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Abstract

The paper examines the usage of Convolutional Bidirectional Recurrent Neural Network (CBRNN) for
a problem of quality measurement in a music content. The key contribution in this approach, compared
to the existing research, is that the examined model is evaluated in terms of detecting acoustic anomalies
without the requirement to provide a reference (clean) signal. Since real music content may include some
modes of instrumental sounds, speech and singing voice or different audio effects, it is more complex to
analyze than clean speech or artificial signals, especially without a comparison to the known reference
content. The presented results might be treated as a proof of concept, since some specific types of artefacts
are covered in this paper (examples of quantization defect, missing sound, distortion of gain characteristics,
extra noise sound). However, the described model can be easily expanded to detect other impairments or
used as a pre-trained model for other transfer learning processes. To examine the model efficiency several
experiments have been performed and reported in the paper. The raw audio samples were transformed
into Mel-scaled spectrograms and transferred as input to the model, first independently, then along with
additional features (Zero Crossing Rate, Spectral Contrast). According to the obtained results, there is
a significant increase in overall accuracy (by 10.1%), if Spectral Contrast information is provided together
with Mel-scaled spectrograms. The paper examines also the influence of recursive layers on effectiveness of
the artefact classification task.

Keywords: audio data analysis, artefacts detection, convolutional neural networks, recurrent neural networks,
classification model.
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1. Introduction

Digital audio broadcasting services and internet streaming media providers continuously
improve their encoding and delivery methods to minimize processing time and complexity while
maintaining audio quality at the same time. Each modification in the broadcast chain, from content
creation to a particular hardware setup on the end user side may introduce some unexpected
issues to the transferred audio signal. Also, numerous factors of propagation channels and digital
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standards can affect broadcast signals [1]. The traditional method of validating the quality of a real
audio content is to perform subjective listening tests. However, the substantial amount of encoded
contents makes it impractical to perform listening tests for each one of them. Reducing the scope
of subjective tests does not resolve the problem, since the created contents differ significantly to
provide a better custom user experience.

The evaluation of audio quality can be made through intrusive and nonintrusive metrics [2].
The first type of metrics provide audio quality information by comparing a degraded test signal
with its reference (original unprocessed signal). One of the main problems with this technique
can be limited access to the reference file. As the reference signal is usually the input for an
encoder or another processing product, this approach seems to be correct only for a channel-
based content. However, the channel-based approach is not sufficient anymore to encompass an
immersive and interactive experience, primarily because of limited combinations of channels.
Because of that, object and scene-based formats were introduced [3]. This new approach is much
more extensible and efficient, however, the input signal cannot be compared directly to the encoder
output without applying additional metadata and/or rendering the content first. For such cases
non-intrusive (non-reference) metrics can be used which is able to predict audio quality just using
the in-service signal. They can also provide continuous quality monitoring of an audio signal
delivered to the end customer or regression tests for a particular node in an end-to-end broadcast
ecosystem.

Two types of metrics can be used for audio quality assessment: subjective or objective [2].
While subjective metrics are more complex to analyze and more time consuming to prepare,
objective metrics are more difficult to create, as their goal is to reflect the human perception as
much as possible. In general, most methods are based on intrusive metrics and require a com-
parison with the reference signal. This paper examines a Convolutional Bidirectional Recurrent
Neural Network (CBRNN) model as a new objective method which could be used as a step in
automatic audio quality evaluation with no need to provide a reference signal, as it is natural to
human perception — the humans are capable of assessing if there are any impairments in an audio
content, even without a comparison with the reference (clean) signal.

2. The artefacts detection in audio signals — state of the art

In general, an artefact detection task is a part of the audio quality assessment and is performed
by subjective tests where listeners rate the overall quality of a test signal against its reference,
following the standard described in ITU-RBS.1284-2 [4]. Since manual tests are an expensive
and time-consuming process, there was a need to develop some other fully automatic meth-
ods. Currently, the most commonly used objective audio quality predictors, PEAQ (Perceptual
Evaluation of Audio Quality) [5] (or PESQ Perceptual Evaluation of Speech Quality), POLQA
(Perceptual Objective Listening Quality Analysis) [6], PEMO-Q (Perception Model for Quality
Assessment) [7], STOI (Short-Time Objective Intelligibility) [8], VISQOL (Virtual Speech Qual-
ity Objective Listener) [9], SNR (Signal-to-Noise Ratio) [10] require the reference signals and/or
specific types of noise that may degrade audio quality [11]. Existing non-reference solutions
[12] are mainly focused on quality measurements of speech (ANIQUE (Auditory Non-Intrusive
Quality Estimation) [13], HASQI (Hearing Aid Speech Quality Index) [14], POSQE (Perceptual
Output-based Speech Quality Evaluation) [15], SRMR (Standardized Root Mean Square) [16]
and others [17, 18]), synthetic audio signals [19], image [20] or video [19, 21, 22]. To the best
of the authors’ knowledge, there is no recommended non-reference objective method for a real
music quality assessment.
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In the context of this paper artefact detection is the task to find abnormal events in a music
content. This detection task is associated with several issues: first, it is impractical to reconstruct
all possible audio artefacts, as well as collect all possible music tracks. Second, even during
manual listening tests there are some rare cases where a listener is not able to tell if the sound
event should be treated as an artefact or rather as an intended music content, in case no refer-
ence signal is provided. In this paper, the main focus is to classify artefacts clearly detectable
by listening tests (which might be assessed as “very annoying” by unipolar discrete five-grade
scale used for subjective assessment of impairment [4]), and examine what is the effectiveness
of methods used widely for other sound event detection problems (e.g. classification of envi-
ronmental sounds coming from various sources, such as cars, people or buildings [23]). The
problem of environmental sound classification seems to be a little bit different, since the model
in that case is trained to recognize the specific environmental patterns and backgrounds sound,
which is more repetitive and predictable comparing to the music content. In the case of mu-
sic, it seems ineffective to teach the model how the music pattern should look like, but rather
which events should not be present and if they occur in the signal, how they should be classi-
fied. There has been no systematic investigation of convolutional and recurrent neural networks
effectiveness for an artefact detection task in a music content. This paper is a study of this
problem.

2.1. Statement of the problem

The Recommendation ITU-R BS.1284-2 [4] for assessment of impairments of audio signal
specifies 11 categories which can be used for analysing and classifying the kind of artefact in digital
coding or transmission techniques. These also include the typical ones for multichannel audio
(like distortion of spatial image quality or correlation effect — crosstalk). However, in this study,
only mono signals were examined within specific artefacts categories limited to: quantization
defect (associated with insufficient digital resolution), distortion of gain characteristics (changes
in the level or dynamic range of source signals, level jumps), extra sound (spurious sounds not
related to the source material, such as clicks, pops and noise), and missing sound (loss of sound
components of the source material, glitches).

At the high level, the problem of detecting artefact category can be viewed as a multinomial
classification problem, where the classifier function is parametrized by the introduced neural
network.

Formally, we assume that x € R?* is the input spectrogram (where ¢ is the length of the
spectrogram and d is the dimension of each frame, i.e. number of frequency bins in the spectro-
gram) and y € {1,..., k} is the corresponding signal category where k is the number of classes.
Given a training set D = {(x;, y;)}_, of n pairs of the spectrogram and its corresponding label,
the problem of artefacts detection can be formalized as finding a model #: R — {1,...,k}
which produces class predictions for all instances x. The classification model is a probabilistic
classifier which assigns to each instance x and class y a probability estimate P(y | x) of instance x
belonging to class y. We use the general maximum-probability rule to generate class labels [24]:

h(x) =argmax P (y | x) . €))
yeC

We then solve the classification task by generating a classification model based on the supplied
training set and a cost-sensitive classification algorithm.
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3. Materials and methods

The examined model (Fig. 1) is based on convolutional and recurrent neural networks. These
types of networks have become popular, due to their high effectiveness, in a general signal
processing, especially in an acoustics event detection [25, 26, 27]. Comparing to the traditional
neural network, usage of convolutional layers allows to store fewer parameters, because of so-
called sparse interactions, accomplished by making a kernel smaller than the input. This reduces
the memory requirements and improves the model‘s statistical efficiency [28].

Raw audio signals (44.1 kHz, 3 sec. duration)

A 4

Convertion to Mel-scaled spectrograms
(256 Mel bands)

I

| Normalisation |

PRE-PROCESSING

] Conv2D + Max Pooling + Dropout |

!

Bidirectional LSTM |

A

CLASSIFICATION MODEL

I Fully connected layers + Dropout
(decision layer with SoftMax activation)

e sl

Signal classification (output probability)

Fig. 1. A diagram of the examined classification algorithm.

The use of recurrent layers supports modelling sequences, especially popular in many natural
language processing tasks. The recurrence embedded in an intelligent modelling pipeline pro-
vides a way to extend deep learning to sequential data. This allows to reconstruct time domain
dependences, valid for sequential patterns, similarly to a regression analysis.

The model was first trained with Mel-scaled spectrograms, extracted from raw audio samples.
Next, we examined, how the efficiency of the model could be improved depending on the number
of features and the extraction technique.

3.1. Experimental dataset

To the best of the authors’ knowledge, there is no existing official database representing a real
music content with different types of artefacts. We decided to reuse the latest benchmark music
dataset MUSDB18 [29], available upon request. MUSDBI18 is a set of real music tracks which
includes ~10h duration of different genres along with their isolated drums, bass, vocals and others.
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It is provided in a raw uncompressed format with a sampling rate of 44,100 Hz which results
in better audio quality compared to the other existing datasets. For example, GTZAN (2002)
[30] with recording samples at 22,050 Hz contains a significant fraction of corrupted files and
repeated clips [31], the “Million Song Dataset” (2011) [32] acquired with the same sampling rate
22,050 Hz contains audio features and metadata only, whereas FMA (2017) [33] audio samples
are already compressed to MP3 format.

Based on the MUSDB18 dataset, five fully labelled sub-sets were created: one set of clean
signals and four sets corresponding to the artefact categories. Four artefact categories were made
by modifying the original signals, i.e. selected types of distortions were added to the base samples
—see Fig. 2 and description below:

— gain distortion: randomly changing the dynamic range in parts of the signal, each level

jump takes at least 20 ms (Fig. 2b presents an example of gain distortion at timestamp
1 sec. and duration ~250 ms);

— missing sound: samples created by inserting glitches with low-level random noise (up to
—50 dBFS); simulating dropped frames and repeating the last valid frame with a variable
duration in range 20—100 ms (Fig. 2c presents an example with a single missing frame with
duration of 20 ms at timestamp 240 ms);

— quantisation defect: converting to bit depth lower than 16 (Fig. 2d shows an example of
insufficient bit resolution, sample size significantly reduced (to 8 bits));

a) b)

T 8192 -20dB.
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Fig. 2. Example model inputs: Mel-scaled spectrograms extracted from audio signals. The first dimension represents time,

the second one — frequency and each value corresponds to its power in dB scale. The first spectrogram contains a 3 sec

part of “Summerghost” by Leaf, original clean signal from the MUSDB18 dataset (a). The others present selected types
of artificially added artefacts: gain distortion (b), missing frame (c), quantisation defect (d), clicks (e) and noise (f).
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— extra sound (noise): mixing a clean signal with generated samples of coloured noise (white,
pink, blue, brown, violet) with Signal-fo-Noise Ratio up to 20 dB; modifying random bits
in the signals; combining with real distorted audio samples (additive and burst noise, clicks
and pops) from Freesound database [34] (Fig. 2e, f).

The dataset was divided into non-overlapped training, test and validation sets, 60%, 20% and
20% respectively. Currently, there are no distinguished dependencies on a music genre, however,
for the future work it would be worth extending the database and analyze the model effectiveness
for each music type, separately.

3.2. Data pre-processing

Since the implemented model takes a fixed-size input, the raw audio was divided into 3-seconds
chunks. If the last frame was shorter than 3 seconds, it was padded with zeros. According to
[23, 26, 35], a different time window is used for audio classification or audio quality measurement
task, mostly in range 1-10 seconds. The decision to use 3-seconds chunks is a compromise between
reducing the input data complexity and capturing enough audio content and its distortions. In
this particular case, signals are long enough to detect an artefact through manual listening tests.
The pre-processing stage consists of two phases: spectrograms generation and normalization.
First, short-time Fourier transform was performed for each audio sample with a 75% overlap
and window size equal to 2048 samples. The spectrograms were created from average power of
each band across each signal frame. The power of the obtained spectrum was mapped onto the
Mel scale, using triangular overlapping windows with the maximum frequency equal to fs/2. All
input signals have the same length in the time and frequency domain and were transformed into
256 Mel bands. Each Mel-scaled spectrogram was normalized into (—1, 1) [dB] range.

3.3. Methodology

The evaluated model is purely data-driven, it does not make any assumptions about the signal
content. The model consists of three main parts. The architecture of the examined model is as
follows (Table 1): first, three convolutional layers with 256 filters are used, each with kernel
size 3 [23]. To reduce computational complexity each convolutional layer is followed by max
pooling layer and dropout. Following the CNN component, three bidirectional recurrent layers
of an LSTM are used, with 128 hidden units, and one dense layer with 64 neurons and drop out.
The output layer comprises of 5 nodes (equal to the number of recognized categories). To handle
number of classes k, the SoftMax activation function was used:

o(z) = —KeXp(Zi)

2 exp(zp)
p=1

(i=1...,k), 2

where o (z;) is the activation function on the output nodes. Since o (z;) are always positive and
their sum is 1, they can be viewed as probabilities, while output nodes with an inserted activation
function can be used for probability estimation [36].

The network was fed with 2D feature maps extracted from input signals (Mel-scaled spec-
trograms where the first dimension represents time, the second dimension represents frequency
and each value corresponds to its power on the dB scale). A single-label multiclass classification
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with one-hot encoding vector was used with a categorical cross-entropy loss [27]:

Nt 2

L= 30 D i )

n=1 i=0

where Nr is a training dataset size and 7, is a label vector associated with an n-th sequence in the
training set.

The number of epochs was fixed to 30 with a scheduled learning rate starting from 0.001 to
0.0001. To prevent the model from overfitting, the best model weights were saved for each cycle
based on its accuracy on a validation set. The model was evaluated using the Keras framework [37].

Table 1. The examined model architecture.

Layer # of filters Kernel / pool size Stride Activation function
Conv2D 256 (3,3) (1,2) ReLu
Maxpooling 2D N/A (3,2) N/A N/A
Dropout 0.3
Conv2D 256 (3,3) N/A ReLu
Maxpooling 2D N/A (1,2) N/A N/A
Dropout 0.3
Conv2D 256 (3,3) N/A ReLu
Maxpooling 2D N/A (1,4) N/A N/A
Dropout 0.3
Reshaping (86, 4 * 256)
B-LSTM 128 nodes
B-LSTM 128 nodes
B-LSTM 128 nodes
Dense 64 nodes ‘ ReLu
Dropout 0.3
Dense 5 nodes ‘ softmax
4. Results

The first comparison was performed for two different model architectures: Convolutional
Neural Network (CNN) and Convolutional Bidirectional Recurrent Neural Network (CBRNN).
The comparison was performed based on the following metrics: specificity, precision, recall,
F1-score and (overall) accuracy [38]:

TN
Specificity (TNR) = ——, 4
pecificity (TNR) = = @
TP
Precision =
recision TP+ FP’ ®))
TP
Recall = ——, (6)
TP + FN
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F 2 - Precision - Recall )
score = ,
Precision + Recall

TP + TN g
TP+ TN+ FP + FN’ ®
where: TP — true positive (the number of artefacts correctly classified as artefacts); FP — false
positive (the number of samples incorrectly classified as artefacts); TN — true negative (the number
of samples which were not in the selected artefact category, classified correctly as not this artefact
type); FN — false negative (the number of samples from different categories classified incorrectly
as the selected artefact type). As regards accuracy, the overall result is reported (Table 2).

Accuracy =

Table 2. Classification performance measured for various model architectures used in studies.

Category CNN CBRNN

precision recall F1 TNR precision recall F1 TNR
Clean signals 0.542 0.703 0.612 0.851 0.635 0.748 0.687 0.893
Quantisation defect 0.997 0.900 0.946 0.999 0.999 0.899 0.946 0.999
Gain distortions 0.657 0.611 0.633 0.920 0.764 0.744 0.754 0.943
Extra sound (noise) 0.984 0.729 0.838 0.997 0.990 0.784 0.875 0.998
Missing sound 0.657 0.611 0.876 0.951 0.841 0.973 0.902 0.954

Overall accuracy [%] 71.5 83.0

The comparison was performed using the same test dataset and the same feature extraction
technique — spectrograms scaled to 256 Mel bands. The results (Table 2) show that the usage of
bidirectional LSTM layers increases values of almost all metrics. Based on F1-score, the CBRNN
model was significantly better for four categories of signals, one of them (quantisation defect)
remained unchanged. The highest improvement was achieved for gain distortion (value increased
by 0.121). For other categories, clean signals, extra sound (noise), missing sound, the difference
is also noticeable (0.075, 0.037 and 0.026 respectively). The overall accuracy score was raised
from 77.5% to 83%.

The next experiments examined model efficiency in terms of the number of input features and
their contents. Namely, for sound event classification, usage of 40 Mel bands per frame results in
an appropriate model evaluation [23]. However, in the case of analysis of music, it is not enough
to get the proper amount of information. Comparing 40, 128 and 256 Mel bands per frame, only
the last value resulted in a sufficiently good model evaluation. To improve the effectiveness of
the model, two additional input features were examined (Table 3): Zero Crossing Rate (ZCR)

Table 3. Performance of CBRNN results depending on the extracted input features.

Mel-scaled spectrogram + Mel-scaled spectrogram +
Category Zero crossing rate Spectral contrast

precision recall F1 TNR precision recall F1 TNR
Clean signals 0.637 0.777 0.700 0.889 0.775 0.969 0.861 0.930
Quantisation defect 0.999 0.899 0.946 0.999 0.999 0.899 0.946 0.999
Gain distortions 0.765 0.752 0.758 0.942 0.949 0.935 0.942 0.988
Extra sound (noise) 0.989 0.796 0.882 0.998 0.987 0.800 0.884 0.997
Missing sound 0.886 0.967 0.924 0.969 0.918 0.967 0.942 0.978

Overall accuracy [%] 83.8 914
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and Spectral Contrast. The first one represents the noisiness of sound — a higher value means
more noise in the signal [39]. The second feature — Spectral Contrast — widely used in a music
classification, finds the difference between spectral peaks and spectral valleys for each sub-band
(6 in this case) [40]. Comparing to the previous results, when only spectrograms with 256 Mel
bands were used (Table 2), the addition of the first feature improved the overall accuracy only
by 0.8 percentage points, while the Spectral Contrast information increased it by 8.4 percentage
points. In this case, the achieved increase of Fl-score is as follows: 0.188 for gain distortion,
0.174 for clean signals, 0.040 and 0.009 for extra noise and missing sound respectively.

To examine the impact of these additional features, a transfer learning was involved, where
the existing CBRNN model was used as an integrated feature extractor. The pre-trained CBRNN
model (without the last classification layer) was integrated into two new models. The first one
(Table 4) uses a single Bidirectional LSTM layer with 128 units to process ZCR data. The output
of this layer is concatenated to features extracted by the pre-trained CBRNN from Mel-scaled
spectrograms. Similarly, to the main model, there is one following dense layer with 64 neurons and
a decision layer which consists of five nodes. The input layer of the next model (Table 5) consists
of a single convolutional layer followed by max pooling, dropout and also a single Bidirectional
LSTM, to process Spectral Contrast inputs. Layers and weights of the pre-trained model were
frozen during the second training.

Table 4. Model integrating an additional Zero Crossing Rate feature extractor and the pre-trained CBRNN.

Layer Nodes Afctiva.tion Pre-trained
unction CBRNN
B-LSTM 128 nodes (features extractor)
Concatenate
Dense 64 nodes ‘ ReLu
Dropout 0.3
Dense 5 nodes ‘ softmax

Table 5. Model integrating an additional Spectral Contrast feature extractor and the pre-trained CBRNN.

Layer # of filters [I)(oeorlns?z:: Stride Affltlll‘ftl]t(l)(:]n
Convab 256 3,3) d4.2) ReLu Pre-trained
Maxpooling 2D N/A (3,2) N/A N/A CBRNN
Dropout 03 (features extractor)
Reshaping (86, 7 * 256)
B-LSTM 128 nodes
Concatenate
Dense 64 nodes ‘ ReLu
Dropout 03
Dense 5 nodes ‘ softmax

4.1. Analysis of misclassified samples

A correct decision if a signal contains an artefact or not is the most critical from the monitoring
and regression tests perspective. A classification which kind of artefact was detected is a matter
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of secondary importance, however, this categorization helps us predict which artefacts are most
problematic to detect in the designed methodology. The highest false-positive rates occur for clean
signals (0.1074) and gain distortions (0.0573). Usage of the Spectral Contrast feature reduces
these values to 0.0703 and 0.0124 respectively. The highest false-negative rate occurs for gain
distortion (0.2559), but also clean signals and signals with extra sound (noise) are significantly
affected by this error (0.2525 and 0.2164 respectively). These are also reduced by the additional
feature to (0.2482, 0.2233 and 0.2040).

However, they still need to be improved in the feature work on the final product. In the ideal
scenario, we would like to achieve the error value close to zero. The algorithm seems to work
well for the other basic artefacts examined in this paper. In the light of this, our future work will
focus on improving the effectiveness of the model for clean signals, gain distortions and extra
sound (noise). The possible solutions for this misclassification would be: 1) extracting additional
features; 2) adding multi-label classification; 3) extending the database to include more music
samples, especially with an electronic and synthetic content.

5. Conclusions and summary

The goal of this work was to develop a prototype model for the artefact detection in a real-
world music content. The provided performance measurements can constitute a basis for further
research. The described topic is often perceived to be identical with a standard acoustic event
detection problem (like environmental sound classification), however, the results show that in this
case more detailed features are required to effectively evaluate the model. The analysis has also
shown that the presented CBRNN method with a transfer learning (additional features) results
in considerably better performance than the other objective benchmark method presented in this
paper. Comparing to the standard CNN, the overall classification accuracy is 7.1% higher. Also,
the results show that the current algorithm and selected hyperparameters perform best using
Mel-scaled spectrograms with at least 256 filters and addition of Spatial Contrast information as
input features.

The current implementation covers only selected audio artefacts. The future work will focus
on extending the database to reduce false-positive and false-negative errors (especially for clean
signals) and recognize more distortions. The actual database was prepared based on the MUSDB 18
which includes ~10 h duration of music content. A similar amount of data is referred to in some
existing publications regarding audio classification, e.g. [26]. This seems to be sufficient on the
prototype examination level, especially for a very limited number of kinds of artefacts. However,
the prospective goal is to provide a much more extended dataset. To exploit the full capability
of the latest deep learning techniques and improve the model effectiveness of classification,
a dataset exceeding 5000 hours would be preferable [41]. This may increase the model accuracy
and reliability, especially for more complex scenarios. Since the main focus of this work was
to classify very basic artefacts, clearly detectable in listening tests (assessed as “very annoying”
by unipolar discrete five-grade scale used for subjective assessment of impairment [4]), the
other future goal would be to extend the model and perform experiments for more subtle, real
impairments and to improve the robustness for such content.
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