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Abstract

The paper makes a comparison of the results of the application of two-sided
and one-sided versions of the Hodrick-Prescott filter on GDP data concerning
27 EU Member States. Based on the results, the overall finding is that,
contrary to its assumed advantages, the one-sided filter does not help overcome
endpoint unbiasedness. Quite the opposite, it rather spreads and consolidates
the endpoint bias that plagues the two-sided version over the entire filtered data.
In addition, regression-based results on the influence of the second, third, and
fourth moments of the GDP acceleration rates on the differences between one-
sided and two-sided HP trends are presented.
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1 Introduction

Trend-cycle decompositions are among the most widely used techniques of economic
time series analysis. Their main goal is to separate the permanent and the transitory
components of time series. In macroeconomic research, one of the main areas of
application is business cycle analysis. There, usually the goal is to identify and extract
the long-term (growth) component of aggregate output, respectively to isolate its
short-term (cyclical) component. Each of those can then be analysed either separately,
in their own specific context, or jointly, when a more complete description of output
dynamics is necessary.
Since its first appearance in a working paper in 1980, the Hodrick-Prescott (HP) filter
(Hodrick and Prescott, 1997[1980]) has become one of the standard tools used for the
purpose of trend-cycle decompositions of real GDP. In business cycle analysis, it has
often been used “on-the-fly” (i.e. without too much thinking) to detrend data series.
The latter has been facilitated by the fact that the filter is also pre-programmed in
mainstream data modelling software packages (e.g. Stata, EViews, Matlab, or R).
Despite its attractiveness and ease of usage, the HP filter has received a significant
amount of criticism. For example, it has been shown that the filter can possibly
generate spurious cycles (Harvey and Jaeger, 1993; Cogley and Nason, 1995), i.e.
it is not always clear whether the presence of cyclical behaviour in the detrended
non-stationary time series corresponds to the true cyclical patterns of data. The
latter depends on whether or not the spectrum of the data is maximized at the
business cycle frequencies, or, which is usually the case, at lower ones. Another
obvious issue associated with the application of the filter is that it is a two-sided one.
This implies a serious issue: when the sample endpoint data are being filtered, the
information needed to perform the calculation is only partially available. Therefore,
a bias tends to arise specifically at those data locations; such a bias is not present
when “inner” datapoints are filtered. If the endpoints coincide with the available most
recent (“current”) data, the consequence is that there will be biased real-time trend
and cycle estimates.
Most of the drawbacks of the HP filter arise largely due to the fact that the ratio of
the trend and cycle variances is not estimated from the data but manually imposed. If
this ratio is estimated, the filter construct leads to values that are very different from
the manually imposed ones for the corresponding data frequencies. The mentioned
problems have even led to the recommendation by some authors to strictly refrain
from using this trend-cycle decomposition technique (see for example Hamilton, 2018).

2 Filter specifications

The purpose of the HP filter is to extract a smooth trend from a non-stationary time
series. Smoothness is defined as the square of the second difference (i.e. square of the

K. Ganev
CEJEME 12: 251-272 (2020)

252



Real-Time vs. Full-Sample Performance . . .

rate of acceleration) of the trend component τt, i.e.:

(∆2τt)2 = (τt − 2τt−1 + τt−2)2. (1)

In the standard two-sided version of the HP filter, the following problem is solved to
achieve the filter purpose:

min
τt

[
T∑
t=0

(yt − τt)2 + λ

T−1∑
t=2

(τt+1 − 2τt + τt−1)2

]
, (2)

where T is the time series length (sample size). The parameter λ is a penalizing
factor controlling for the smoothness of the trend. In fact, this parameters allows to
manually specify the value of the ratio of the variances of the trend and the cycle.
For quarterly data, the recommended value for λ is 1600, while the “standard” values
of this parameter for annual and monthly frequencies are respectively 100 and 14400.
The general rule that is followed in determining the value that corresponds to a
selected frequency is

λ = 1600
n2 , (3)

where n is the number of quarters present in a unit period of the frequency. For

example, there are 4 quarters in a year, therefore λ = 1600
42 = 100, etc.

Ravn and Uhlig (2002) proposed using a higher power in the denominator (4
recommended), therefore the rule becomes

λ = 1600
n4 . (4)

The specification of the one-sided version of the Hodrick-Prescott filter appeared first
in Stock and Watson (1999). It consists of the following two equations:

yt = τt + εt (5)

(1 − L)2τt = ηt (6)

where τt once again denotes the trend component of yt, and εt is identified with the
cycle (a residual).
Equation (6) can be alternatively written as

τt = 2τt−1 − τt−2 + ηt. (7)

Noting that the trend is an unobservable state variable, and that equation (5) serves
the purpose of an observation (signal) equation, the model can be put in state-space
form:

yt = Ftθt + νt
θt = Gtθt−1 + ωt

(8)

253 K. Ganev
CEJEME 12: 251-272 (2020)



Kaloyan Ganev

where Ft =
(
1 0

)
, θt =

(
τt
xt

)
, Gt =

(
2 −1
1 0

)
, νt = εt, ωt =

(
ηt
0

)
, and xt = τt−1.

The latter is then subject to estimation using the Kalman filter, and the filtered series
is identified with the underlying unobservable trend component. In this approach to
the filter specification and estimation, if the Kalman smoother is also applied (on the
filtered series), it would produce the two-sided HP trend.
In the system of equations (8), the random disturbance terms εt and ηt (i.e. the
innovations in the observation and the state equations, respectively) are assumed to
be Gaussian, with variances σ2

ε and σ2
η. When estimation is performed, the ratio of

those variances, q is fixed to a predefined value:

q =
σ2
η

σ2
ε

. (9)

In fact, q is the reciprocal of λ as defined above. Stock and Watson (1999) use
q = 0.000675 which corresponds to the spectral gain of the HP filter for quarterly
data; this implies a value of λ approximately equal to 1481.5. From the reverse
perspective, if λ is set to the “standard” value of 1600 for quarterly frequencies, this
would imply q = 0.000625. Setting q (or λ) manually is obviously a mechanistic
approach which does not “let the data speak”. The alternative would be to estimate
q from the data but practice shows that estimates vastly deviate from the standard
values that are used commonly in applications.
A distinct advantage of using the state-space formulation and Kalman-filter estimation
is that forecasts of both the filtered and the smoothed states can be produced, which
is generally impossible in the “standard” implementations of the Hodrick-Prescott
filter in software packages.

3 Data used in the current application
In the empirical analysis that follows, Eurostat seasonally and calendar adjusted data
on 27 (out of 28) EU Member States data on quarterly GDP are used. All data
used are at 2010 constant prices. Data on the Slovakian economy are missing at the
time of writing, possibly due to technical reasons. It would be possible to seasonally
adjust the not-seasonally adjusted series for Slovakia which is provided. However, the
specifics of the seasonal adjustment method applied by Eurostat are not available,
therefore a risk exists that the output data could not be in compliance with those
on the remaining Member States. That the seasonal component of a time series
is removed beforehand is a standard requirement for the application of trend-cycle
decompositions such as the Hodrick-Prescott filter.
The earliest available data are on the French and the UK economies, starting in the
first quarter of 1975. The shortest series are observed for Malta and Croatia, starting
in the first quarter of 2000. For all Member States, the data samples end in the
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fourth quarter of 2019. In general, this means that the sample size differs across
Member States. However, as estimation is applied individually to each one of them,
no truncation to the least common sample is necessary for the application of the HP
filters.
In order to be able to directly interpret the first differences of data as growth rates,
respectively the second differences as rates of acceleration, all data are natural-log-
transformed.

4 Estimation and results
4.1 Comparison of one-sided and two-sided HP filter results
In the current application, the first task is to compare the real-time and the full-
sample performance of each of the versions (one-sided and two-sided) of the Hodrick-
Prescott filter. The real-time versions of the one-sided and the two-sided HP filter are
implemented by using expanding data windows in estimation. More precisely, in the
first step, estimation is performed on the smallest possible data window required by
the computational procedure in the beginning of the available sample. In every next
step, an observation is added, and estimation is carried out until the full sample is
reached. From each step’s estimation results, only the endpoint estimate is recorded
in a newly generated series, called from this point onwards “the real-time HP trend
estimate”.
Since the frequency of the data used in estimation is quarterly, the power rule of
Ravn and Uhlig is irrelevant (n = 1 so any power of it would also yield 1). Therefore,
the usual values of 1600 for λ and 0.000625 for q are adopted. The software used
for estimation is R. Specifically, for the two-sided HP filter, the mFilter package is
utilized, while the one-sided version is programmed using the facilities built in the
dlm package.
The results concerning the real-time estimates are visualized in Figure 1 where for
each Member State the two HP trends are plotted alongside the logs of actual GDP
data. The two extracted HP trends are denoted respectively by HP1s_RT and HP2s_RT;
the suffix _RT signifies “real-time”. The solid gray lines in the subplots correspond
to actual GDP figures. The abbreviations of the names of Member States follow the
Eurostat nomenclature. The sample that is used for plotting the results is 2001 Q2
- 2019 Q2. It is based on the least common sample available for all Member States
(2000 Q4 - 2019 Q4) but it excludes two points at the beginning and two points at
the end so that potentially biased results are not plotted. Choosing a common sample
for the plots also avoids distorting the visualization due to different length of scales
in different subplots.
The numerical comparisons show that the real-time estimates from the application of
both the one-sided and the two-sided version of the HP filter are identical, therefore
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the corresponding two trend lines fully overlap. This is reflected by a single solid black
line that stands for both trends in each Member State subplot. This feature of one-
sided HP filters was explicitly commented for the first time (after a referee remark)
in Mehra (2004), however without further qualification concerning the implications
for biasedness; instead, the paper just maintained the idea that “. . . the standard HP
filter could generate biased results. . . ” (ibid., p. 7). What can be inferred from the
latter is that the author had the implicit understanding that the one-sided filter is
providing the desired unbiased estimates.
Returning to the identity between the results of the two versions of the HP filter
when applied in real time, however, points to a completely different conclusion. If the
standard two-sided filter leads to biased results at sample endpoints, then running it
in real time implies biasedness for each filtered datapoint as in each iteration they
correspond to endpoints. The identical results produced by the one-sided filter cannot
then be unbiased but should be qualified as biased for each filtered datapoint.
The one-sided HP filter has the attractive property that it produces the same results
both in real time and when applied to the full sample. However, having in mind the
previous conclusion, the full-sample one-sided HP filter implies biasedness for each
filtered datapoint, too.
Given the above considerations, it turns out that the standard two-sided HP filter
remains the better, although still very far from perfect, alternative as it is unbiased
at least for the non-endpoint observations of the sample (i.e. the ones that remain
after the endpoint estimates implying biasedness are eliminated).
The question that follows is whether the one-sided filter is useful at all, as the above
reasoning suggests that it should be totally discarded. Still, based on the logic followed
so far, it could possibly be used to assess the total bias that accumulates over time if
the HP filter is used for real-time assessment of a variable’s deviations from its trend.
To gain a first impression concerning the presence of such a bias, see Figure 2 in which
the plots give an idea of the differences between the full-sample standard two-sided
HP filter, and the one-sided one. As already mentioned, it would not matter whether
the full-sample or the real-time estimates using the one-sided filter are plotted, as
those are virtually the same. The visual inspection points to two observations. First,
towards the sample ends the differences between the two trends tend to be smaller,
even negligible; put differently, differences tend to be larger for the interior sample
datapoints. Second, the differences between the two trends tend to be larger when
the trends are less smooth. A lower degree of smoothness practically means larger
shifts in the trend direction, and is itself implied by by changes in the growth rate of
the filtered series.
Looking at the calculated output gaps using correspondingly the one-sided and the
two-sided HP filters (Figure 3), some additional observations can be made. Assuming
the one-sided version is the one bearing bias at all dates, then for example it could be
said that it fails to capture well the height of the pre-Great-Recession boom in most
of the Member States (except only maybe for Poland). Also, it tends to overestimate
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the negative output gaps during the following economic downturn. Illogical behaviour
could also be traced for other periods, too. For example, the one-sided filter estimates
a very strong boom period for Bulgaria in the beginning of the 2000s, and similar odd
situations around 2015-2016 in Cyprus, Greece, Spain, and Portugal, among others.

4.2 The difference between one-sided and two-sided HP filter
results as a function of empirical moments

A potential unevenness of the growth rate of the analysed series should be reflected in
the shape of the statistical distribution of the acceleration rate, i.e. whether extreme
values are more frequent, tails are fatter, etc.
While working directly with growth rates is in principle possible, the properties of the
data might imply the impossibility to objectively assess the characteristics of their
distributions. Specifically, in the current dataset, the growth rate series for some of the
Member States do not comply with the requirement for stationarity (stationarity was
tested using the KPSS test). This is largely due to the presence of structural breaks
(regime shifts) for the series concerning some Member States resulting from the Great
Recession of 2007-2009. The presence of non-stationarity renders the calculation of
the empirical distribution moments one of questionable value.
As a first step in the assessment of the overall bias introduced by the one-sided filter,
we hypothesize that the magnitude of the differences between the one-sided and the
full-sample two-sided trends is determined by the properties of the distribution of the
GDP acceleration rates (the growth acceleration series are stationary for all Member
States in the data sample). Here, we assess those properties on the basis of their
second, third, and fourth empirical moments, and more specifically we calculate the
empirical distribution variance, skewness, and kurtosis of each series.
The differences between the two types of trends can be positive or negative, therefore,
in order to get an average measure we use the mean of squares of per-observation
differences, MSD:

MSD = 1
T

T∑
t=1

(HP1st −HP2st)2. (10)

The acceleration rate of the log of GDP, yt, is identified in the present context with
the change in the year-on-year growth rate of the variable. Denoting the latter by
α, we have α = ∆2

4yt = ∆(yt − yt−4) for quarterly series. Denote the variance of
this growth rate by σ2

α, its skewness by Sα, and its kurtosis by Kα. (The calculated
empirical moments are presented in Table 1.) Then, in order to study the hypothesised
relationship, the following regression equation could be specified:

MSDi = β0 + β1 · σ2
α,i + β2 · Sα,i + β3 ·Kα,i + εi, i = 1, 2, . . . , 27, (11)

where i indexes the Member States, β0, β1, β2 and β3 are parameters, and εi is a
random disturbance term.
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Table 1: Moments of acceleration rates

Member State Variance*105 Skewness Kurtosis
1 AT 5.72 -0.24 6.03
2 BE 4.69 0.38 5.51
3 BG 9.39 -0.95 7.95
4 CY 10.82 -0.02 2.47
5 CZ 10.65 -0.24 4.04
6 DE 11.82 0.74 6.12
7 DK 7.92 0.12 4.87
8 EE 47.49 0.40 6.28
9 EL 13.76 -0.40 3.39
10 ES 4.70 -0.45 4.37
11 FI 18.43 0.27 5.81
12 FR 3.49 0.27 4.96
13 HR 11.51 -1.15 6.76
14 HU 11.05 -0.35 5.21
15 IE 57.65 -0.70 4.81
16 IT 7.73 0.29 5.63
17 LT 47.42 -0.25 6.32
18 LU 21.38 0.05 3.78
19 LV 41.72 -0.38 4.20
20 MT 11.42 -0.23 2.98
21 NL 5.76 -0.66 4.97
22 PL 5.28 -0.47 3.29
23 PT 7.34 0.23 3.06
24 RO 24.35 -1.42 6.28
25 SE 12.93 0.70 5.13
26 SI 18.35 -0.65 6.37
27 UK 6.23 -0.06 6.58

Due to the fact that both in the left-hand side and in the right-hand side there are
squared magnitudes, and having in mind that scales can differ substantially for the
two variables, it is possible that heteroskedasticity appears in the regression residuals.
Therefore, it would be a better alternative to work in terms of square roots of the two
variables, respectively the square root of MSD, RMSD, and the standard deviation,
σα. The regression equation then becomes:

RMSDi = β0 + β1 · σα,i + β2 · Sα,i + β3 ·Kα,i + εi, i = 1, 2, . . . , 27. (12)

The left-hand-side variable, RMSD, can however take theoretically only non-negative
values. In the present case, all its values are positive. Therefore, the distribution of the
disturbance term cannot be Gaussian. A more adequate specification of the regression
equation would be then the following:

RMSDi = exp(β0 + β1 · σα,i + β2 · Sα,i + β3 ·Kα,i + εi), i = 1, 2, . . . , 27. (13)
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Taking natural logs of both sides of this equation, the following is obtained:

ln(RMSDi) = β0 + β1 · σα,i + β2 · Sα,i + β3 ·Kα,i + εi, i = 1, 2, . . . , 27. (14)

There are generally two options to estimate this equation: either through OLS or
through GLM. The former is justified if the regression residuals are homoskedastic
and their distribution is symmetric (Manning and Mullahy, 2001). Therefore, first
OLS estimation is applied, and then tests for heteroskedasticity and normality are
applied to the resulting regression residuals in order to decide whether to go for GLM
estimation or not.

Table 2: OLS estimation output (standard errors in parentheses)

Dependent variable:
ln(RMSD)

σα 25.279∗∗∗
(3.383)

Sα −0.426∗∗∗
(0.101)

Kα −0.078∗
(0.040)

Constant −4.500∗∗∗
(0.228)

Observations 27
R2 0.782
Adjusted R2 0.754
Residual Std. Error 0.268 (df = 23)
F Statistic 27.563∗∗∗ (df = 3; 23) (p = 0.00000)

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

The results from the OLS estimation procedure are displayed in Table 2. At the
5% level of significance, all estimated coefficients are statistically significant except
the coefficient before the kurtosis, Kα. The signs of the significant slope coefficients
show that the chosen measure of difference between the two types of filters, RMSD,
is positively associated with the standard deviation of the growth acceleration rates,
and negatively with their skewness. The first of those positive slope coefficients shows
that the higher the variance of the acceleration rates, the larger the difference between
the two HP trends. Its value looks very high but this can be explained by the fact that
the scales of the regressand and the regressor are quite different. In particular, the
acceleration rates are expressed in fractions of one, therefore their standard deviation
will be on the same scale. At the same time, RMSD is a difference of natural
logs, therefore it would produce percentage deviations. By the logic of equation
(14), however, taking a log of those percentages leads to much larger (negative)
values. The negative slope coefficient before the skewness statistic shows that larger
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differences between the two HP trends are associated with cases where the distribution
of growth acceleration rates is negatively skewed. Taken together, the two significant
slope coefficients point to the conclusion that the difference between the two trends
tends to be larger for economies where less frequent but more severe downturns are
experienced. The insignificant coefficient before the kurtosis indicates that the fourth
moment plays no defining role in the present setting.

Table 3: OLS residual tests

Test Test statistic p-value

Breusch-Godfrey (up to order 4) 3.059 0.548

Breusch-Pagan (Koenker) 4.965 0.174

Jarque-Bera 1.032 0.597

Kolmogorov-Smirnov 0.333 0.004

In order to establish whether the OLS estimation method is justified, the residuals
from the OLS regression are tested for autocorrelation, heteroskedasticity, and
normality, respectively using the Breusch-Godfrey, studentized Breusch-Pagan
(Koenker), and Jarque-Bera tests. The results are presented in Table 3. They clearly
show that the regression features neither autocorrelation, nor heteroskedasticity.
Based on the Jarque-Bera statistic, it seems that the normality of residuals hypothesis
cannot be rejected, too. However, the sample used here contains just 27 observations
and its distribution could be problematic. Thadewald and Büning (2007) for example
show that the Jarque-Bera test performs poorly when the distribution of the data
is characterized with short tails. In the current setting, the kurtosis of the residuals
equals approximately 2.06, i.e. indeed this is a case of a platycurtic distribution.
Therefore, some normality cross-checking is due. Using e.g. the Kolmogorov-Smirnov
test, and looking at the normal QQ-plot of the residuals (see Figure 4), normality,
therefore symmetry of the distribution cannot be so light-heartedly accepted.
Thus, in order to cross-validate the results, the relationship stated in equation (12)
is estimated as a GLM. A Gamma distribution with a log link is assumed. The
estimation results are displayed in Table 4. In terms of point estimates, the differences
to the OLS regression output are small. The only remarkable difference is that the
slope coefficient before the kurtosis regressor becomes statistically significant (p-value
just below 5%). The negative sign implies that the bigger the kurtosis of the empirical
distribution, the smaller the difference between the two HP trends. More specifically,
the fatter the tails of the distribution of acceleration rates are, the smaller the overall
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Figure 4: Normal Q-Q plot of the OLS residuals
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Table 4: GLM estimation output (standard errors in parentheses)

Dependent variable:
RMSD

σα 25.604∗∗∗
(3.388)

Sα −0.443∗∗∗
(0.102)

Kα −0.085∗∗
(0.040)

Constant −4.445∗∗∗
(0.229)

Observations 27
Log Likelihood 103.826
Akaike Inf. Crit. −197.650
Residual Deviance 1.650 (df = 23)
Null Deviance 7.512 (df = 26)

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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bias introduced by the one-sided HP filter. In other words, the more outliers there
are in the series of acceleration rates, the closer the results of the two filters will be.

5 Conclusions
The one-sided HP filter has been proposed to solve the endpoint issues present in
the standard two-sided version. However, instead of solving them, it spreads and
consolidates the endpoint bias over the entire filtered data sample. Given also that
there is no evidence in literature that the one-sided filter solves the spurious cycles
problem, too, it turns out that it is even worse suited for the task of trend-cycle
decompositions. The results from the regression estimations that were carried out
and presented in the article demonstrate that the higher the volatility inherent in
the acceleration rate of the filtered series, the lower the reliability of the one-sided
estimates for the entire filtered sample. Concerning the estimated linkage with the
skewness parameter, it turns out that left-skewness of the distribution of acceleration
rates is conducive to a higher bias produced by the one-sided HP filter. With respect
to the slope parameter on the kurtosis parameter, higher values tend to lower the
difference between the results of the two filters.
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