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Multiplex PCR assay for simultaneous identification of slow rust 
resistance genes Lr34, Lr46 and Lr68 in wheat (Triticum aestivum L.) 
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Abstract
Currently, production of wheat cultivars (Triticum aestivum L.) that show durable field 
resistance against fungal pathogens is a priority of many breeding programs. This type of 
resistance involves race-nonspecific mechanisms and can be identified at adult-plant stag-
es. Until now, seven genes (Lr34/Yr18, Lr46/Yr29, Lr67/Yr46, Lr68, Lr75, Lr77 and Lr78) 
conferring durable types of resistance against multiple fungal pathogens have been identi-
fied in the wheat gene pool. In this study we showed a multiplex Polymerase Chain Reac-
tion (multiplex PCR) assay, which was developed for detection of slow rusting resistance 
genes Lr34, Lr46, Lr68, using molecular markers: csLV34, Xwmc44 and csGS, respectively. 
Identification of molecular markers was performed on 40 selected wheat genotypes which 
are the sources of slow rusting genes according to literature reports. Multiplex PCR is an 
important tool to reduce the time and cost of analysis. This multiplex PCR protocol can be 
applicable for genotyping processes and marker assisted resistance breeding of wheat.
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Introduction 

Bread wheat (Triticum aestivum L.) is currently one of 
the most significant cereal foods in the world, not only 
in terms of food production, but most of all for pro-
viding the total amount of food calories and protein 
in human diet (Gupta et al. 2008). Diseases and pests 
cause at least 10% of global plant production losses 
(Chakraborty and Newton 2011). The three fungal 
pathogens: Puccinia triticina, P. striiformis f. sp. tritici, 
and P. graminis f. sp. tritici, causing rust diseases of 
wheat are the most important biotic constraints to 
wheat production. Yield losses caused by infection of 
P. triticina may reach 40% in susceptible cultivars, and 
are the result of lower kernel weight and a decreased 
number of kernels per head (Knott 1989). The aim of 
modern wheat resistance breeding is to obtain suffi-
cient resistance to all major diseases to reduce the use 

of plant protection products. Breeding for multiple 
resistance to disease, which can be achieved by in-
troducing slow rusting genes to plants, is a promising 
strategy.

Presently, more than 80 leaf  rust  resistance  (Lr) 
genes have been identified and described in wheat and 
its derivatives (McIntosh et al. 2017). Gene pyramid-
ing can increase the durability of plant resistance 
to pathogens. New breeds of pathogens are rapidly 
emerging, and resistance conferred by racially specific 
genes becomes ineffective. Therefore, new solutions in 
plant breeding are desirable and one of them is the in-
troduction of slow rusting genes into varieties (Singh 
et al. 2000). Up to now, seven genes conferring a partial 
type of resistance in adult plants have been identified 
in the wheat gene pool. These genes were named Lr34 
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detection of gene locus in wheat varieties in many 
countries of the world (Singh et al. 2007; Kolmer et al. 
2008; McCallum et al. 2008; Priyamvada et al. 2009), 
but this marker is not diagnostic for some wheat 
genotypes derived from the Canadian line ‘RL4137’ 
(McCallum et al. 2008; Lagudah et al. 2009). 

The second gene involved in slow rusting, Lr46 
was identified in the cultivar ‘Pavon’ and located on 
chromosome 1B. To locate the gene, crosses were 
carried out with a monosomic series of adult plant 
leaf rust susceptible cultivar ‘Lal Bahadur’ (Singh 
et al. 1998). The effect of expression of Lr46 gene is 
smaller than that of Lr34 and it also does not pro-
vide complete immunity to plants. The presence 
of the gene is revealed in infected adult plants as 
a longer disease latency period than the control with-
out this gene (Martinez et al. 2001). Lagudah (2011) 
showed that Lr46 is more effective in a cooler envi-
ronment than in higher temperature environments. 
To date, several markers have been developed to 
identify the Lr46 gene in wheat: Xbarc80 (Lowe et al. 
2011), Xgwm259 (Roder 1998), Xwmc44 (Somers 
and Isaac 2004) and csLV46G22 (Lagudah, perso-
nal communication 2020). Lr46 was mapped distal 
to the microsatellite locus Xwmc44, approximately 
5–15 cM, and proximal to Xgwm259, approximately 
20 cM (https://maswheat.ucdavis.edu/protocols/Lr46). 
Whereas, microsatellite locus Xbarc80 maps 10–11 cM 
distal to Xgwm259 (Lowe et al. 2011). The CAPS 
(Cleaved Amplified Polymorphic Sequence) marker 
csLV46G22 is the closest linked to Lr46 gene (Lillemo 
et al. 2013; Ren et al. 2017; Cobo et al. 2019), among 
all the above markers. 

Herrera-Foessel et al. (2012) identified the follow-
ing slow rusting adult plant resistance (APR) gene, 
Lr68 in wheat cultivar ‘Parula’. The gene was mapped to 
a specific gene-rich area on chromosome 7BL between 
the locus Psy1-1 (yellow endosperm) and molecular 
marker xgwm146. The origin of the gene is likely to be 
Brazilian wheat cultivar ‘Frontana’, which is known for 
its APR to leaf rust due to the presence of gene Lr34 and 
2–3 additional unidentified slow rusting genes (Singh 
and Rajaram 1992). Lillemo et al. (2011) revealed that 
the effect of Lr68 at sites in Uruguay and Argentina was 
stronger than Lr34. Herrera-Foessel et al. (2012) re-
commended two molecular markers for marker-assist-
ed selection of Lr68: co-dominant marker cs7BLNLRR 
positioned at 0.8 cM from the gene and the domi-
nant marker csGs at 1.2 cM from the gene. The csGS 
marker was used in a bread wheat breeding program of 
CIMMYT for diagnosing L68 in the crossing block. 

Pinto da Silva et al. (2018) reported that pyramid-
ing of slow rusting genes in different combinations 
in one genotype confers a high or sustainable level of 
durable resistance to P. triticina. Singh et al. (2014) 

(=Yr18/Sr57/Pm18) (Singh 1992a), Lr46 (=Yr29/Sr58/ 
Pm39) (Singh et al. 1998), Lr67 (=Yr46/Sr55/Pm46) 
(Dyck and Samborski 1979), Lr68 (Herrera-Foessel 
et al. 2012); Lr75 (Singla et al. 2017), Lr77 (Kolmer et al. 
2018a) and Lr78 (Kolmer et al. 2018b). Slow rusting 
genes provide durable resistance against all races of 
various pathogens  including Puccinia triticina, P. stri-
formis f. sp. tritici, P. graminis f. sp. tritici, Blumeria 
graminis f. sp. tritici that cause leaf rust, stripe rust 
and powdery mildew, respectively. Slow rusting is 
a type of resistance characterized by durable resistant 
of adult plants which is not associated with a mecha-
nism of hypersensitivity reaction as in the case of race 
specific genes (Bariana et al. 2001). The mechanism 
of slow rusting genes is still not well understood. It 
has been shown that Lr34 and Lr67 encode an ATP- 
-binding cassette transporter and hexose transport-
er, respectively (Krattinger et al. 2009; Moore et al. 
2015; Dodds and Lagudah 2016). Slow rusting genes 
ensure plant protection for a long period of grow-
ing in an environment favorable to the development 
of the disease (Johnson and Law 1975). The durable 
resistance, also known as racially nonspecific immu-
nity, results from an additive effect of minor genes, 
usually polygenic. Cultivars possessing slow rust-
ing genes show almost the same level of resistance 
over space and time and the same level of reaction 
against different races. For example, the ‘Frontana’ 
variety, which was registered about half a century 
ago, still has effective rust resistance in almost all 
parts of the world (Khan et al. 2013). It has been 
shown that retarded disease progress in plants results 
from a longer latent period, smaller pustule size, 
lower receptivity, and slower spore production than 
a susceptible check (Ohm and Shaner 1976; Wil-
coxson 1981; Das et al. 1993). Singh et al. (2000b) 
estimated that dozens of slow rusting genes for leaf 
rust resistance are present in CIMMYT bread wheat 
germplasm.

Gene Lr34 was first described in cultivar ‘Fron-
tana’ by Dyck and Samborski (1966) on the short 
arm of chromosome 7D. The level of immunity as-
sociated with the presence of the Lr34 gene in plants 
is best manifested at low average daily temperatures 
(0–20°C) under field conditions, which allows a sig-
nificant reduction in disease progression (McIntosh 
et al. 1995). The Lr34 gene is the most frequently used 
disease resistance gene in wheat breeding because 
of its durability and broadspectrum specificity. The 
Lr34res increase the latency period, the percentage of 
early aborted colonies not associated with cell necro-
sis and decrease colony size (Rubiales and Niks 1995). 
Lagudah et al. (2006) developed a molecular genetic 
marker csLV34 that maps 0.4 cM from Lr34. The se-
quence-tagged-site (STS) marker is widely used for 
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observed that the presence of single APR genes do 
not confer adequate resistance under high disease 
pressure, but combinations of four or five such genes 
usually result in “near immunity”. For this reason, 
the task of resistance breeding wheat should be to 
look for sources (genotypes) having more than one 
slow rust gene. The traditional PCR method which 
can detect one gene in one reaction is time consuming 
and expensive. An alternative method may be to use 
the multiplex Polymerase Chain Reaction (multiplex 
PCR). Multiplex PCR is a variant of PCR in which two 
or more loci are simultaneously amplified in one reac-
tion. Multiplex PCR is used to increase the amount of 
information generated in one assay, and to reduce con-
sumables and labor costs (Henegariu et al. 1997). The 
method was first used in 1988 (Chamberlain et al. 1988) 
and since then has been successfully applied in many 
areas of DNA testing, including analyses of deletions 
(Henegariu et al. 1994), mutations (Shuber et al. 1993) 
and polymorphisms (Mutirangura et al. 1993). The 
studies reported that the result of multiplex analysis is 
influenced by some factors (e.g., primer concentration, 
cycling profile) (Chamberlain et al. 1990; Vandenvelde 
et al. 1990). Also, there are specific problems associ-
ated with multiplex PCR, including uneven or lack of 
amplification of some loci and difficulties in reproduc-
ing some results (Henegariu et al. 1997). Moreover, 
the development of multiplex PCR assays on plants is 
difficult due to the large genome sizes and polyploidy. 
Bread wheat, one of the world’s most important cereal 
crops (Donini et al. 1998), is an allohexaploid with 
a large and complex genome, comprised of paralogous 
gene families and about 75% repetitive DNA (Bennett 
and Smith 1975). For this plant, extensive optimiza-
tion is required for the multiplex PCR reaction. There-
fore, the aim of this study was to develop and optimize 
a multiplex PCR assay for the simultaneous identifica-
tion of three slow rust genes (Lr34, Lr46 and Lr68) and 
use a method to identify these genes in 40 genotypes 
which according to the literature are carriers of various 
APR genes.

Materials and Methods

Plant material

Plant material consisted of 40 spring wheat T. aesti-
vum L. cultivars (Table 1) which had been reported as 
sources of slow-rusting genes and three reference ma-
terials for Lr34, Lr46 and Lr68 genes [‘Lr34’ (GSTR 
433), ‘Pavon F76’ (PI 520003) and ‘Parula’, respective-
ly], derived from the National Small Grains Collec-
tion, the Agriculture Research Station in Aberdeen. 
Seeds were germinated on Petri dishes and DNA was 
extracted from the leaf tissue of 10-day-old seedlings 
with the use of GeneMATRIX Plant & Fungi DNA Pu-
rification Kit (EURx Ltd., Poland). DNA concentra-
tion and quality were checked using a DeNovix spec-
trophotometer (DeNovix Inc., USA) and the samples 
were diluted with Tris buffer (EURx Ltd., Poland) to 
a concentration of 50 ng · μl–1. 

Development of multiplex PCR and  
identification of Lr34, Lr46 and Lr68 genes

The following molecular markers were used to simul-
taneously identify the Lr34, Lr46 and Lr68 genes: 
csLV34, Xwmc44 and csGs, respectively. In this exper-
iment, we could not use the closer linked csLV46G22 
marker for the Lr46 gene, because the methodology 
of using the marker makes it impossible to combine 
it with the other selected markers (Lagudah, personal 
communication). Primer sequences, size of expected 
product and recommended annealing temperature 
for each molecular marker are presented in Table 2.

In this study, we attempted to create three differ-
ent muliplex PCR variants for the simultaneous iden-
tification of the Lr34 + Lr46 + Lr68 (I variant), Lr46 + 
+ Lr68 (II variant) and Lr34 + Lr68 genes (III variant). 
Skowrońska et al. (2019) developed the multiplex 
PCR reaction for the Lr34 + Lr46 variant. Various op-
tions of mix composition and PCR profile of multiplex 
PCR were tested. The final 27 μl mix composition of 

Markers Primer sequences Size of products 
Annealing  

temperatures* 
Sources

csLV34
csLV34F 5’-GTTGGTTAAGACTGGTGATGG-3’;

csLV34R 5’- TGCTTGCTATTGCTGAATAGT-3’

150 bp (+)

229 bp (–)
55°C

Lagudah  
et al. 2006

Xwmc44
WMC44F 5’-GGTCTTCTGGGCTTTGATCCTG-3’; 

WMC44R 5’-GTTGCTAGGGACCCGTAGTGG-3’ 
242 bp (+) 61°C

Suenaga  
et al. 2003

csGs
csGS-F 5’-AAGATTGTTCACAGATCCATGTCA-3;’

csGS-R 5-’GAGTATTCCGGCTCAAAAAGG-3’
385 bp (+) 60°C

Herrera-Foessel  
et al. 2012

(+) – size of product indicative of the presence of the gene, (–) – size of band in susceptible genotypes
*recommended primer annealing temperature according to literature references

Table 1. Primer sequences, size of expected product and recommended annealing temperature for each molecular marker which was 
used for multiplex PCR
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multiplex PCR volume in variant I consisted of the fol-
lowing: 12.5 μl 2 × PCR TaqNovaHs PCR Master Mix 
(Blirt), which included 2 × concentrated PCR reaction 
buffer, 4 mM MgCl2; 1.6 mM dNTPs mix (0.4 mM of 
each dNTP); 0.8 μL csLv34 forward primer; 0.8 μl cs-
Lv34 reverse primer; 1.2 μl Xwmc44 forward primer; 
1.2 μL Xwmc44 reverse primer, 1 μl csGs forward prim-
er; 1 μl csGs reverse primer (the concentration for each 
primer was 100 μM); 2 μl DNA template (50 ng · μl–1) 
and 6.5 μl PCR grade water. For the II variant, the to-
tal volume of the multiplex PCR mix composition was 
25,4 μl and consisted of 12.5 μl 2 × PCR TaqNovaHs 
PCR Master Mix (Blirt), 1.2 μl Xwmc44 forward prim-
er; 1.2 μl Xwmc44 reverse primer, 1 μl csGs forward 
primer; 1 μl csGs reverse primer, 2 μl DNA template 
(50 ng ·  μl–1) and 6.5 μl PCR grade water. For the last, 
the third variant the PCR multiplex mixture with 
a total volume of 24,3 μl contained 12.5 μl 2 × PCR 
TaqNovaHs PCR Master Mix (Blirt), 0.8 μl csLV34 
forward primer; 0.8 μl csLV34 reverse primer, 1 μl csGs 
forward primer; 1 μl csGs reverse primer, 2 μl DNA 
template (50 ng · μl–1) and 6.5 μl PCR grade water. The 
PCR profile was modified with reference to standard 
protocol and various temperatures recommended for 
primer annealing were tested (Table 2). The final PCR 
reaction consisted of initial denaturation at 94°C for 
5 min, followed by 40 cycles (denaturation, 94°C for 
45 s; primer annealing, 60°C for 30 s; elongation, 72°C 
for 1 min), followed by the final extension for 7 min 
at 72°C and and storage at 4°C. The multiplex PCR 
was carried out using Labcycler thermal cyclers (Sen-
soQuest GmbH). Amplifications were prepared by 
adding 1 μl Midori Green Direct (NIPPON Genetics 
EUROPE) to each tube. The reaction products were 
separated using 2% agarose (SIGMA) gel in 1 × TBE 
buffer (BioShop) at 100 V for 2 h. 

In order to simultaneously identify all genes in 40 
wheat varieties originating from the National Small 
Grain Collection, the first variant and the methodol-
ogy described above were used. Cooling during elec-
trophoretic separation of products was used to obtain 
clearer results.

Results and Discussion

Breeding programs have successfully used molecular 
markers to assist in the development of varieties with 
leaf, yellow and stripe rust resistance genes (Alemu 
2019). Numerous genes conferring disease resistance 
to wheat have been identified and used in breeding, 
but many of these genes have lost their effectiveness 
due to the emergence of new virulent breeds (Singh 
et al. 2000). Unfortunately, it takes several years to in-
troduce new resistance genes that are effective for new 

breeds of the pathogen, mainly due to the long process 
involved in the establishment of pure breeding wheat 
lines (Alemu 2019). The solution may be to introduce 
genes that give durable tolerance to many pathogens 
to varieties, which, in combination with racial-specif-
ic genes, can help minimize the use of fungicides in 
wheat cultivation.

In this experiment, we developed a multiplex PCR 
method for the simultaneous identification of various 
combinations of slow rust genes: Lr34 + Lr46 + Lr68 
(variant I), Lr46 + Lr68 (variant II) and Lr34 + Lr68 
(variant III). Optimization of the method consisted of 
selecting the appropriate primer volume for all genes 
in each variant and adjusting the appropriate primer 
annealing temperature in order to obtain uniformly 
intense bands on the gel. For this purpose, a smaller 
volume of the csLV34 primer was used for each sam-
ple than the others, because the primer showed very 
distinct bands and dominated the others. In addition, 
the volume of the Xwmc44 primer in each sample and 
variant was increased because the bands on the gel 
were not sufficiently visible when the same volume of 
all primers was used. There was no effect of changes in 
the csGS primer volume for the Lr68 gene, at different 
volumes. The products of all markers were equally vis-
ible and readable.

In variant I, in the reference variety ‘Lr34’, a 145 bp 
product specific for the Lr34 gene and a 242 bp pro-
duct associated with the Lr46 gene were obtained. In 
our study, the size of the Lr34 gene-specific product 
differed from the size of 150 bp reported by Lagudah 
et al. (2006). Differences in the size of products may 
result from the size of the DNA ladder used, which was 
also noted by Skowronska et al. (2019). In ‘Pavon 76’, 
two products were identified: a 242 bp band, indicat-
ing the presence of the Lr46 gene, and 229 bp band 
indicating the absence of the Lr34 gene. In the ‘Parula’ 
variety, which is the reference material for the Lr68 
gene, a specific product of the 385 bp csGS marker and 
a 145 bp product indicating the presence of the Lr34 
gene were identified. In variant II (Lr46 + Lr68) and 
variant III (Lr34 + Lr68) the above-described results 
have been confirmed, which indicates that all devel-
oped multiplex PCR variants can be used in the selec-
tion of materials in the wheat breeding process.

Variant I of the multiplex PCR method that we de-
veloped allowed for the identification of the Lr34, Lr46 
and Lr68 genes in wheat materials that are reported as 
having slow rust genes. They are characterized by du-
rable resistance, indicating the presence of slow rust 
genes. For example, the ‘Glenlea’ variety was registered 
in 1972 and was the first major variety bearing the Lr34 
gene in western Canada (Evans et al. 1972; Dyck et al. 
1985). In this work, all three slow rust genes (Lr34 + 
+ Lr46 + Lr68) were identified in the ‘Glenlea’ variety. 
In addition, some varieties possessing ‘Glenlea’ in their 
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Fig. 1. Electrophorogram showing the presence of molecular markers csLV34 (for Lr34), Xwmc44 (for Lr46) and csGS (for Lr68) in wheat 
varieties. M – GeneRuler 50 bp DNA ladder (Nippon Genetic Europe, Germany)

Fig. 2. Electrophorogram showing the presence of molecular markers csLV34 (for Lr34), Xwmc44 (for Lr46) and csGS (for Lr68) in wheat 
varieties. M – GeneRuler 50 bp DNA ladder (Nippon Genetic Europe, Germany), 1–40 – wheat varieties 

pedigree also carry various combinations of genes: 
‘A99AR’ and ‘363-11’ (Lr34 + L46 + Lr68), ‘7531-
-V3D’ (Lr34 + Lr68), ‘7531-AG5A’ (Lr34 + Lr46), 
‘7536K-51A4’ (Lr34), ‘P8802-C1*3A2C16’, ‘P8802-
-C1*3A2A2U’ and ‘7531-AP5A’ (Lr46) (Table 2, 
Fig. 2). ‘Lerma Rojo’ is one of the semi dwarf varie-
ties developed at CIMMYT during the green revolu-
tion and contributed to yield breakthroughs in India, 

Pakistan, Turkey and other parts of the world. ‘Lerma 
Rojo’ is characterized by a long life span due to its 
resistance to pathogens (Borlauge 1968). We identi-
fied two slow rust genes in the ‘Lerma Rojo’ variety: 
Lr34 and Lr46 (Table 2, Fig. 2). The Oxley varie-
ty, whose genealogy includes ‘Lerma Rojo’, also has 
the Lr34 and Lr46 genes (Table 2, Fig. 2). The next 
variety in which the three slow rust genes have been 
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identified is the Indian variety ‘NP 846’, also known 
as ‘New Pusa 846’. So far, NP 846 was known to have 
gene Lr34 (Kaur et al. 2000; Kolmer et al. 2008). 
In summary, the Lr34 gene was identified in 13 of 
the 40 varieties tested, the Lr46 gene in 17 varieties, 
and the Lr68 gene in 12 varieties. In four varieties all 
three tested genes were identified, and in eight varie-
ties the presence of two tested genes in one variety 
was detected. In 14 varieties none of the slow rust 
genes were identified (Table 2, Fig. 2). Altieri et al. 
(2008) determined the number and characteriza-
tion of resistance genes to wheat leaf rust present in 
‘Buck Manantial’, an Argentinian cultivar that shows 
durable resistance. They also used closely linked 
marker csLV34 to Lr34 to detect the presence of this 
resistance gene in ‘Buck Manantial’ as hypothesized 
by Dyck (1989). As a result of the study conducted 
by the authors, the presence of the gene could not 
be confirmed in Buck Manantial based on the allele 
detected by this molecular marker. In our study, we 
also did not identify any slow rust gene in the ‘Buck 
Manantial’ variety, although, according to other 
sources, the cultivar has the Lr34 gene (McIntosh 
et al. 1995; McIntosh et al. 2008; McCallum 2012) 
(Table 2, Fig. 2).

In the literature one can find many examples of 
the development the multiplex PCR method to iden-
tify resistance genes. Leśniowska-Nowak et al. (2013) 
developed a multiplex PCR method to identify two 
resistance genes for leaf rust Lr9 and Lr19. Other 
race specific resistance genes for P. triticina, Lr29 
and Lr37 were identified simultaneously by Sumik-
ova and Hanzalova (2010). Gogół et al. (2015) used 
the multiplex PCR method to simultaneously iden-
tify genes of resistance to two different diseases: Lr21 
(leaf rust) and Pm4b (powdery mildew). Tomkowiak 
et al. (2019a) identified the Pm2, Pm3a, Pm4b, 
and Pm6 genes and developed multiplex PCR reaction 
conditions for simultaneous identification of Pm2 
and Pm4b genes. The multiplex PCR conditions 
have been developed for the simultaneous identifica-
tion of the Lr11 + Lr16 and Lr11 + Lr26 gene pairs 
by Tomkowiak et al. (2019b). The method of simul-
taneous identification for slow rusting genes Lr34 
and Lr46 was developed by Skowrońska et al. (2019). 
The authors also used a smaller volume of the csLv34 
primer and a larger volume of the Xwmc44 primer, 
and their method may complement the results of the 
above work.

Moreover, there are many examples of the use of 
multiplex to identify other genes in wheat. Zhang et 
al. (2008) developed two multiplex PCR assays target-
ing improvement of bread-making and noodle quali-
ties in common wheat that validated using 70 culti-
vars and advanced lines from Chinese autumn-sown 

wheat regions. Wang et al. (2010) identified genes at 
Glu-A3 locus, developed the STS markers, and estab-
lished multiplex PCR with the STS markers for Glu-A3 
alleles. The multiplex PCR system was validated on 
141 CIMMYT wheat varieties and advanced lines 
with different Glu-A3 alleles, confirming that they 
can be efficiently used in marker-assisted breeding. 
Moczulski and Salmanowicz (2003) used the multi-
plex PCR method to identify the allele composition of 
HMW glutenin complex Glu-1 loci (Glu-A1, Glu-B1 
and Glu-D1) in common wheat genotypes. Compared 
to conventional PCR techniques that allow the iden-
tification of single resistance genes, multiplex PCR is 
a method that can simultaneously detect multiple re-
sistance genes in one system with high sensitivity and 
specificity. Consequently, multiplex PCR is a more 
appropriate and less time-consuming method of de-
tecting several resistance genes (Ballabio et al. 1990). 
In addition, the multiplex PCR method provides the 
basis for the future development of a quantitative and 
more sensitive PCR method using real-time PCR tech-
nology (Côté et al. 2004). The multiplex PCR method 
is a convenient tool for selecting materials in plant 
breeding. The method presented in this article can be 
successfully used to simultaneously identify the L34, 
Lr46 and Lr68 genes. Moreover, additional variants of 
the method allowing for the simultaneous identifica-
tion of the Lr46 and Lr68 genes as well as the Lr34 and 
Lr68 genes can also be a helpful tool in plant breeding. 
Varieties containing slow rust type genes, identified in 
the test using the multiplex PCR method can provide 
APR resistance genes for breeding wheat or other ce-
real species.

Conclusions

In summary, a multiplex PCR method was developed 
for the simultaneous identification of different com-
binations of slow rusting genes: Lr34 + L46 + Lr68, 
Lr34 + Lr68 and Lr46 + Lr68. This method can be ap-
plicable for the genotyping process and marker as-
sisted selection for breeding programs of wheat.
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