is worth noting that, for 
a complete predictive approach, a10-index values were considered to be unity.

Based on the training and test data, the performance evaluation indicators were calculated 
for the proposed models and the results are presented in Table 5.

TABLE 5

Performance indicators for three models

Testing stageTraining stage
Model

a10-IndexVAF (%)RMSER2a10-IndexVAF (%)RMSER2

0.82292.0211610.8550.69990.5812100.885LMR
0.75991.5910980.9310.93198.0210890.913NLMR
0.79393.2910880.9330.89694.089610.943GEP

Figure 2 demonstrates the conformity of the results of LMR and NLMR models and GEP 
with the actual data. As observed, the degree of conformity of GEP with actual data, and its ac-
curacy are significantly greater than those of LMR and NLMR models.
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Fig. 2. Comparing the predicted cost of the three models with the actual cost

6. Sensitivity analysis

Using the sensitivity analysis method (relevancy factor (RF) method in this research), the 
relative effect of input parameters on BC function and the developed GEP model can be deter-
mined by actual values and Equation 29 (Sebastian et al., 1985; Saltelli et al., 2008):

 

n
k i k ii

k
n n

k i k ii i

P P
r P

P P
 (29)

Where, Pk,i represents the i-th value of the k-th input parameter, P–k indicates the mean value of 
the k-th input parameter, μi shows the i-th value of the output parameter, μ– depicts the mean value 
of the output parameter, and n is the number of input variables. Figure 3 shows the results of the 
sensitivity analysis of the GEP model, using Equation 28. As illustrated, the spacing and ANFO 
values have the greatest and least effect on the objective function (BC), respectively.

7. Optimization with PSO algorithm

The process of PSO algorithm is according to Figure 4. The inertia coefficient and its adjust-
ment rate, personal learning rate, and collective learning rate are considered as the parameters 
of PSO algorithm. Particle size based on the number of samples used in the study was 146, and 
there were eight decision variables including ANFO, hole length, hole diameter, number of holes, 
hardness, uniaxial compressive strength of the rock, burden, and spacing (Shi & Eberhart, 1998; 
Jiang et al., 2007; Abad et al., 2016; Armaghani et al., 2016; Hasanipanah et al., 2016b; Arma-
ghani et al., 2017b). The optimal result was obtained when all these parameters were selected 
as shown in Table 6. 
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Fig. 3. S ensitivity analysis of BC with respect to input variables

Fig. 4. Optimization process using the PSO algorithm  
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The proposed model was run with a number of different iterations including 200, 500, 1000, 
2000 and even higher. Based on the obtained results, the value of the target function remained 
constant after the tenth iteration. Figure 5 denotes the lowest value obtained for BC function from 
the beginning of the program implementation to the repetition number inserted on the horizontal 
axis. Table 7 suggests the parameters of the blasting model using the PSO method, in which the 
best value for BC function is 6072 Rials/ton.

TABLE 7

The parameters of pattern optimization using the PSO algorithm

Optimized valueUnitParameterType
9634
76
398
8.8
2.8
3.4
3

530

kg
mm

–
m
m
m

Mosh
Kg/m²

AN
D
N
H
B
S

HA
σcʹ

Suggested pattern

37.8
119.86

5

cm
m
m

Fr
FL
BB

Constraints

6072Rials/tonBCBlasting cost

8. Results and Discussion

As shown in Table 5, the R2 value was obtained as 0.855, 0.931, and 0.933 for the LMR 
and NLMR and GEP models, Also, according to this table, for the three models, the VAF values 
were calculated as 92.02, 91.59 and 93.29%, respectively, and the a10-index values as 0.822, 
0.759 and 0.792, respectively. The RMSE values for these three models were obtained as 1161, 
1098, and 1088, respectively. Comparison of the values obtained for the above statistical indica-
tors shows the superiority of the GEP model over other models. However, during the extraction 
process in these mines, the average blasting cost, fragmentation, fly rock, and back break were 
13468 Rials/ton, 36 cm, 97 m, and 3.4 m, respectively. Among the 146 blast models, this research 

TABLE 6

Controllable parameters of the PSO algorithm used in this research

ValueSymbolParameter
200MaxItMaximum number of iterations
146NpopNumber of particles
8NvarNumber of input variables
1W Inertia coeffi  cient

0.99WdampInertia coeffi  cient  adjustment factor
2C1 Personal learning rate
2C2 Collective learning rate
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has the lowest BC of 7157 Rials/ton with fragmentation 40 cm, fly rock 110 m, and back break 
5 m. Table 8 shows comparing the values obtained from the GEP-PSO method with the mean 
and minimum actual values.

According to Tables 7 and 8 and based on the optimization performed by the PSO algo-
rithm, the pattern suggested by this algorithm indicates a 15.1% reduction in BC from 7157 to 
6072 Rials/ton. A 9% increase in fly rock compared to a 5.5% reduction in fragmentation from 
the blasting, which is regarded as the most important objective of a blasting, is negligible along 
with a 15.5% reduction in BC. Finally, comparing the results obtained for BB, FL, Fr, and BC 
in Table 8 shows the satisfactory results of the GEP-PSO model.

TABLE 8

 Comparing the values obtained from the GEP-PSO method with the mean and minimum actual values

BBFLFrBC

Model
Diff erence

with
minimum
data (%)

Value
(Rials
/ton)

Diff erence
with

minimum
data (%)

Value
(Rials
/ton)

Diff erence
with

minimum
data (%)

Value
(Rials
/ton)

Diff erence
with

minimum
data (%)

Value
(Rials
/ton)

059119.86–5.537.8–15.26072GEP-PSO
–323.4–11.897–103688.213468Average of data
05011004007157Minimum of data

9. Conclusions

Comparing to LMR and NLMR, the GEP model provided higher R2 (0.933) and VAF (93.29), 
lower RMSE (1088), and an acceptable a10-index value (0.793). Furthermore, it showed higher 
compatibility with the actual BC.

According to the sensitivity analysis carried out using the RF method on BC in the GEP 
model, the spacing and ANFO values had the maximum and minimum effect on the objective 

Fig. 5. The lowest value obtained for BC function resulted from GEP after 200 repetitions
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function, respectively. A positive correlation was observed between the number of holes, hard-
ness, and uniaxial compressive strength of the rock with BC function, while there was a negative 
correlation between ANFO, hole length, hole diameter, burden, and spacing.

Comparing the results obtained for BC, fragmentation, fly rock, and back break using the 
GEP-PSO model and the lowest BC among the 146 research data (7157 Rials/ton), which resulted 
in a 15.2% reduction in BC and the optimal control of the devastating environmental consequences 
of blasting, indicated the suitability of this model for BC prediction and optimization.
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