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1. Introduction

Transmission of electric energy from sources to loads through
power systems, where it is transformed adequately to the needs
of the consumer, is described by power theories [1–6]. Over 100
years of energy transmission, numerous different approaches
have been created.

Power theory describes the power properties of electrical sys-
tems in a frequency domain or in a time domain. The character-
ization in the time domain, because of the speed of calculation,
is primarily used to control semiconductor devices in the active
or hybrid power filters [7–12]. The most common time-domain
methods are [8, 11–13]. The description in the frequency do-
main [1, 3], using Fourier Transform, causes delays in the mea-
suring length. However, the methods based on frequency de-
scription are more precise and are also used to generate the ref-
erence current of the active power filter [7–9].

In the aforementioned power theories, the mathematical de-
scription and, consequently, the obtained results are correct on
the assumption that the voltage source is symmetrical.

In publications [14–18] a description of asymmetrical sinu-
soidal three-phase, three-wire, or four-wire power systems is
presented. Also, in [14, 15, 19–21], the possibility of building
a balancing and reactive power compensator has been demon-
strated.

This publication proposes an enlargement of the Currents’
Physical Components (CPC) Theory for asymmetrical nonsinu-
soidal three-phase four-wire systems, i.e. circuits with a neutral
conductor (N).
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2. Currents’ Physical Components (CPC) Theory
in three-phase four-wire systems
at nonsinusoidal and asymmetric
voltage waveforms

An unbalanced linear time-invariant load (LTI) powered from
a source with nonsinusoidal and asymmetrical waveforms is
shown in Fig. 1.

Fig. 1. LTI load supplied by a four-wire line

As we can see in Fig. 1, our voltage source could have
symmetrical components, i.e. en = ep

n + en
n + ez

n . If we as-
sume that the vector of voltages has the same values as the
voltages sources, it can be written that this vector is equal to
un = up

n +un
n +uz

n . Currents can be described using symmetri-
cal components, too.

The vector of the nonsinusoidal voltages, supplying an LTI
unbalanced load, can be represented as follows:

u(t) =




uR(t)
uS(t)
uT(t)


=

√
2Re ∑

n∈N




URn

USn

UTn


e jnω1t

=
√

2Re ∑
n∈N

Une jnω1t .

(1)
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The line currents can be represented identically, namely:

i(t) =




iR(t)

iS(t)

iT(t)


=

√
2Re ∑

n∈N




IRn

ISn

ITn


e jnω1t

=
√

2Re ∑
n∈N

Ine jnω1t .

(2)

As mentioned above, the vector of voltages can have sym-
metrical components which are the sum of the positive, nega-
tive, and zero sequences components:

u = ∑
n∈N

(up
n +un

n +uz
n)

=
√

2Re ∑
n∈N

(Up
n +Un

n +Uz
n)e jnω1t

=
√

2Re ∑
n∈N

(1pUp
n +1nUn

n +1zU z
n)e jnω1t ,

(3)

where Up
n , Un

n and U z
n are the complex RMS (crms) values of

the symmetrical components of the positive, negative and zero
sequences, described by the Fortescue Transformation [1, 2, 18,
22, 24]:




Up
n

Un
n

U z
n


=

1
3




1 α α∗

1 α∗ α
1 1 1







URn

USn

UTn


 , (4)

and where α = 1e j120◦ , α∗ = 1e− j120◦ , and symbols:

1p =




1

α∗

α


=




1

e− j120◦

e j120◦


 ,

1n =




1

α
α∗


=




1

e j120◦

e− j120◦


 , 1z =




1

1

1


 ,

(5)

denote unit symmetrical vectors of the positive – 1p, negative
– 1n, and zero sequences – 1z, described in [4, 5].

Identically as in [14, 18, 25], the issue of the definition of
apparent power Sn and complex apparent power Sn can be ex-
tended to the harmonics of higher orders and hence we can take
a different symbol in this paper, which can be written as fol-
lows:

Ybn = Gbn + jBbn =
Pn − jQn

‖un‖2 =
C∗

n

‖un‖2 , (6)

where ‖un‖ means the three-phase RMS value of the voltages
for each harmonic, which can be defined by the formulae:

‖un‖=

√√√√√ 1
T

T∫

0

uT
n (t)un(t)dt =

√
U2

Rn +U2
Sn +U2

Tn , (7)

where Pn and Qn mean the three-phase values of the active and
reactive powers for each harmonic.

If we add to each other every active power of each harmonic,
then we can calculate the equivalent conductance of the whole
system, as below:

Ge =

∑
n∈N

Pn

√
∑

n∈N

(
U2

Rn +U2
Sn +U2

Tn
) =

P
‖u‖2 , (8)

which is a condition for the existence of the active current ia in
the system, the waveform of which is:

ia = Geu =
√

2Re ∑
n∈N

GeUne jnω1t

=
√

2Re ∑
n∈N

Ge (1pUp
n +1nUn

n +1zU z
n)e jnω1t ,

(9)

and the three-phase RMS value of the active current is:

‖ia‖= Ge‖u‖= P
‖u‖

. (10)

We know from (6) that the active powers Pn of individual
harmonics and the reactive powers Qn of individual harmonics
are associated with the equivalent conductances Gbn and the
equivalent susceptances Bbn for those harmonics. Based on (6),
(8), and (9), the description of the waveform of the scattered
current is takes the form:

is =
√

2Re ∑
n∈N

(Gbn −Ge)Une jnω1t

=
√

2Re ∑
n∈N

(Gbn −Ge)(1pUp
n +1nUn

n +1zU z
n)e jnω1t,

(11)

where the three-phase RMS value is:

‖is‖=
√

∑
n∈N

[
(Gbn −Ge)

2 ‖un‖2
]
. (12)

By using the imaginary part from (6), the waveform of the
reactive current ir can be represented as:

ir =
√

2Re ∑
n∈N

jBbnUne jnω1t

=
√

2Re ∑
n∈N

jBbn (1pUp
n +1nUn

n +1zU z
n)e jnω1t ,

(13)

and its three-phase RMS value is:

‖ir‖=
√

∑
n∈N

[
(Bbn)

2 ‖un‖2
]
. (14)

Those currents are proportional to the supply voltage, and
the supply voltage shifted in time by a quarter. Therefore, they
have the same value of asymmetry as the supply voltage. How-
ever, the current of the original load i, as a consequence of its
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unbalance, does not have the same asymmetry as the supply
voltage u. The current of the unbalanced load, powered from
nonsinusoidal asymmetrical voltage source may have an unbal-
anced component:

i− (ia + is + ir) = i− ib = iu , (15)

where its waveform takes the form:

iu =
√

2Re ∑
n∈N

Iune jnω1t =
√

2Re ∑
n∈N

(In − Ibn)e jnω1t

=
√

2Re ∑
n∈N

(In − (Ge +(Gbn −Ge)+ jBbn)Un)e jnω1t

=
√

2Re ∑
n∈N

((In − Ibn)(1pUp
n +1nUn

n +1zU z
n))e jnω1t ,

(16)

and after transformation (15) we obtain:

i = ia + is + ir + iu , (17)

which means that the nonsinusoidal current of the load is the
sum of the active current, scattered current, reactive current and
unbalanced current.

Each component is associated with a different physical phe-
nomenon. The active current ia is related to the permanent flow
of energy from the source to the load. The scattered current is is
linked with a change in conductance along with the order of har-
monics. The reactive current ir is related to the displacement of
the load current concerning the supply voltage. The unbalanced
current iu is the result of the asymmetry of the currents caused
by the unbalanced load and the voltages asymmetry. Due to the
unambiguous connection of these currents with separate phys-
ical phenomena, they can be treated as the Currents’ Physical
Components (CPC Theory) of the load current.

The three-phase RMS value of the current of the load sup-
plied from the nonsinusoidal asymmetrical voltage source is:

‖i‖2 = ‖ia‖2 +‖is‖2 +‖ir‖2 +‖iu‖2 . (18)

Equation (18) is true on condition that the current compo-
nents of the load are mutually orthogonal – which is presented
in Appendix A.

3. Decomposition of the unbalanced current

The next step is the decomposition of the unbalanced current
iu into three symmetrical components of the appropriate se-
quences.

We can present the equivalent admittance of the balanced
load (6) by the parameters of the load and the supply voltages
as shown below:

Ybn = Gbn + jBbn =
P− jQ

‖un‖2

=
YRnU2

Rn +YSnU2
Sn +YTnU2

Tn

‖un‖2 .

(19)

Under the condition of the symmetry of the supply voltages,
i.e. URn =USn =UTn, the equivalent admittance of the balanced
load is:

Ybn =
1
3
(YRn +YSn +YTn) = Yen , (20)

and is called the equivalent admittance of the load supplied
from the nonsinusoidal symmetrical voltage source.

The difference between admittances expressed in (19) and
(20) is:

Ydn = Gdn + jBdn = Yen −Ybn

=
1
3
(YRn+YSn+YTn)−

YRnU2
Rn+YSnU2

Sn+YTnU2
Tn

‖un‖2 ,
(21)

and is called the voltage asymmetry dependent admittance.
In accordance with [26] in the four-wire systems supplied

by waveforms of nonsinusoidal voltages, the unbalance of the
load can be described by three admittances, i.e. the unbalanced
admittance of the positive sequence, represented as:

Ap
n =

1
3
[
(YRn +αβYSn +α∗β ∗YTn)

−Yen (1+αβ +α∗β ∗)
]
,

(22)

the unbalanced admittance of the negative sequence:

An
n =

1
3
[
(YRn +α∗βYSn +αβ ∗YTn)

−Yen (1+α∗β +αβ ∗)
]
,

(23)

and the unbalanced admittance of the zero sequence:

Az
n =

1
3
[
(YRn +βYSn +β ∗YTn)−Yen (1+β +β ∗)

]
, (24)

where the generalized rotation coefficient β has been described
in [26] and is equal to:

β = (α∗)n =




1 for n = 3k

α∗ for n = 3k+1

α for n = 3k−1

. (25)

Based on (19) and (21)–(24), the crms value of the R-line
nonsinusoidal current can be represented as:

IRn =
(
Ybn +Ydn

)
URn +

(
Ap

n +An
n +Az

n
)
Up

Rn

+
(
Ap

n +An
n +Az

n
)
Un

Rn +
(
Ap

n +An
n +Az

n
)
U z

Rn .
(26)

The crms current values of the nonsinusoidal current in the
S-line can be expressed in the same way:

ISn =
(
Ybn +Ydn

)
USn

+
(
α∗β ∗Ap

n +αβ ∗An
n +β ∗Az

n
)
Up

Sn

+
(
α∗β ∗Ap

n +αβ ∗An
n +β ∗Az

n
)
Un

Sn

+
(
α∗β ∗Ap

n +αβ ∗An
n +β ∗Az

n
)
U z

Sn ,

(27)
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unbalance, does not have the same asymmetry as the supply
voltage u. The current of the unbalanced load, powered from
nonsinusoidal asymmetrical voltage source may have an unbal-
anced component:
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where its waveform takes the form:

iu =
√

2Re ∑
n∈N

Iune jnω1t =
√

2Re ∑
n∈N

(In − Ibn)e jnω1t

=
√

2Re ∑
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(16)

and after transformation (15) we obtain:

i = ia + is + ir + iu , (17)

which means that the nonsinusoidal current of the load is the
sum of the active current, scattered current, reactive current and
unbalanced current.

Each component is associated with a different physical phe-
nomenon. The active current ia is related to the permanent flow
of energy from the source to the load. The scattered current is is
linked with a change in conductance along with the order of har-
monics. The reactive current ir is related to the displacement of
the load current concerning the supply voltage. The unbalanced
current iu is the result of the asymmetry of the currents caused
by the unbalanced load and the voltages asymmetry. Due to the
unambiguous connection of these currents with separate phys-
ical phenomena, they can be treated as the Currents’ Physical
Components (CPC Theory) of the load current.

The three-phase RMS value of the current of the load sup-
plied from the nonsinusoidal asymmetrical voltage source is:

‖i‖2 = ‖ia‖2 +‖is‖2 +‖ir‖2 +‖iu‖2 . (18)

Equation (18) is true on condition that the current compo-
nents of the load are mutually orthogonal – which is presented
in Appendix A.

3. Decomposition of the unbalanced current

The next step is the decomposition of the unbalanced current
iu into three symmetrical components of the appropriate se-
quences.

We can present the equivalent admittance of the balanced
load (6) by the parameters of the load and the supply voltages
as shown below:

Ybn = Gbn + jBbn =
P− jQ

‖un‖2

=
YRnU2

Rn +YSnU2
Sn +YTnU2

Tn

‖un‖2 .

(19)

Under the condition of the symmetry of the supply voltages,
i.e. URn =USn =UTn, the equivalent admittance of the balanced
load is:

Ybn =
1
3
(YRn +YSn +YTn) = Yen , (20)

and is called the equivalent admittance of the load supplied
from the nonsinusoidal symmetrical voltage source.

The difference between admittances expressed in (19) and
(20) is:

Ydn = Gdn + jBdn = Yen −Ybn

=
1
3
(YRn+YSn+YTn)−

YRnU2
Rn+YSnU2

Sn+YTnU2
Tn

‖un‖2 ,
(21)

and is called the voltage asymmetry dependent admittance.
In accordance with [26] in the four-wire systems supplied

by waveforms of nonsinusoidal voltages, the unbalance of the
load can be described by three admittances, i.e. the unbalanced
admittance of the positive sequence, represented as:

Ap
n =

1
3
[
(YRn +αβYSn +α∗β ∗YTn)

−Yen (1+αβ +α∗β ∗)
]
,

(22)

the unbalanced admittance of the negative sequence:

An
n =

1
3
[
(YRn +α∗βYSn +αβ ∗YTn)

−Yen (1+α∗β +αβ ∗)
]
,

(23)

and the unbalanced admittance of the zero sequence:

Az
n =

1
3
[
(YRn +βYSn +β ∗YTn)−Yen (1+β +β ∗)

]
, (24)

where the generalized rotation coefficient β has been described
in [26] and is equal to:

β = (α∗)n =




1 for n = 3k

α∗ for n = 3k+1

α for n = 3k−1

. (25)

Based on (19) and (21)–(24), the crms value of the R-line
nonsinusoidal current can be represented as:

IRn =
(
Ybn +Ydn

)
URn +

(
Ap

n +An
n +Az

n
)
Up

Rn

+
(
Ap

n +An
n +Az

n
)
Un

Rn +
(
Ap

n +An
n +Az

n
)
U z

Rn .
(26)

The crms current values of the nonsinusoidal current in the
S-line can be expressed in the same way:

ISn =
(
Ybn +Ydn

)
USn

+
(
α∗β ∗Ap

n +αβ ∗An
n +β ∗Az

n
)
Up

Sn

+
(
α∗β ∗Ap

n +αβ ∗An
n +β ∗Az

n
)
Un

Sn

+
(
α∗β ∗Ap

n +αβ ∗An
n +β ∗Az

n
)
U z

Sn ,

(27)
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and the T-line nonsinusoidal current:

ITn =
(
Ybn +Ydn

)
UTn

+
(
αβAp

n +α∗βAn
n +βAz

n
)
Up

Tn

+
(
αβAp

n +α∗βAn
n +βAz

n
)
Un

Tn

+
(
αβAp

n +α∗βAn
n +βAz

n
)
U z

Tn,

(28)

respectively.
It is possible to simplify the expression of all three crms

values of the line currents. For this purpose, expressions (26)–
(28) can be transformed using the following simplifications, in
which it can be noted that:
1. For harmonics of the positive sequences, the unbalanced ad-

mittance of the positive sequence is always equal to 0, for
harmonics of the negative sequences the unbalanced admit-
tance of the negative sequence is always equal to 0, and
for harmonics of the zero sequences, the unbalanced admit-
tance of the zero sequence is always equal to 0, therefore:



Ap
n = 0 for n = 3k+1

An
n = 0 for n = 3k−1

Az
n = 0 for n = 3k




= Y p
n , (29)

and it is called the generalized unbalanced admittance of the
positive sequence.

2. For harmonics of the positive sequences, the unbalanced ad-
mittance of the negative sequence is always different from
0, for harmonics of the negative sequences, the unbalanced
admittance of the zero sequence is always different from
0, and for harmonics of the zero sequences, the unbalanced
admittance of the positive sequence is always different from
0, therefore:



An
n �= 0 for n = 3k+1

Az
n �= 0 for n = 3k−1

Ap
n �= 0 for n = 3k




= Y n
n , (30)

and it is called the generalized unbalanced admittance of the
negative sequence.

3. For harmonics of the positive sequences, the unbalanced ad-
mittance of the zero sequence is always different from 0, for
harmonics of the negative sequences, the unbalanced admit-
tance of the positive sequence is always different from 0,
and for harmonics of the zero sequences, the unbalanced ad-
mittance of the negative sequence is always different from
0, therefore:




Az
n �= 0 for n = 3k+1

Ap
n �= 0 for n = 3k−1

An
n �= 0 for n = 3k




= Y z
n . (31)

After considering the generalized unbalanced admittances
described by (29)–(31), equations (26)–(28) can be presented
as follows:

1. The crms value of the R-line nonsinusoidal current:

IRn =
(
Ybn +Ydn

)
URn +

(
Y p

n +Y n
n +Y z

n
)
Up

Rn

+
(
Y p

n +Y n
n +Y z

n
)
Un

Rn +
(
Y p

n +Y n
n +Y z

n
)
U z

Rn .
(32)

2. The crms value of the S-line nonsinusoidal current:

ISn =
(
Ybn +Ydn

)
USn +

(
Y p

n +α∗Y n
n +αY z

n
)
Up

Sn

+
(
Y p

n +α∗Y n
n +αY z

n
)
Un

Sn

+
(
Y p

n +α∗Y n
n +αY z

n
)
U z

Sn .

(33)

3. The crms value of the T-line nonsinusoidal current:

ITn =
(
Ybn +Ydn

)
UTn +

(
Y p

n +αY n
n +α∗Y z

n
)
Up

Tn

+
(
Y p

n +αY n
n +α∗Y z

n
)
Un

Tn

+
(
Y p

n +αY n
n +α∗Y z

n
)
U z

Tn .

(34)

Combining (32)–(34) into one formula, we receive a vector
of the three-phase crms values of the nonsinusoidal line currents
of the load:

I =




IRn

ISn
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
= GeUn + jBbnUn +

(
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)
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+YdnUn +1p(Y p
n Up

n +Y z
nUn

n +Y n
n U z

n
)

+1n(Y n
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n Un

n +Y z
nU z

n
)

+1z(Y z
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n U z

n
)
,

(35)

where the three-phase value of the unbalanced Iu current is:

Iu = YdnUn +1p(Y p
n Up

n +Y z
nUn

n +Y n
n U z

n
)

+1n(Y n
n Up

n +Y p
n Un

n +Y z
nU z

n
)

+1z(Y z
nUp

n +Y n
n Un

n +Y p
n U z

n
)

= YdnUn +Jp
n +Jn

n +Jz
n ,

(36)

where the sources of currents Jp
n , Jn

n , Jz
n represent the currents

of the positive, negative and zero sequences for each harmonic.
Their vectors of the crms values are described below:

Jp
n = 1p(Y p

n Up
n +Y z

nUn
n +Y n

n U z
n
)
,

Jn
n = 1n(Y n

n Up
n +Y p

n Un
n +Y z

nU z
n
)
,

Jz
n = 1z(Y z

nUp
n +Y n

n Un
n +Y p

n U z
n
)
.

(37)

The relationship (37) can be subjected to further transforma-
tions, then the vector of crms values takes the form:

Iu = 1pYdnUp
n +1nYdnUn

n +1zYdnU z
n

+1p(Y p
n Up

n +Y z
nUn

n +Y n
n U z

n
)

+1n(Y n
n Up

n +Y p
n Un

n +Y z
nU z

n
)

+1z(Y z
nUp

n +Y n
n Un

n +Y p
n U z

n
)
= Ip

un + In
un + Iz

un .

(38)
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From the relationship above, we can extract three unbalanced
currents of the respective sequences, namely:
1. The waveform of the positive sequence unbalanced cur-

rent ip
u :

ip
u =

√
2Re ∑

n∈N
Ip
une jnω1t

=
√

2Re ∑
n∈N

1p(YdnUp
n +Y p

n Up
n +Y z

nUn
n

+Y n
n U z

n
)
e jnω1t .

(39)

2. The waveform of the negative sequence unbalanced cur-
rent in

u :

in
u =

√
2Re ∑

n∈N
In
une jnω1t

=
√

2Re ∑
n∈N

1n(YdnUn
n +Y n

n Up
n +Y p

n Un
n

+Y z
nU z

n
)
e jnω1t .

(40)

3. The waveform of the zero sequence unbalanced current iz
u:

iz
u =

√
2Re ∑

n∈N
Iz
une jnω1t

=
√

2Re ∑
n∈N

1z(YdnU z
n +Y z

nUp
n +Y n

n Un
n

+Y p
n U z

n
)
e jnω1t .

(41)

The three-phase RMS values of the unbalanced currents of
respective sequences are presented below:
1. The three-phase RMS value of the positive sequence unbal-

anced current:

∥∥ip
u
∥∥=

√
3 · ∑

n∈N

∣∣YdnUp
n +Y p

n Up
n +Y z

nUn
n +Y n

n U z
n
∣∣2 . (42)

2. The three-phase RMS value of the negative sequence unbal-
anced current:

∥∥in
u
∥∥=

√
3 · ∑

n∈N

∣∣YdnUn
n +Y n

n Up
n +Y p

n Un
n +Y z

nU z
n
∣∣2 . (43)

3. The three-phase RMS value of the zero sequence unbal-
anced current:

∥∥iz
u
∥∥=

√
3 · ∑

n∈N

∣∣YdnU z
n +Y z

nUp
n +Y n

n Un
n +Y p

n U z
n
∣∣2 . (44)

In summary, the load’s current can be built of six orthogonal
components:

∥∥i
∥∥2

=
∥∥ia

∥∥2
+
∥∥is

∥∥2
+
∥∥ir

∥∥2
+
∥∥ip

u
∥∥2

+
∥∥in

u
∥∥2

+
∥∥iz

u
∥∥2
. (45)

All of the components of the current described above are mu-
tually orthogonal – Appendix A.

By multiplying the individual components in (45) by the
square of the three-phase RMS value of the voltage supply

‖u‖2, the power equation of the load powered from a nonsi-
nusoidal asymmetrical voltage source takes the form:

S2 = P2 +Q2 +D2
s +Dp2

u +Dn2
u +Dz2

u . (46)

In (46) respective powers are described as follows:
1. The apparent power S:

S =
∥∥u

∥∥∥∥i
∥∥. (47)

2. The active power P:

P =
∥∥u

∥∥∥∥ia
∥∥. (48)

3. The reactive power Q:

Q =
∥∥u

∥∥∥∥ir
∥∥. (49)

4. The scattered power Ds:

Ds =
∥∥u

∥∥∥∥is
∥∥. (50)

5. The positive sequence unbalanced power Dp
u :

Dp
u =

∥∥u
∥∥∥∥ip

u
∥∥. (51)

6. The negative sequence unbalanced power Dn
u :

Dn
u =

∥∥u
∥∥∥∥in

u
∥∥. (52)

7. The zero sequence unbalanced power Dz
u:

Dz
u =

∥∥u
∥∥∥∥iz

u
∥∥. (53)

Through the components (48)–(53) and the apparent power S
(47) of the unbalanced load supplied with asymmetrical nonsi-
nusoidal voltages, the power factor λ can be expressed as:

λ =
P
S
=

P√
P2 +Q2 +D2

s +Dp2
u +Dn2

u +Dz2
u

. (54)

As we can see from (54), the power factor of the system un-
der consideration depends on six powers that together form the
apparent power S.

4. Theoretical illustration

For theoretical illustration, the three-phase four-wire system
supplied from the asymmetrical nonsinusoidal voltage source
has been chosen. The circuit is presented in Fig. 2. All calcu-
lations are based on the assumption of LTI load. Besides, the
supply voltage is unchanged in time and it is a source that gen-
erates the fundamental harmonic, its frequency is 50 Hz, and
the 3rd and 5th harmonic.

The values of the phase impedances of the load for the fun-
damental harmonic, shown in Fig. 2, are compiled in Table 1.
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From the relationship above, we can extract three unbalanced
currents of the respective sequences, namely:
1. The waveform of the positive sequence unbalanced cur-

rent ip
u :

ip
u =

√
2Re ∑

n∈N
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une jnω1t

=
√

2Re ∑
n∈N

1p(YdnUp
n +Y p

n Up
n +Y z

nUn
n

+Y n
n U z

n
)
e jnω1t .

(39)

2. The waveform of the negative sequence unbalanced cur-
rent in

u :

in
u =

√
2Re ∑

n∈N
In
une jnω1t

=
√

2Re ∑
n∈N

1n(YdnUn
n +Y n

n Up
n +Y p

n Un
n

+Y z
nU z

n
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e jnω1t .

(40)

3. The waveform of the zero sequence unbalanced current iz
u:

iz
u =

√
2Re ∑

n∈N
Iz
une jnω1t

=
√

2Re ∑
n∈N

1z(YdnU z
n +Y z

nUp
n +Y n

n Un
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e jnω1t .

(41)

The three-phase RMS values of the unbalanced currents of
respective sequences are presented below:
1. The three-phase RMS value of the positive sequence unbal-

anced current:

∥∥ip
u
∥∥=

√
3 · ∑

n∈N

∣∣YdnUp
n +Y p

n Up
n +Y z

nUn
n +Y n

n U z
n
∣∣2 . (42)

2. The three-phase RMS value of the negative sequence unbal-
anced current:

∥∥in
u
∥∥=

√
3 · ∑

n∈N

∣∣YdnUn
n +Y n

n Up
n +Y p

n Un
n +Y z

nU z
n
∣∣2 . (43)

3. The three-phase RMS value of the zero sequence unbal-
anced current:

∥∥iz
u
∥∥=

√
3 · ∑

n∈N

∣∣YdnU z
n +Y z

nUp
n +Y n

n Un
n +Y p

n U z
n
∣∣2 . (44)

In summary, the load’s current can be built of six orthogonal
components:

∥∥i
∥∥2

=
∥∥ia

∥∥2
+
∥∥is

∥∥2
+
∥∥ir

∥∥2
+
∥∥ip

u
∥∥2

+
∥∥in

u
∥∥2

+
∥∥iz

u
∥∥2
. (45)

All of the components of the current described above are mu-
tually orthogonal – Appendix A.

By multiplying the individual components in (45) by the
square of the three-phase RMS value of the voltage supply

‖u‖2, the power equation of the load powered from a nonsi-
nusoidal asymmetrical voltage source takes the form:

S2 = P2 +Q2 +D2
s +Dp2

u +Dn2
u +Dz2

u . (46)

In (46) respective powers are described as follows:
1. The apparent power S:

S =
∥∥u

∥∥∥∥i
∥∥. (47)

2. The active power P:

P =
∥∥u

∥∥∥∥ia
∥∥. (48)

3. The reactive power Q:

Q =
∥∥u

∥∥∥∥ir
∥∥. (49)

4. The scattered power Ds:

Ds =
∥∥u

∥∥∥∥is
∥∥. (50)

5. The positive sequence unbalanced power Dp
u :

Dp
u =

∥∥u
∥∥∥∥ip

u
∥∥. (51)

6. The negative sequence unbalanced power Dn
u :

Dn
u =

∥∥u
∥∥∥∥in

u
∥∥. (52)

7. The zero sequence unbalanced power Dz
u:

Dz
u =

∥∥u
∥∥∥∥iz

u
∥∥. (53)

Through the components (48)–(53) and the apparent power S
(47) of the unbalanced load supplied with asymmetrical nonsi-
nusoidal voltages, the power factor λ can be expressed as:

λ =
P
S
=

P√
P2 +Q2 +D2

s +Dp2
u +Dn2

u +Dz2
u

. (54)

As we can see from (54), the power factor of the system un-
der consideration depends on six powers that together form the
apparent power S.

4. Theoretical illustration

For theoretical illustration, the three-phase four-wire system
supplied from the asymmetrical nonsinusoidal voltage source
has been chosen. The circuit is presented in Fig. 2. All calcu-
lations are based on the assumption of LTI load. Besides, the
supply voltage is unchanged in time and it is a source that gen-
erates the fundamental harmonic, its frequency is 50 Hz, and
the 3rd and 5th harmonic.

The values of the phase impedances of the load for the fun-
damental harmonic, shown in Fig. 2, are compiled in Table 1.
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Fig. 2. Three-phase four-wire system with LTI load

Table 1
List of phase impedances in ohms with division into resistance, induc-

tive and capacitive reactance values

Line R XL XC

R 1 1 –

S 2 – 2

T 0.5 – –

Table 2 presents the phase values of the nonsinusoidal volt-
age supply as well as the values of the nonsinusoidal line cur-
rents of the load.

The three-phase waveforms of the voltages, at the load ter-
minals, are shown in Fig. 3.

Table 2
List of the values of the phase voltages and the values of the line cur-

rents

Harmonic Phase R Phase S Phase T
order Un in [V]

1st 230e j7◦ 225e− j110◦ 200e j103◦

3rd 20e− j5◦ 23e j10◦ 90e− j10◦

5th 60e j6◦ 22e j114◦ 67e− j80◦

In in [A]

1st 162.64e− j38◦ 79.55e− j65◦ 400e j103◦

3rd 6.33e− j76.6◦ 10.91e j28.4◦ 180e− j10◦

5th 11.77e− j72.7◦ 10.79e j125.3◦ 134e− j80◦

Fig. 3. The three-phase voltage waveforms at the terminals of the load

The load currents waveforms are shown in Fig. 4.

Fig. 4. The load currents waveforms

Table 3 presents the values of individual admittances for
appropriate harmonics described in CPC Theory (6), (8),
(21)–(24).

Table 3
List of the values of the individual admittances

Parameter Harmonic order

[S] 1st 3rd 5th

Ge 0.899

Ydn 0.088e j8.4◦ 0.976e− j177.3◦ 0.255e j170.2◦

Ybn 0.835e− j6.6◦ 1.825e− j0.1◦ 1.093e− j4◦

Ap
n – 0.709e− j126.2◦ 0.517e j136.1◦

An
n 0.767e− j111.5◦ 0.463e j135.8◦ –

Az
n 0.327e j114.6◦ – 0.673e− j129.6◦

The three-phase RMS value ‖u‖ of the supplying voltage (7)
and the three-phase RMS value ‖i‖ of the line currents are equal
to the values for all harmonics:

‖u‖= 401.41 V, ‖i‖= 493.51 A.

Table 4 presents the three-phase RMS values of currents’
components for appropriate harmonics described in CPC The-
ory (10), (12), (14), (42)–(44).

Table 4
List of the values of the currents’ components

Current Harmonic order Total
[A] 1st 3rd 5th value∥∥ia

∥∥ 340.77 85.47 83.29 361.06
∥∥is

∥∥ 26.38 87.94 17.69 93.50
∥∥ir

∥∥ 36.41 0.43 6.97 37.07
∥∥ip

u
∥∥ 57.87 28.72 63.89 90.86

∥∥in
u
∥∥ 270.71 27.84 27.04 273.48

∥∥iz
u
∥∥ 126.40 29.78 56.16 141.48
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Table 3 presents the values of individual admittances for
appropriate harmonics described in CPC Theory (6), (8),
(21)–(24).

Table 3
List of the values of the individual admittances

Parameter Harmonic order

[S] 1st 3rd 5th

Ge 0.899

Ydn 0.088e j8.4◦ 0.976e− j177.3◦ 0.255e j170.2◦

Ybn 0.835e− j6.6◦ 1.825e− j0.1◦ 1.093e− j4◦

Ap
n – 0.709e− j126.2◦ 0.517e j136.1◦

An
n 0.767e− j111.5◦ 0.463e j135.8◦ –

Az
n 0.327e j114.6◦ – 0.673e− j129.6◦

The three-phase RMS value ‖u‖ of the supplying voltage (7)
and the three-phase RMS value ‖i‖ of the line currents are equal
to the values for all harmonics:

‖u‖= 401.41 V, ‖i‖= 493.51 A.

Table 4 presents the three-phase RMS values of currents’
components for appropriate harmonics described in CPC The-
ory (10), (12), (14), (42)–(44).

Table 4
List of the values of the currents’ components

Current Harmonic order Total
[A] 1st 3rd 5th value∥∥ia

∥∥ 340.77 85.47 83.29 361.06
∥∥is

∥∥ 26.38 87.94 17.69 93.50
∥∥ir

∥∥ 36.41 0.43 6.97 37.07
∥∥ip

u
∥∥ 57.87 28.72 63.89 90.86

∥∥in
u
∥∥ 270.71 27.84 27.04 273.48

∥∥iz
u
∥∥ 126.40 29.78 56.16 141.48
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By using (45) we obtain the three-phase RMS value of the 
currents of the load:

‖i‖=

=
√

361.062 +93.52 +37.072 +90.862 +273.482 +141.482

= 493.51 A.

.
Based on (47)–(53), we can calculate the power components,

which will be used to calculate the power factor (54). The power
factor has the value:

λ =
144933.5
198096.3

= 0.732 .

To sum up, the three-phase value of the components of cur-
rents of the load, in accordance with the CPC Theory, is the
same as the three-phase RMS value calculated traditionally.
Moreover, the power factor of the system depends on six pow-
ers and not only on the active and reactive powers.

5. Conclusion

This article shows that the physical components of the load cur-
rent are associated with specific physical phenomena and can
be described in the asymmetry of the voltage supply even if the
voltage is nonsinusoidal.

The equations shown in the publication allow describing
three-phase four-wire circuits with the asymmetrical nonsinu-
soidal voltage supply, which is another step in the development
of the Currents’ Physical Components Theory, until then de-
scribed only with symmetrical power supply.

Furthermore, this is the commencement of the description
of the possibility to determine the parameters of the balancing
reactance compensator in asymmetrical four-wire systems sup-
plied from a nonsinusoidal voltage source, because each of the
currents’ components is mutually orthogonal.

Appendix A

Vectors are mutually orthogonal when the three-phase scalar
product [1, 2] is equal to zero:

(x,y) =
1
T

T∫

0

x(t)T ×y(t)dt = 0. (A1)

If three-phase quantities are expressed in the form of com-
plex RMS values, namely:

x =
√

2Re
{

Xe jωt} , y =
√

2Re
{

Ye jωt} , (A2)

then their scalar product is equal to:

(x,y) =
2
T

T∫

0

Re
{

XTe jωt} Re
{

Ye jωt} dt

= Re
{

XTY∗} .
(A3)

The above assumptions are true for any harmonic, so it is
sufficient to prove orthogonality between the following compo-
nents:
• (ia, is):

(ia, is) = Re ∑
n∈N

(
(Gbn −Ge)UT

n (GeUn)
∗)

= Re ∑
n∈N

((
GbnUT

n −GeUT
n
)

GeU∗
n
)

= Re ∑
n∈N

Ge
(
GbnUT

n U∗
n −GeUT

n U∗
n
)

= Re ∑
n∈N

Ge

(
Gbn

∥∥un
∥∥2 −Ge

∥∥un
∥∥2
)

= Ge

(
∑

n∈N
Gbn

∥∥un
∥∥2 −Ge ∑

n∈N

∥∥un
∥∥2

)

= Ge(P−P) = 0.

• (is, ir):

(is, ir) = Re ∑
n∈N

(
(Gbn −Ge)UT

n ( jBbnUn)
∗)

= Re ∑
n∈N

((
GbnUT

n −GeUT
n
)
− jB∗

bnU∗
n
)

= Re

{
− j ∑

n∈N
((Gbn −Ge)Bbn)‖un‖2

}
= 0.

• (is, iu):

(is, iu) = Re ∑
n∈N

((Gbn −Ge)Un)
T · (In − Ibn)

∗

= Re

{
∑

n∈N

(
GbnUT

n −GeUT
n
)(

I∗n −Y ∗
bnU∗

n
)}

= Re

{
∑

n∈N

[
GbnI∗n UT

n −GeI∗n UT
n −GbnY ∗

bnUT
n U∗

n

+GeY ∗
bnUT

n U∗
n

]}

= Re

{
∑

n∈N
GbnC∗ − ∑

n∈N
GbnC∗+Ge ∑

n∈N
C∗ −Ge ∑

n∈N
C∗

}

= 0.

With respect to the fact that all currents are mutually orthog-
onal, relationship (54) is accomplished.
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Table 3 presents the values of individual admittances for
appropriate harmonics described in CPC Theory (6), (8),
(21)–(24).

Table 3
List of the values of the individual admittances

Parameter Harmonic order

[S] 1st 3rd 5th

Ge 0.899

Ydn 0.088e j8.4◦ 0.976e− j177.3◦ 0.255e j170.2◦

Ybn 0.835e− j6.6◦ 1.825e− j0.1◦ 1.093e− j4◦

Ap
n – 0.709e− j126.2◦ 0.517e j136.1◦

An
n 0.767e− j111.5◦ 0.463e j135.8◦ –

Az
n 0.327e j114.6◦ – 0.673e− j129.6◦

The three-phase RMS value ‖u‖ of the supplying voltage (7)
and the three-phase RMS value ‖i‖ of the line currents are equal
to the values for all harmonics:

‖u‖= 401.41 V, ‖i‖= 493.51 A.

Table 4 presents the three-phase RMS values of currents’
components for appropriate harmonics described in CPC The-
ory (10), (12), (14), (42)–(44).

Table 4
List of the values of the currents’ components

Current Harmonic order Total
[A] 1st 3rd 5th value∥∥ia

∥∥ 340.77 85.47 83.29 361.06
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∥∥ 26.38 87.94 17.69 93.50
∥∥ir
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By using (45) we obtain the three-phase RMS value of the 
currents of the load:

‖i‖=

=
√

361.062 +93.52 +37.072 +90.862 +273.482 +141.482

= 493.51 A.

.
Based on (47)–(53), we can calculate the power components,

which will be used to calculate the power factor (54). The power
factor has the value:

λ =
144933.5
198096.3

= 0.732 .

To sum up, the three-phase value of the components of cur-
rents of the load, in accordance with the CPC Theory, is the
same as the three-phase RMS value calculated traditionally.
Moreover, the power factor of the system depends on six pow-
ers and not only on the active and reactive powers.

5. Conclusion

This article shows that the physical components of the load cur-
rent are associated with specific physical phenomena and can
be described in the asymmetry of the voltage supply even if the
voltage is nonsinusoidal.

The equations shown in the publication allow describing
three-phase four-wire circuits with the asymmetrical nonsinu-
soidal voltage supply, which is another step in the development
of the Currents’ Physical Components Theory, until then de-
scribed only with symmetrical power supply.

Furthermore, this is the commencement of the description
of the possibility to determine the parameters of the balancing
reactance compensator in asymmetrical four-wire systems sup-
plied from a nonsinusoidal voltage source, because each of the
currents’ components is mutually orthogonal.

Appendix A

Vectors are mutually orthogonal when the three-phase scalar
product [1, 2] is equal to zero:

(x,y) =
1
T

T∫

0

x(t)T ×y(t)dt = 0. (A1)

If three-phase quantities are expressed in the form of com-
plex RMS values, namely:

x =
√

2Re
{

Xe jωt} , y =
√

2Re
{

Ye jωt} , (A2)

then their scalar product is equal to:

(x,y) =
2
T

T∫

0

Re
{

XTe jωt} Re
{

Ye jωt} dt

= Re
{

XTY∗} .
(A3)

The above assumptions are true for any harmonic, so it is
sufficient to prove orthogonality between the following compo-
nents:
• (ia, is):

(ia, is) = Re ∑
n∈N

(
(Gbn −Ge)UT

n (GeUn)
∗)

= Re ∑
n∈N

((
GbnUT

n −GeUT
n
)

GeU∗
n
)

= Re ∑
n∈N

Ge
(
GbnUT

n U∗
n −GeUT

n U∗
n
)

= Re ∑
n∈N

Ge

(
Gbn

∥∥un
∥∥2 −Ge

∥∥un
∥∥2
)

= Ge

(
∑

n∈N
Gbn

∥∥un
∥∥2 −Ge ∑

n∈N

∥∥un
∥∥2

)

= Ge(P−P) = 0.

• (is, ir):

(is, ir) = Re ∑
n∈N

(
(Gbn −Ge)UT

n ( jBbnUn)
∗)

= Re ∑
n∈N

((
GbnUT

n −GeUT
n
)
− jB∗

bnU∗
n
)

= Re

{
− j ∑

n∈N
((Gbn −Ge)Bbn)‖un‖2

}
= 0.

• (is, iu):

(is, iu) = Re ∑
n∈N

((Gbn −Ge)Un)
T · (In − Ibn)

∗

= Re

{
∑

n∈N

(
GbnUT

n −GeUT
n
)(

I∗n −Y ∗
bnU∗

n
)}

= Re

{
∑

n∈N

[
GbnI∗n UT

n −GeI∗n UT
n −GbnY ∗

bnUT
n U∗

n

+GeY ∗
bnUT

n U∗
n

]}

= Re

{
∑

n∈N
GbnC∗ − ∑

n∈N
GbnC∗+Ge ∑

n∈N
C∗ −Ge ∑

n∈N
C∗

}

= 0.

With respect to the fact that all currents are mutually orthog-
onal, relationship (54) is accomplished.
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currents of the load:
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[11] M. Pasko, D. Buła, K. Dębowski, D. Grabowski, and M. Ma-
ciążek, “Selected methods for improving operating conditions
of three-phase systems working in the presence of current and
voltage deformation – part I”, Arch. Electr. Engin. 67 (3), 591–
602 (2018).

[12] G.S. Raj and K. Rathi, “P-Q theory based shunt active power
filter for power quality under ideal and non-ideal grid voltage
conditions”, IEEE Inter. Conf. on Pow., Inst., Cont. and Comp.
(PICC), 2015, pp. 1–5.

[13] L.S. Czarnecki and P.M. Haley, “Unbalanced power in four-wire
systems and its reactive compensation”, IEEE Trans. on Pow.
Deliv. 30 (1), 53–63 (2015).

[14] L.S. Czarnecki and P. Bhattarai, “Currents’ Physical Compo-
nents (CPC) in three-phase systems with asymmetrical voltage”,
Przegl. Elektr. 91 (6), 40–47 (2015).

[15] L.S. Czarnecki and P. Bhattarai, “Power and compensation in
circuits with distorted and asymmetrical current and voltage
waveforms. Vol. 8, Power and compensation of circuits with
asymmetrical supply voltage”, Aut., Elektr., Zakł. 6 (1/19), 8–18
(2015) [in Polish].
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