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Abstract: From the perspective of a virtual power plant (VPP) with electric vehicles (EVs),
a self-scheduling strategy considering the response time margin (RTM) and state of charge
margin (SOCM) is proposed. Firstly, considering the response state of the state of charge
(SOC) and charge-discharge state of EVs, a VPP based response capacity determination
model of EVs is established. Then, RTM and SOCM indexes are introduced on the basis
of the power system scheduling target and the EV users’ traveling demands. The RTM
and SOCM indices are calculated and then are used to generate a priority sequence of
responsive EVs for the VPP. In the process of the scheduling period and rolling iteration,
the scheduling schemes of the EVs in the VPP for multiple time periods are determined.
Finally, the VPP self-scheduling strategy is validated by taking an VPP containing three
kinds of EV users as an example. Simulation results show that with the proposed strategy,
the VPP is able to respond to the scheduling power from the power system, while ensuring
the traveling demands of the EV users at the same time.
Key words: electric vehicle (EV), response time margin (RTM), scheduling strategy, state
of charge margin (SOCM), virtual power plant (VPP)

1. Introduction

With the increasing depletion of fossil energies, the world is confronted with a huge challenge
of energy shortage and environmental pollution issues [1]. At the end of the 20th century, the wide
attention on the environmental protection promoted the energy technology revolution represented
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by the renewable generation in energy production [2]. Meanwhile, the expectation of green, clean
and efficient energy consumption has also given rise to the booming development of electric
vehicles (EVs). According to the statistical data of the EV market, the number of EVs in China
is expected to reach 60 million by 2030 [3].

For the EVs, the vehicle-to-grid (V2G) technology refers to a bi-directional power flow
between the EV and the power system, and it can increase the flexible response regulation
capability of EVs [4, 5]. Considering the limited response capacity of a single EV [6], the EVs
are usually grouped into a virtual power plant (VPP) to participate in the system operation by
adjusting the power exchange with the power grid according to a priority sequence [7, 8]. Similar
to the conventional power plants, the VPP is an aggregator of EVs. The VPP can provide stable
power regulation service to the power system. The state of charge (SOC) is usually used as an
indicator for avoiding the over-charge or over-discharge of an EV battery. However, due to the
small capacity of a single EV battery, participating in the scheduling operation of a power system
for a continuous time period will lead to the SOC variation. This will have a non-negligible
impact on its responsiveness at the subsequent time periods, and ultimately prevent the VPP from
formulating an effective scheduling resource for the power systems [9, 10].

At present, there are two main types of research on the scheduling strategy of the EV charging
loads at the demand side, including centralized control and decentralized control. The centralized
control formulates a unified charging and discharging strategy for the EVs in the VPP. In [11],
based on the genetic algorithm with the objective of reducing the EV charging load fluctuations,
a charging and discharging strategy for the VPP with large-scale EVs was established. In [12],
a unified power regulation strategy based on power flow tracing was developed for the unit
commitment of wind farms using the EVs. To schedule real-time power control for EVs with the
aggregated EV model, the SOC-based sorting algorithm [13], the least laxity first algorithm [6],
and the optimization algorithm [14] were used by a central operator to update the power exchange
of individual EVs. However, the centralized control strategy is usually unable to give a specific
control scheme to individual EVs in the VPP. It may cause inadequate response capability or
second disturbance to the power system [15–17]. Therefore, it is necessary to develop a series
of decentralized control strategies to meet the actual needs of VPPs. For this reason, a multi-
time-scale hierarchical control algorithm of EVs was developed in [18]. The researchers in [13]
proposed a frequency response control strategy of EVs considering traveling behaviors of EV
users in a decentralized way. The decentralized control allows individual EVs to determine their
own charging and discharging preferences, and intelligent devices should be applied to schedule
EVs’ charging and discharging processes [19, 20].

However, the above studies ignored the influence of the SOC changes of an EV battery. The
influence of the charging and discharging state on the response capacity of the VPP after power
scheduling is not fully considered. Actually, the change of the above states is closely related
to the scheduling strategy of the VPP. In order to solve the above problems, a self-scheduling
strategy considering the response time margin (RTM) and state of charge margin (SOCM) is
proposed. Simulation results show that with this proposed strategy, the VPP is able to respond to
the scheduling power from the power system effectively in a continuous way. At the same time,
the proposed strategy ensures the traveling demands of EV users.
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2. Framework

The self-scheduling strategy of a VPP has three levels:
1. Control center level;
2. VPP level;
3. Individual EV level.
The framework of the VPP scheduling with EVs is shown in Fig. 1.

Control Center

VPP

 response capabilitybi  scheduling planli

Individual EV

control signal state informationf

Fig. 1. Framework of the VPP scheduling with EVs

At the Control center level, the scheduling scheme is determined considering several increas-
ingly important factors such as load uncertainties, unit outage and the variation of renewable
power, as they are massively integrated into power grids. The scheduling scheme is then issued
to the VPP within its available response capacity for the regulation of the power system. The
scheduling scheme at this level is given by the system operators instead of being considered in
detail in this paper.

At the VPP level, the scheduling scheme issued by the control center is allocated to each EV
using the self-scheduling strategy proposed in this paper.

At the individual EV level, the charging/discharging state of an individual EV changes corre-
spondingly according to the power control signals from the self-scheduling strategy of the VPP.

3. Self-scheduling strategy of VPP

Before establishing the responsive model of the VPP, the response process of EVs is de-
composed into four response modes shown in Fig. 2. According to the three states of a battery:
discharge, charging and idle, and then the four response modes are summarized as mode I, II, III
and IV, respectively.
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mode I mode II

mode IIImode IV

regulation up

regulation down

discharge idle charge

Fig. 2. Response modes of a single EV

3.1. A general model for VPP with EVs
Taking the slow charging mode for EVi as an example, the energy storage characteristics of

a single EV are shown in Fig. 3. The shading part is the operation area of the EVi in the process
of V2G [21].
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Fig. 3. Energy storage characteristics of an EV

Take EVi as an example, EVi is assumed to be connected to the power grid at ti,s and
disconnected at the time ti,d . In order to prevent the aging of batteries, Si,max and Si,min are set
as the SOC upper and lower limits of EVi , respectively. EVi starts to charge at the rated power
Pm
i immediately after it is connected to the grid at ti,s , and switches to an idle state when the

SOC reaches Si,max, corresponding to the boundary a-b-c in Fig. 3. On the contrary, the boundary
a-d-e indicates that EVi is discharged at Pm

i since ti,s , and stops discharging when the SOC is
lower than Si,min. In addition, in order to ensure that the SOC of EVi can reach its minimum SOC
(Si,d) required by the EV user when leaving the grid, the boundary e- f indicates that the battery
needs to be charged compulsively before travelling.
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Without participating any response mode, the charging state of an EV at time t (see σ(t) in
(1)) is defined in Eq. (1).

σ(t) =


1, 0 ≤ Si (t) < Si,d t ∈ [ti,s, ti,d]

0, Si,d ≤ Si (t) < Si,max t ∈ [ti,s, ti,d]
, (1)

where: Si (t) is the battery SOC of EVi at time t; σ(t) equals to ‘0’ and ‘1’ means the EV is in
idle and charging states, respectively. When participating in the power scheduling process, the
σ(t) will be adjusted according to the response mode depicted in Fig. 2. However, when the EV
is in the discharging state, σ(t) is set to be ‘−1’.

When evaluate the response capability of a single EV at a specific time, it will be determined
considering the σ(t), Si,max, and Si,min at the same time. The response capability of a single EV
for participating the four response modes are shown in Eqs. (2)–(4).

Pu,I
i (t) =


Pm
i , σ(t) = 0

0, others
, (2)

Pu,II
i (t) =


Pm
i , σ(t) = 1

0, others
, (3)

Pu,III
i (t) =


−Pm

i , σ(t) = 0, Si (t) < Si,max

0, others
. (4)

In general, it is assumed that the dotted curve a-P in Fig. 3 represents the operating state of
EVi after it is connected to the power grid. Taking the operation point P as the current operation
state, we can get the fastest charging process PX , idle process PY and the fastest discharge
process PZ .

In a given scheduling period [nT, (n+1)T], the time tci when EVi reaches the forced charging
power is obtained by Eq. (5).

tci =

(
Qi (Si (nT ) − Si,d)ηd

Pm
i

+ nTηcηd + ti,d

)
(ηcηd + 1)

, (5)

where Qi is the battery capacity and ηc , ηd represent the charging and discharging efficiency,
respectively.

The time tli can be obtained by Eq. (6), when EVi reaches the lower bound of the controllable
region.

tli =
Qi

(
Si (nT ) − Si,min

)
ηd

Pm
i

+ nT . (6)
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Based on the above analysis, the available response capacity of the VPP is show in Eq. (7).


P

u
(t) =

N∑
i=1

(
Pu,I
i (t) + Pu,II

i (t)
)

P u (t) =
N∑
i=1

Pu,III
i (t)

, (7)

where N is the number of EVs in the VPP.
However, the Si (t) has close relationship with the response mode in the time [tsi , t]. The

Eqs. (8)–(10) are used to amend the available response capability in a scrolling manner.



Si (t) =


Si
(
ti,s

)
+ ∆Si, ti,s ≤ t ≤ ti,d

0, others

∆Si =
1

Qi

t∫
ti,s

(
Puc
i (t) − PII

i (t) − PIII
i (t)

)
ηc −

(
PI
i (t) + PIV

i (t)
) 1
ηd

dt

, (8)

Puc
i (t) = Pm

i σ(t), (9)

Pk
i (t) =


Pm
i , k = I, II

−Pm
i , k = III, IV

0, without-participation

, (10)

where: Puc
i is the charging power of EVi without participating any response mode; PIV

i is the
response power when participating in mode IV.

3.2. The definition of EV queueing index in a VPP
Each EV connected to the power system can respond quickly enough to the scheduling power

from the power system. Such actions may lead to a rapid variation in the battery responsiveness,
and even unable to respond continuously. Take mode I in Fig. 2 as an example, the maximum
time that an EV can sustain an excessive response during the scheduling period is defined as the
response time margin (RTM) under this response mode, as shown in Eq. (11).

RTMn
i =


0, nT <

[
ti,s, ti,d

]
and (n + 1)T <

[
ti,s, ti,d

]
T,

{
ti,s, tli, tci , ti,d

}
1 (nT, (n + 1)T]

min
(
tli, tci , ti,d, (n + 1)T

)
−max

(
ti,s, nT

)
, otherwise

. (11)

As shown in Eq. (11), in a given scheduling period, the RTMn
i ∈ [0, T ]. When the VPP

participates in the optimal scheduling process of the power system, the larger the RTMn
i , the

longer the response time that the EV can sustain. This means that the EV with a large RTMn
i

will be selected with a high priority to participate in the response process. However, in the [nT,
(n + 1)T ] period, there may be multiple EVs whose RTMn

i is equal to T , and only the single RTM
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index will not provide a clear priority sequence among the EVs to response to the power system.
Therefore, an index called the state of charge margin (SOCM) is also defined in this section.

The SOCM index is defined as shown in Eq. (12) [22].

SOCMn
i =


Si,d − Si (nT )
Si,d − Smin

i

, ∆Pn ≤ 0

Si (nT ) − Smin
i

Si,d − Smin
i

, ∆Pn > 0
, (12)

∆Pn =


P∗(n), n = 1

P∗(n + 1) − P∗(n), n > 1
, (13)

where: P∗(n) is the response power demand just before the [nT, (n+1)T] time period; ∆Pn

denotes the power variation of the response power at the [nT, (n+1)T] period compared with the
previous time period. ∆Pn is used as the response power variation demand of the VPP. A negative
value means that the VPP needs to reduce its power output, while a positive value means that the
VPP needs to increase its power output.

When the VPP needs to reduce its power output, the EVi with a high SOCM, will stop
discharging, and even starts to charge. In contrary, when the VPP needs to increase its power
output, the EVi with a higher SOCM, will stop charging, and even starts to discharge.

3.3. Self-scheduling strategy of the VPP
When the ∆P(t) is determined at the control centre level, the self-scheduling strategy of the

VPP is used to allocate the power to each EV in the VPP. The specific steps of self-scheduling
strategy of the VPP are described as follows:

1. For a given time period [nT, (n+1)T], according to the states of the VPP, the response
capability of the VPP is evaluated using Eq. (7).

2. The EVs in the VPP are divided into four control groups according to the four response
modes depicted in Fig. 1. A single EV can participate in multiple modes at the same time. There
is an intersection between different groups.

3. When the power response request of the VPP from the power system is determined at the
control centre level, it will be then allocated to the specific EVs in the VPP with a pre-defined
queuing discipline.

At the first stage, each EV controlled group is arranged in the order of the RTM, from large
to small. For EVs with the same RTM, the corresponding priority sequence of each group is
obtained by referring to the descending order of the SOCM. Using this discipline, the EVs are
sorted to generate a priority sequence of responsive EVs for the VPP.

Scenario I: when the VPP output is required to be up-regulated, the priority sequence
generated by the response mode group from a charging state to an idle state is considered
firstly. When all EVs stop charging and still cannot satisfy the response power request curve, the
“idle”→“discharge” group needs to be supplemented.

Scenario II: when the output of VPP is required to be down-regulated, the “discharge”→“idle”
group is preferentially selected to generate a priority sequence. When all EVs are charged and the
response curve cannot be satisfied, the “idle”→“charge” group should be considered.
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In each scenario, according to the response power request, the EVs at the front end of the
sequence is selected to adjust the charge/discharge power directly.

4. As is shown in Eq. (14), according to the response power from the power system, and based
on the priority sequence step III, the minimum positive integer is used as the number (No) of
response EVs in the VPP.

No∑
i=1

PII
i (t) ≥ ∆Pn, 0 ≤ ∆Pn ≤

N∑
i=1

PII
i (t)

N∑
i=1

PII
i (t) +

No∑
i=1

PI
i (t) ≥ ∆Pn,

N∑
i=1

PII
i (t) ≤ ∆Pn

No∑
i=1

PIV
i (t) ≤ ∆Pn,

N∑
i=1

PIV
i (t) ≤ ∆Pn < 0

N∑
i=1

PIV
i (t) +

No∑
i=1

PIII
i (t) ≤ ∆Pn, ∆Pn ≤

N∑
i=1

PIV
i (t)

. (14)

For a comparison purpose, an ID order control strategy for the EVs in the VPP is introduced.
In the ID order control strategy, the EV VPP is numbered according to the order of a connecting
EV charger. Response capability is calculated in turn until the VPP is composed of the first
No+11 EVs, which can satisfy the response power demand. Finally, the control scheme of
charging/discharging power of No of EVs is obtained.

4. Simulation analysis

4.1. Scenario setup
Considering that EVs charging periods for different purposes show great differences, it will

hence have critical influences on the results of calculation examples. According to statistics
on registered vehicles in the UK, private commuter vehicles, private non-commuter vehicles
(generally characterized by those retired from work or who are unemployed) and corporate vehicles
account for 61%, 30% and 9% of the EVs market for three different purpose, respectively [23].
According to the above market share, this case takes the VPP composed of 300 EVs as an
example to verify the proposed VPP self-scheduling strategy. According to different vehicle
traffic uses, the start-finish time distribution of EVs daily travel is shown in literature [24].
The distributions of other EV parameters, such as the battery capacity, the charging/discharging
power, the charging/discharging efficiency, the initial SOC, and the demand SOC are shown in
literature [9].

Each parameter of an individual EV can be extracted from the distributions in literatures [24]
and [9]. Then each EV is simulated and its response characteristics can be according with the
obtained general model for the VPP with EVs. An EV is assumed to start to charge as soon as the
EV plugs into the power grid, and the charging process will not be disturbed until the demanded
SOC is reached or the control signal is received. Then specific steps of self-scheduling strategy
of the VPP can be conducted with all simulated EVs in the VPP.
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In addition, in order to realize the simulation of the control effect of the VPP participating
in the system scheduling, this paper set the scheduling time interval as 1h, and assumed that the
scheduling power demand of the VPP issued by the system operator was shown as the dotted
line of Fig. 4. Finally, the change of response requirement ∆Pn corresponding to the model is
obtained, as shown by the solid line of Fig. 4.

Fig. 4. The scheduling power demand of VPP

4.2. Results analysis
According to the four response modes, the VPP was divided into different groups, and the

RTM and SOCM indexes were calculated, respectively. As shown in Fig. 5, compared with the
ID order control strategy, the self-scheduling strategy can significantly reduce the number of
controlled EVs. Fig. 5 also shows the number distribution of controlled EVs under different
response modes. By the parameters optimal selection of the RTM and SOCM, the number of EVs
participating in the response mode II (i.e. “charging”→“idle” response) is significantly reduced.
Even compared with the ID order control strategy, the VPP does not have to discharge to the
power grid in multiple periods.

To further explain why the proposed self scheduling strategy decreases the number of con-
trolled EVs during multiple time periods, more simulation results have been added to further
illustrate the effectiveness of the RTM and SOCM indexes in the proposed self scheduling strat-
egy. Simulation results about the RTM and SOCM during the 19:00–22:00 time period are shown
in Fig. 6. It is noteworthy that the EVs have significant differences in the RTM and SOCM as
the SOC levels are uneven after one daytime travels. Thus it is reasonable to develop the priority
method for regulating up or down EVs based on the differences of EVs in the RTM and SOCM.

Then, considering the RTM and SOCM indices, the results of EVs ranking in the above
period are shown in Fig. 7, and the data label in the figure is an EV ID number. The RTM and
SOCM indices of each EV need to be updated and calculated continuously in each scheduling
period. Different from ID order control strategy, the self-scheduling control strategy firstly ranks
the EVs in descending order according to the RTM. When the RTM is equal, it further defines
the higher priority level of the larger SOCM, participates in response preferentially on the basis
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(a) Self scheduling strategy

(b) ID order control strategy

Fig. 5. The number distribution of controlled EVs under different response modes
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of considering both the scheduling power and user travel demand. Finally it obtains the decision-
making conclusion when the VPP participates in multi-time-scale scheduling. The EV with a
higher priority has a higher RTM and correspondingly has a longer available period for power
control. Thus, the proposed self scheduling strategy decreases the number of controlled EVs as
shown in Fig. 5.
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The average SOC distribution of all EVs is shown in Fig. 8. Compared with the ID order
control strategy, the proposed self scheduling strategy prevents the SOC value of an EV reaching
too high or too low to some degree. The proposed strategy makes the distribution of the SOC
values of EVs more centralized. This is because that the EVs with the higher RTM and SOCM
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have the priority to be controlled with the proposed self scheduling strategy. For an EV in the
charging state with a low SOC value, it has a small SOCM for regulating up, and the EV locates
at the bottom of the priority list when regulating up. Thus, the charging process of this EV has the
lower probability to be disturbed. For an EV in the charging state with a high SOC value, it has
a high SOCM for regulating up, and the EV locates at the top of the priority list when regulating
up. Thus, the charging process of this EV has the higher probability to switch to idle and even
discharging.

5. Conclusions

This paper proposes a self-scheduling strategy of a VPP considering the RTM and SOCM
selection indexes method. Comparable results validate the effectiveness of the proposed self-
scheduling strategy of the VPP. The conclusions are summarized as follows:

1) The RTM parameter is used to prioritize the EV with long duration response time, reduce
the number of controlled EV and reduce the switching frequency of charging and discharging
states in the VPP. The SOCM parameter takes the limitation and demand value of the SOC as
reference to realize that when the VPP output is up-regulated (down-regulated). An EV with a
smaller difference from the lower limit of the SOC (demand value of SOC) should be selected
to stop charging (discharging) or even start discharging (charging) to avoid the local high or low
average SOC. The proposed RTM and SOCM indices provide a good metric for estimating the
available response capacity under different response modes during the grid-connecting period.

2) On the basis of group division of the VPP, the EVs are sorted according to the selected
indexes, and the priority sequences are generated. Finally, the controlled EVs are determined ac-
cording to the issued scheduling power. The VPP self-scheduling strategy can meet the scheduling
requirements and ensure the comfort of EV users. Thus, the proposed self-scheduling strategy
considering the RTM and SOCM effectively decreases the number of the controlled EVs when
responding to the power grid.

In actual applications, switching to DS incurs extra battery degradation. With a low charg-
ing/discharging rate, the main factor that impacts battery degradation is the total processed energy
[25, 26]. Thus, the extra battery degradation caused by switching to DS is set to be approximately
proportional to the discharged energy. As an EV aggregator does not own EV batteries, it needs
to compensate EVs for the extra battery degradation. Due to different preferences of EVs, the
expected compensation prices of different EVs for per unit discharged energy are various. By
referring to the electricity market, the EV aggregator is assumed to contract and trade with EV
users at the same clearing price for the extra battery degradation compensation. The EV aggre-
gator has the authority to implement the four response modes with the contracted EVs. All EVs
are treated equally and the profits of EVs are ensured. The clearing price directly impacts the
participation rate of EVs for the regulation service.
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