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1. Introduction and literature review

Hard coal mining is one of the key industries in Poland. At present, the country has 20 
active collieries, producing steam and coking coal. Many experts consider such industrial 
activity as burdened by numerous risks and being capital intensive (Saługa 2009; Dychkov- 
skyi et al. 2018). Hard coal mining has recently been under pressure of falling coal prices 
on world markets, coupled with the rising costs of services (U.S. EIA 2020). At the same 
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time, coal mining conditions have been deteriorating, mining depth and temperature have 
been increasing, distances for haulage of materials and transport of workforce/crews 
have been extending, effective time of work has been decreasing, while threats have been 
intensifying (Kopacz 2017), and the seams mined contain increasing amounts of gangue 
(ARP 2019). For many years now, restructuring processes have been going on, with the aim 
of improving the economic efficiency of the entire hard coal mining sector (Szlązak 2004; 
Sobczyk et al. 2020). The above, along with many other factors make coal mining ever less 
profitable and strongly dependent upon economic cycles (Fałtyn and Naczyński 2018; Baran 
et al. 2018). 

The possibilities of improving that situation may be sought in better planning processes. 
The improvement would have to aim at such planning of production which would be as 
predictable as possible, being on the other hand, economically efficient. In that respect, it 
appears instrumental to plan the future mining of longwalls being fully aware of the geo-
logical and mining conditions in which the mining will take place, as well as the resulting 
economic consequences, in the form of expected longwall cost over the entire lifecycle, or 
the assumptions concerning expected output level. 

This publication belongs to the line of research conducted by the authors, documented, 
among others, in (Sobczyk 2008; Sobczyk and Kopacz 2018). It is an attempt to identify the 
relationship between some geological and mining parameters and longwall cost levels, or 
the theoretical coal net output defined for them. This attempt is also a verification of what 
has been contemplated so far concerning the existence of relations between the level of nui-
sance and the level of operating costs incurred at the phase of fitting, mining, and salvage 
operations. It has to be stressed here that previous research of the authors was based mainly 
on the analysis of those relations on the basis of correlations and simple regression models. 
In this publication, we have introduced aspects of statistical modeling, in order to determine 
acceptable models and forecasts of longwall operating costs, and the theoretical production 
capacity of longwalls. It is worth stressing that the results of such research may be put to 
practical use – in the course of planning future longwall mining in the analyzed coal mines. 

2. Research objective, methodology and data

2.1. Research objectives

The paper presents an attempt to verify the hypothesis about the existence of the relation-
ships between the level of nuisance of geological and mining parameters and the production 
costs in longwalls and the level of coal net output.

The main aim of the work was to develop a statistical model representing the relation-
ships between longwall operating costs, coal output and geological and mining factors re-
spectively.
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In the research process, two statistical models were built for the following dependent 
variables: unit operational cost (Model 1) and coal net output (Model 2). The definitions for 
all of them are given in section 2.4. The models also cover: interpretation of the impact of the 
independent variables on the dependent variables and point predictions.

The first part of the work was devoted to establishing the relationships between longwall 
operational costs, their production outputs and geological and mining conditions (factors) 
represented by the indicator of technical nuisance (WUe, WUt). The aggregated impact of 
natural hazards, coal seams specification and longwall technical parameters – so called tech- 
nical nuisance – was determined with use of an Analytic Hierarchy Process (AHP), more pre-
ciously described in the following publications (Sobczyk 2008; Sobczyk and Kopacz 2018). 
Statistical models were built on the past production performance of five Polish coal mines, 
than empirically tested. The impact of individual parameters on the longwall operations was 
determined on the basis of variability of geological and mining conditions in 120 longwalls 
in the 2010–2019. Finally, identified relationships allowed to formulate the numerical pre-
diction of the unit production cost and longwall coal net output with reference to the level of 
expected technical nuisance to be forumlated. The prediction period was established for the 
years 2020–2030. Based on that, we were able to formulate our opinion on the expected unit 
production cost and coal net output of 230 longwalls planned for exploitation in those mines. 

The scheme of the research process is shown in Figure 1. 

Fig. 1. The research process. Source: own study

Rys. 1. Etapy procesu badawczego
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2.2. Geological and mining conditions which influence mining 
in hard coal mines

Mining conditions in underground hard coal mines are determined by natural, technical, 
and organizational factors, which jointly determine the possibilities and ways of mining 
extraction. They are decisive for safety, mining efficiency and production results of coal 
mines. By taking significant factors in the analysis into account, those which influence the 
mining process itself, it is possible to quantify risks related to mining, namely those which 
stem from geological and mining conditions, and to demonstrate their influence upon the 
mining cost level, as well as mining limitations, thus to focus on longwall mining itself 
(Magda 2016).

Geological and mining conditions comprise all the factors related to the occurrence, 
development, and mining of hard coal in the deposit. These factors result from the geology 
and structure of the deposit, as well as hydro-geological, gas-related, geothermal, and geo-
technical conditions. Some of those conditions may change with the progress of mining in 
the colliery, whereas others may alter due to the influence adjacent mines/collieries. 

Applying the hierarchical approach proposed by Sobczyk (Sobczyk and Kopacz 2018), 
geological and mining conditions may be divided into four groups of factors which influence 
the general level of mining nuisance, namely:

�� natural hazards,
�� coal seam parameters,
�� mining (technical) parameters,
�� environmental factors.

Natural factors and seam parameters are connected with the geology and structure of 
hard coal deposits. In particular, they comprise such factors as: seam thickness, partings 
in the seam, lithologic structures in the roof and floor, the occurrence of faults and other 
geological disturbances, coal seam dip, cracks in coal seams and surrounding rocks, the 
occurrence of thinning and wash-out erosion in seams, petrographic composition of coal 
(Paździora 1988). The factors considered to be natural hazards and deposit (seam) para- 
meters also comprise hydro-geological, gas, thermal, and geotechnical conditions. Hydro- 
-geological conditions are determined by the site hydrography, geological structure, type of 
overburden, and past mining activities. Gas conditions of the deposit are connected with the 
presence or absence of methane (the amount of methane present matters substantially). Ther-
mal conditions of the deposit depend on the rock temperature. This, in turn, is connected 
with the geothermal degree in the deposit. Geotechnical conditions are linked with the sus-
ceptibility of coal and surrounding rock to bumping, roof and floor classes next to the coal 
seams, as well as workability of coal and gangue. From the above factors, the following 
have been selected for further statistical analyses: natural hazards, tectonics of the analyzed 
deposit, sedimentation conditions, depth at which the seam occurs, or dirty bands thick-
ness. Mining practice indicates that mining activity in the presence of natural hazards – due 
also to legal, organizational, and health & safety limitations – is connected with substantial 
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spending on preventive activities, which aim at creating safe work conditions. Natural ha- 
zards (e.g. methane, bumps) limit longwall advance and coal output. 

Technical (mining) parameters are all the parameters related to the physical location of 
workings (longwalls), geometric parameters of those longwalls, as well as the factors de-
fined as interaction between the longwall and rock mass. In the case of technical parameters, 
the analyses took into account such criteria which, in accordance with the knowledge the au-
thors accumulated and with mining experience in collieries, significantly influence mining 
costs and longwall production results. They comprised, in particular: location of longwalls 
within the mining area, which is connected with the logistics of haulage and transport, geo- 
metrical parameters of longwalls which – together with seam parameters – determine the 
coal output from a given longwall which, taking the relatively high share of fixed costs into 
consideration, translates into the level of unit costs. 

It should be pointed out that apar from the factors influencing geological and mining con-
ditions of production, the features which also characterize the influence of mining upon the 
environment have been taken into account in the statistical analysis. The waste rock amount 
is included among the environmental factors, as it increases the total run-of-mine as well as 
production cost.

2.3. Data analysis methods

The multiple linear regression model used in the study can be expressed in general as

	 ln y = Xβ + ε� (1)

where y = (y1, y2, ..., yn)’ is a n · 1 vector of observations of the dependent variable. X is the 
n · (k + 1) matrix of observations for each of the explanatory variables (first column is a unit 
constant), β = (β0, β1, β2, ..., βk)’ is (k + 1) · 1 vector of k regression coefficients and intercept 
and ε = (ε1, ε2, ..., εn)’ is a n · 1 vector of random error components. Regression coefficient are 
estimated using the Ordinary Least Squares (OLS). In model (1), the j-th regression coeffi-
cient βj approximately represents the expected change in by 100 · βj percent per unit increase 
in j-th independent variable Xj, assuming the unchanged levels of all the remaining inde-
pendent variables. Each independent variable (Xj) was standardized by standard deviation. 

The following assumptions underlying OLS regression are especially important to verify 
before proceeding to the interpretation of the model outcomes:

�� linearity of the relationship between the predictors and the outcome variable,
�� minimal multicollinearity among the independent variables,
�� normality of error term,
�� homoscedasticity and independence of errors,
�� proper model specification (e.g. inclusion of all relevant variables and exclusion of 

irrelevant variables). 
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Without making sure that model assumptions are tenable, the results of estimation, point 
and interval prediction may be misleading. 

At the beginning, the appropriate functional form for all variables was revealed using 
graphical methods, to assure the proper statistical modelling. All appropriate pairwise scat-
terplots were investigated to search for non-linearity or any atypical data patterns e.g. out-
lying observations. 

One of the main assumptions for the OLS regression is the homogeneity of variance of 
the residuals. The literature includes many graphical and non-graphical methods for de-
tecting heteroscedasticity. A commonly used graphical method is to plot the residuals ver-
sus fitted (predicted) values, while  the Breusch–Pagan test (Breusch and Pagan 1979) is 
a popular non-graphical method for detecting heteroscedasticity. The null hypothesis of the 
Breusch–Pagan test claims that the variance of the residuals is homogenous. Under the null 
hypothesis of homoscedasticity the test statistic is asymptotically distributed as χ2 with k 
degrees of freedom (Wooldridge 2013).

Normality of residuals is required in small samples for valid confidence interval estima-
tion and hypothesis testing. Normality is not required to obtain unbiased estimates of the 
regression coefficients. OLS regression merely requires that the residuals (errors) be identi-
cally and independently distributed. Violations of normality assumption create problems for 
determining whether model coefficients are significantly different from zero and for calcu-
lating confidence intervals. Also if the error distribution is strongly non-normal, prediction 
intervals may be too wide or too narrow, depending on the tail behavior of the error distri-
bution. There are several methods of assessing whether error distribution is normal. They 
fall into two broad categories: graphical and statistical. The common graphical techniques 
are Q-Q probability plots and cumulative frequency (P-P) plots. Many statistical tests are 
used to assessing normality e.g. Shapiro–Wilk (SW), Kolmogorov–Smirnov (KS), Lilliefors, 
Anderson–Darling (AD), Jarque–Bera test. Monte Carlo simulation studies have found that 
Shapiro–Wilk test has the best power for a given significance level, followed closely by An-
derson–Darling when comparing SW, KS and AD tests (Razali and Wah 2011). SW test was 
designed to test for normality for small data-size (n < 50), but is also recommended for larger 
samples. The SW tests the null hypothesis  that a sample x1, ..., xn came from a normally 
distributed population. The test statistic is

( )( )
( )

2

1
2

1

n
i ii

n
ii

a x
W

x x

=

=

=
−

∑
∑

where x(i) is the i-th smallest value in the sample. The coefficients ai are given by (ai, ..., an) = 
= (m’V –1)/C,  where C is a vector norm C = ||V –1m|| and the vector m = (m1, ..., mn)’ is made of 
the expected values of the order statistics of independent and identically distributed random 
variables  sampled from the standard normal distribution and is the covariance matrix of 
those normal order statistics (Shapiro and Wilk 1965). Some minor modifications to the 
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SW test have been suggested by Shapiro and Francia (Shapiro and Francia 1972), Weisberg 
and Bingham (Weisberg and Bingham 1975) and Royston (Royston 1982). 

Multicollinearity occurs when two or more predictors in the model are correlated and 
may provide redundant information about the response variable. In this study the Variance 
Inflation Factor (VIF) is used to check for multicollinearity. VIF measures how much the 
variance of the regression coefficients is inflated by multicollinearity. If VIF equals zero, 
there is no correlation between the independent variables. Various recommendations for 
acceptable levels of VIF have been published in the literature. Perhaps most commonly, 
a value of 10 has been recommended as the maximum level of VIF (Hair et al. 1995; Ken-
nedy 1992; Marquardt 1970; Neter et al. 1989). However, a recommended maximum VIF 
value of 5 (e.g., Rogerson 2001) and even 4 (e.g., Pan and Jackson 2008) can also be found 
in the literature. The reasonable rule of thumb is that VIFs exceeding 5 warrant further 
investigation, while VIFs exceeding 10 are a  sign of serious multicollinearity requiring 
intervention.

A model specification error can occur when one or more relevant variables are omitted 
from the model or one or more irrelevant variables are included in the model. If relevant 
variables are omitted from the model, the common variance they share with included va- 
riables may be wrongly attributed to those variables and the error term is inflated. On the 
other hand, if irrelevant variables are included in the model, the common variance they 
share with included variables may be wrongly attributed to them. Model specification errors 
can substantially affect estimates of regression coefficients. One of the regression specifica-
tion tests is the Ramsey Regression Equation Specification Error Test (RESET) for omitted 
variables. It creates new variables based on the predictors and refits the model using those 
new variables to check if any of them are significant. The null hypothesis of the RESET 
test claims that the model has no omitted variables. The RESET tests whether non-linear 
combinations of the fitted values help explain the response variable. The intuition behind 
the test is that if non-linear combinations of the explanatory variables have any power in ex-
plaining the response variable, the model is misspecified in the sense that the data generating 
process might be better approximated by a polynomial or some other non-linear functional 
form.

2.4. Data

To determine the impact of geological and mining conditions on the operation of indi-
vidual longwalls and their costs, the statistical models were elaborated with use of a set of 
criteria presented in Table 1. Input data was collected and grouped from: natural hazards, 
coal seam parameters, mining (technical) parameters and environmental criteria.

To do so, a two step procedure was elaborated. The first step, based on expert judgment, 
was to indicate explanatory variables of strategic importance for the forecast of the long-
wall’s costs and coal net outputs. The second step was to eliminate explanatory variables 
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(Xi) that were strongly correlated and to determine the representatives for a given nuisance 
group. Finally, 20 variables (Table 1) were included in the range of input data to regression 
modelling.

Table 1. 	 Codenames and definitions for the dependent and independent variables

Tabela 1.	 Kody i definicje zmiennych zależnych i niezależnych

Codename Definition

Y1 Total longwall unit cost 

Y2 Longwall coal net output 

X1 Methane hazards (class)

X2 Susceptibility of coal to self-ignition (group)

X3 Gases and rocks outbursts (category)

X4 Rock bumps in the seam (grades)

X5 Climatic hazard (primary rock mass temperature °C)

X6 Tectonics (fault occurrence indicator m/m2 of the longwall surface)

X7 Sedimentation disorders (scale 1 to 5 (1 – none, 5 – very large))

X8 Depth of the seam (m)

X9 Partings in the seam (cm)

X10 Workability (class)

X11 Floor conditions (class)

X12 Roof conditions (class)

X13 Haulage and transport distance (m)

X14 Arrival/transport time of the crew to the longwall (minutes)

X15 Distance from the intake shaft (m)

X16 Longwall length (m)

X17 Longwall panel length (m)

X18 Longwall height (m)

X19
Occurrence of exploitation events in the longwall surroundings 
(scale 1 to 5 (1 – very small, 5 – very large))

X20 Amount of waste rock in the ROM coal (%)

Source: own study.
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3. Results

Table 2 contains descriptive statistics and VIF for all independent variables X1, X2, ..., 
X20 described in Table 1. Table 3 contains the results of the estimation of two multiple re-
gression models for dependent variables Y1, Y2 described in Table 1. The statistical assump-
tions of two regression models (obtained from a backward step-wise procedure) have been 
checked and the results are presented in Table 2 and 3. First, the Variance Inflation Factor 
(VIF) was used to check for the multicollinearity of all predictors and none of the VIF values 
have exceeded the acceptable level of VIF equal to 5. Afterwards, for all considered models 

Table 2.	 Descriptive statistics and VIF

Tabela 2.	 Statystyki opisowe i VIF (test współliniowości)

Predictor Mean Standard deviation VIF

X1 0.451 0.161 2.85

X2 0.110 0.073 1.89

X3 0.127 0.280 1.92

X4 0.125 0.171 1.81

X5 39.367 4.572 4.70

X6 0.001 0.002 1.22

X7 1.808 1.027 1.70

X8 867.967 114.359 4.25

X9 0.212 0.240 1.82

X10 0.113 0.100 2.78

X11 0.670 0.267 2.44

X12 0.748 0.383 2.29

X13 3682.225 1 930.692 3.16

X14 46.716 18.722 2.34

X15 2704.500 915.386 1.79

X16 198.582 45.761 1.78

X17 779.693 399.052 1.47

X18 2.511 0.732 2.27

X19 2.342 1.076 1.53

X20 0.264 0.114 2.40

Source: own study.
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Table 3.	 Multiple linear regression results

Tabela 3.	 Wyniki analizy regresji

Predictors
Predicted variable

Model 1 ln Y1 Model 2 ln Y2

C3 –0.421***
(0.088)

–0.406***
(0.095)

C5 – –0.207*
(0.126)

X1
0.120***

(0.029)
–0.043(e)

(0.035)

X3
0.094***

(0.029)
–0.086***
(0.029)

X4
0.032(e)

(0.028)
–0.039(e)

(0.029)

X6
0.106***

(0.028)
–0.096***
(0.028)

X9 – –0.121***
(0.028)

X15
0.161***

(0.029) –

X16 – 0.079**
(0.033)

X17
–0.217***
(0.029)

0.072**
(0.030)

X18 – 0.184***
(0.031)

C 3.881***
(0.132)

6.978***
(0.225)

R2 0.5925 0.5307

Adjusted R2 0.5671 0.4876

RMSE 0.297 0.292

B–P test 0.08 
p = 0.7718

0.13 
p = 0.7214

Shapiro–Wilk test 0.99239 
p = 0.75701

0.99232 
p = 0.75064

RESET test 1.89 
p = 0.1352

3.10** 
p = 0.0298

Notes: *** denotes statistical significance of regression coefficient at 0.01, ** at 0.05, * at 0.10 and (e) means 
that variable remains in model because of substantive reasons. In parentheses are standard errors. C is an intercept. 
RMSE is the estimated standard error of the regression. B–P test denotes Breusch–Pagan and Shapiro–Wilk test is 
used to test residual normality. RESET test denotes the Ramsey RESET test. C1–5 denotes coal mines in the models. 

Source: own study.
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homoscedasticity and normality of residuals were verified by means of the Breusch–Pagan 
and Shapiro–Wilk tests. In all cases, the Breusch–Pagan test failed to reject the hypothesis 
about the homoscedasticity of residuals. The Shapiro–Wilk test did not reject normality of 
residuals at a 0.05 significance level for both models. 

The coefficients of determination (R2) for models 1 and 2 were 0.5923 and 0.5307. This 
value show that a large portion of each dependent variable variability is unaccounted for by 
the models. However this behaviour was to be expected as in practice complex economical 
and industrial processes are difficult to measure reliably. R2 on a lower side also indicates 
that the dependent variable may be affected by a  host of other factors in addition to the 
ones considered in the analysis (Moksony 1990). Large uncertainty causes the prediction 
intervals to be wide but point predictions and model coefficient interpretations may still 
offer a valuable guidance for budgeting and economic decision-making in an information- 
-deprived environment. 

In the next step, regression coefficients presented in Table 3 are technically interpreted. 
In order to avoid unnecessary repetitions in all subsequent interpretations of regression co-
efficients it is implicitly assumed that all other predictors remain at their constant levels and 
also that all predictors impacts are on average.

The results of the studies are regression models, which enable to estimate total unit 
costs as well as coal net output for longwalls, on the basis of factors resulting from natural 
hazards, geological structure of the deposit (seam), as well as technical factors. Structural 
parameters of the models characterize the strength and direction of influence of specific 
independent variables Xi upon dependent variables Yi. The influence of particular variables 
upon dependent variables Y1 and Y2 is illustrated by Figure 2 and 3.

Fig. 2. Relative impact of the Xi parameters on Y1 (Model 1) – total unit costs 
Source: own study

Rys. 2. Wpływ zmiennych objaśniających Xi na zmienne objaśniane Y1 (Model 1) –  
koszty jednostkowe całkowite ścian
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An increase of X1 (methane hazard) by one standard deviation causes an increase of Y1 
by 12% and a decrease of Y2 by 4.3%. The predictor X3 (gases and rocks outbursts hazard) 
has a statistically significant impact on both Y1 and Y2. An increase of X3 by one standard 
deviation causes an increase of Y1 by 9.4%. and a decrease of Y2 by 8.6%. An increase of X4 
(rock bumps in the seam) by one standard deviation causes an increase of Y1 by 3.2%. and 
a decrease of Y2 by 3.9%. The predictor X6 (fault occurrence indicator) has a statistically 
significant impact on Y1 and Y2. An increase of X6 by one standard deviation causes an in-
crease of Y1 by 10.6%, and a decrease of Y2 by 9.6%. The predictor X9 (coal partings in the 
seam) has a statistically significant impact on Y2 and an increase of X9 by one standard de-
viation causes a decrease of Y2 by 12.1%. The predictor X15 (distance from the intake shaft) 
has a statistically significant impact on Y1 and an increase of X15 by one standard deviation 
causes an increase of Y1 by 16.1%. The predictor X16 (longwall length) has a statistically 
significant impact on Y2 and an increase of X16 by one standard deviation causes a decrease 
of Y2 by 7.9%. The predictor X17 (longwall panel length) has a statistically significant impact 
on both Y1 and Y2. An increase of X17 by one standard deviation causes a decrease of Y1 by 
21.7%. and an increase of Y2 by 7.2%. The predictor X18 (longwall height) has a statistically 
significant impact on Y2 and an increase of X18 by one standard deviation causes an increase 
of Y2 by 18.4%.

Fig. 3. Relative impact of the Xi parameters on Y2 (Model 2) – coal net output for longwalls 
Source: own study

Rys. 3. Wpływ zmiennych objaśniających Xi na zmienne objaśniane Y2 (Model 2) –  
zdolność produkcyjna (netto) ścian
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4. Discussion and conclusions

4.1. Ex-post models verification

In order to verify the predictive quality of the models, the predicted values of total unit 
costs and theoretical production net output were calculated for 120 longwalls, used for the 
construction of Models 1 and 2. Relative error, calculated as the difference of the empirical 
and theoretical value related to the empirical value was elaborated for both models. The dis-
tributions of relative error for both models are shown in Figures 4 and 5. The basic statistics 
of Maximum Extreme Value distributions are presented in Table 4.

Analysing the distribution of the relative errors so determined, it can be concluded that:
�� the arithmetic mean of the relative error for model 1 is 5.5%, and for model 2, 4.3% 

respectively,
�� 90% of all observations are in the range of (–54%; 95%) in model 1 and (–53%; 90%) 

in model 2,

Fig. 4. Distribution of the relative error (Model 1) – ex-post verification 
Source: own study

Rys. 4. Rozkład błędu względnego (Model 1) – weryfikacja ex-post
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�� for 90 walls (75% of all observations), the relative error is in the range of (–25%; 37%),
�� both distributions are right-skewed, and the best fitted theoretical distribution is the 

distribution of maximum extreme values.
On this basis, it was considered that the theoretical models (Model 1 and 2), determined 

on the basis of multiple regression, can be used to make a forecast of unit cost and theoreti-
cal coal net output for longwalls planned in the future, taking the technical nuisance of the 
designed longwall faces into account.

4.2. Forecast of costs of operation and longwall production capacity 

The development of regression models – Model 1 (Y1) and Model 2 (Y2) aimed at en-
abling the estimation of approximate unit costs, as well as forecasted coal net output in the 
designed longwalls, in the context of differentiated geological and mining conditions. 

In this specific case, the analysis comprised 220 longwalls in 5 hard coal mines, planned 
to be mined in the years 2020–2030.

Fig. 5. Distribution of the relative error (Model 2) – ex-post verification 
Source: own study

Rys. 5. Rozkład błędu względnego (Model 2) – weryfikacja ex-post



89Sobczyk et all 2020 / Gospodarka Surowcami Mineralnymi – Mineral Resources Management 36(3), 75–96

In order to determine the level of geological and mining conditions nuisance in the ana-
lyzed hard coal mines, a pattern of procedures has been used in which the mathematical 
multiple criteria decision-making process has been applied, abbreviated as AHP (Analytic 
Hierarchy Process). Using the AHP analysis, [two] nuisance models for geological and 
mining conditions in the exploitation process have been developed for specific longwalls 
in hard coal mines: the first one – in the context of production costs, the second one – con-
sidering the concentration of extraction from longwalls. AHP models, comprising natural 
hazards, deposit (seam) parameters, mining (technical) parameters, and environmental fac-
tors, served for calculation of nuisance factors WUe and WUt. Those factors determine, in 
a synthetic manner, the level of nuisance for geological and mining conditions of extraction 
in the years 2020–2030, in reference to longwall:

�� unit operating cost – WUe, and, 
�� coal net output – WUt. 

Table 4. 	 Basic statistic of the relative error distributions – ex-post verification

Tabela 4.	 Podstawowa statystyka rozkładów błędów względnych – weryfikacja ex-post

Variable Name Error distribution 
Model 1 (Y1)

Error distribution 
Model 2 (Y2)

Location statistics

Mean   5.2%   4.3%

Minimum –53.6% –52.5%

Maximum   94.6%   90.2%

Spread statistics

St. dev. 0.32 0.31

Variance 0.11 0.09

CofV 6.25 7.22

Shape statistics

Skewness 1.10 1.23

Kurtosis 5.18 5.89

Percentiles

  5% –38% –36%

15% –25% –25%

85%   37%   33%

95%   65%   61%

Source: own study. 
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The detailed methodology for assessing the nuisance of geological and mining con-
ditions for exploitation has been presented in the papers of (Sobczyk 2008; Sobczyk and 
Kopacz 2018). 

The result of the procedure was a  linear arrangement of exploitation longwalls in ac-
cordance with increasing nuisance of geological and mining conditions (determination of 
longwall ranking). For WUe, a 3-level nuisance scale was introduced (low nuisance: WUe 
<18, medium nuisance: WUe in the range of <18;23>, high nuisance: WUe >23), whereas 
for WUt factor a 4-level scale was implemented (low nuisance: WUt <19, average nuisance: 
WUt in the range of <19;24>, high nuisance: WUt in the range of <24;32>, very high nui-
sance: WUt >32). 

One can expect that the higher the value of nuisance factors attributed to longwalls, the 
more prominent the influence of geological and mining conditions of exploitation upon the 
economic results of mining process and production capacity.

Subsequently, in each analyzed coal mine the longwalls to be mined in the years 2020– 
–2030 have been assigned to nuisance groups defined as above. For each nuisance group, 
the values of all geological and mining criteria that influence the mining process have 
been averaged. In the next step, using regression models Y1 and Y2, for specific nuisance 
groups, forecasts of unit costs of production and coal net output have been made. The 
average forecasted total unit costs for longwalls according to nuisance groups in selected 
coal mines are presented in Table 5, whereas the average expected longwall coal net out-
put – in Table 6.

In all the coal mines analyzed, the lowest total unit cost occur for longwalls having 
the lowest nuisance factors, WUe <18 (costs increase with increasing nuisance). I n the 
group of highest nuisance (WUe >23), the average increase of average unit cost by as 
much as 26% can be noted. The highest relative cost increase occurs in Mine 1, Mine 2, 
and Mine 5. The average unit cost in Mine 1 increases from PLN 62.5/Mg in longwalls 
with nuisance factor WUe <23 to PLN 78.5/Mg in the longwalls with the highest values 
of WUe. On the other hand, in Mine 4, with nuisance factor WUe <18 the average unit 
cost was PLN 53.9/Mg, increasing to PLN 63.2 /Mg in case of nuisance factor WUe >23. 
In Mine 5, in turn, the average unit cost increases from PLN 86.5/Mg to PLN 106.7/Mg 
for the highest nuisance group (increase by 23%). The highest average unit cost of produc-
tion has been determined for Mine 2, though (in the range of PLN 87.9–109.9/Mg; with 
average unit cost for longwalls mined in the years 2010–2019 amounting to more than 
PLN 120/Mg). 

In the case of the forecasted coal net output, the highest efficiency occurs in the group of 
longwalls having the lowest nuisance values, with WUt <19. The average forecasted daily 
coal outputs decrease with uprising nuisance values. For example, in Mine 4, in the group 
with highest nuisance (WUt >32) the average coal net output drop of 37% is noted. In that 
mine, the forecasted daily coal net output is reduced from 3,859 Mg/d for longwalls with 
lowest nuisance factors, to 2,446 Mg/d in longwalls where nuisance factor WUt values are 
the highest. On the basis of Table 6, a general conclusion can be made that when the nuisance 
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factor increases above the value of 32, this causes a drop in productivity by a few dozen 
percent. However, this develops differently in the coal mines analyzed, which calls for con-
sidering each case individually. 

Table 5. 	 Average forecasted costs for longwalls according to nuisance groups, in selected coal mines 

Tabela 5.	 Średnie prognozowane koszty ścian według grup uciążliwości w wybranych kopalniach węgla  
	 kamiennego

WUe 

Mine 1 Mine 2 Mine 3 Mine 4 Mine 5

Expected unit operating cost/nuisance group 

UC RV UC RV UC RV UC RV UC RV

<18 – –   87.9 83.1 – 53.9 –   86.5 –

18–23 62.5 –   93.1 6% 94.1 13% 50.1 –7%   92.9   7%

>23 78.5 26% 109.9 25% – –  63.2 17% 106.7 23%

Average unit cost in the mines (zł/Mg)

UC 78.2 120.3 102.9 52.0 85.1

UC – unit operating cost for longwalls, PLN/Mg, 
RV – relative value (the value in higher nuisance group/ divided by the value in the lower nuisance group, %). 
Source: own study. 

Table 6. 	 Average forecasted coal net output for longwalls according to nuisance groups, in selected coal mines 

Tabela 6.	 Średnie prognozowane zdolności produkcyjne ścian wg grup uciążliwości w poszczególnych  
	 kopalniach

WUt

Mine 1 Mine 2 Mine 3 Mine 4 Mine 5

Expected coal net output/nuisance group

P RV P RV P RV P RV P RV

<19 2 431 – 2 295 – 2 331 – 3 859 – 2 298 –

19–24 2 426     0% 2 371     3% 2 483     7% 4 032     4% 2 109   –8%

24–32 2 351   –3% 1 917   –16% 2 215   –5% 3 140 –19% 1 962 –15%

>32 1 846 –24% 1 702 –26% 2 089 –10% 2 446 –37% 1 986 –14%

Average coal output in the mines

2 845 1 891 2 615 3 608 2 186

P – coal net output, Mg/d, 
RV – relative value (the value in higher nuisance group/ divided by the value in the lower nuisance group, %). 
Source: own study. 
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Conclusion

The studies reported in this paper confirm the existence of a relationship between geo- 
logical and mining conditions on the one hand, and production costs as well as coal net output 
on the other hand. Thus, the research thesis has been positively verified. Increased nuisance 
translates, in a non-linear manner, into increases in production costs in the analy-zed long-
walls, as well as worse/poorer production results. Those results are in line with the intuition 
and expectations of the authors. The application of regression models provided the possibi- 
lity of linking geological and mining parameters to specific mathematical functions, which 
allow to make forecasts concerning operating costs for longwalls and theoretical production 
capacities of the latter. The models which have been developed are characterized by ac-
ceptable quality regarding statistics. The error rate for single ex-post observations does not 
exceed 5% for each model, while for 75% of observations it is in the range of (–25%; +37%). 
It should be stressed that the obtained results have a significant practical application, and 
should be utilized in designing mining operations in hard coal mines, indicating the general 
direction (trend) of changes in cost levels and output as a  function of nuisance concern-
ing geological and mining conditions. Taking such information into account may result in 
a more conscious designing of mining extraction, bearing the expected production results, 
quality of gotten coal, and costs in mind. 

The publication was carried out as part of the statutory activity of the Mineral Energy and 
Economy Research Institute of the Polish Academy of Sciences. The authors acknowledge 
support from research funds granted to the Cracow University of Economics, within the 
framework of the subsidy for the maintenance of research potential.
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The analysis of dependence of the level of operational costs and production outputs 
upon geological and mining conditions in selected hard coal mines in Poland

K e y w o r d s

Polish mining sector, longwall production and costs, geological and mining conditions, 
nuisance, AHP and regression analysis

A b s t r a c t

This publication presents the research aimed at developing statistical models, on the basis of 
which it was possible to prepare credible forecasts of unit cost and coal net output for longwalls in 
5 hard coal mines in Poland. The argument has been verified that there is a dependence between the 
level of nuisance and the level of costs, as well as longwall production results. 

A research procedure has been developed for that purpose, which aimed at developing two statisti-
cal models connecting the nuisance due to geological and mining conditions with costs and longwall 
production results. The multiple linear regression technique has been used to develop statistical mo-
dels. The set of data taken into account in the analyses comprised 120 longwalls mined in the years 
2010–2019. Two models have been developed – one for forecasting unit costs, the other for forecasting 
coal net output. Subsequently, the models’ forecasting ability has been verified on a sample of histori- 
cal data. A relative forecast error for 75% of observations has been in the range of (–25%; +37%). That 
result has been considered satisfactory. Subsequently, using those models, forecasts of unit costs and 
coal net output have been prepared for 220 longwalls planned for mining in the years 2020–2030. Those 
forecasts have been prepared in the stipulated ranges of geological and mining nuisance influencing 
mining process, by means of dedicated WUe and WUt factors. The nuisance models for forecasting 
purposes have been developed using the AHP (Analytic Hierarchy Process) method. The research hy-
pothesis has been confirmed on the basis of the obtained results. An increase in the level of nuisance 
leads to an increase in the unit costs for longwalls and the deterioration of production results. Unit 
operating costs for longwalls in specific ranges of nuisance may differ by up to 30%, being in the range 
of 52.0–120.3 zł/Mg. Likewise, the coal daily output of longwalls may be even 22% lower, having the 
average level in the range of 1.89–3.61 thousand Mg/d. 
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Analiza zależności kosztów operacyjnych 
i wyników produkcyjnych ścian od warunków geologicznych i górniczych 

w wybranych kopalniach węgla kamiennego w polsce

S ł owa  k l u c z owe

polski sektor wydobywczy, produkcja i koszty ściany, 
warunki geologiczne i górnicze, uciążliwość, AHP i analiza regresji

S t r e s z c z e n i e

Publikacja prezentuje badania zmierzające do opracowania modeli statystycznych, na podstawie 
których możliwe było wykonanie wiarygodnych prognoz kosztu jednostkowego i wydobycia netto 
ścian w 5 kopalniach węgla kamiennego w Polsce. Weryfikowano tezę, że istnieje zależność pomię-
dzy poziomem uciążliwości a wielkością kosztów i wynikami produkcyjnymi ścian. 

W tym celu opracowano procedurę badawczą prowadzącą do skonstruowania dwóch modeli sta-
tystycznych wiążących uciążliwość warunków geologicznych i górniczych z kosztami i wynikami 
produkcyjnymi ścian. D o skonstruowania modeli statystycznych posłużono się techniką regresji 
wielorakiej. Zbiór danych, które uwzględniono w analizach, obejmował 120 ścian eksploatowanych 
w  latach 2010–2019. P owstały dwa modele – jeden dla celów prognozowania kosztów jednostko-
wych, drugi – produkcji węgla netto. N astępnie wykonano weryfikację zdolności prognostycznej 
tych modeli w  próbie danych historycznych. Względny błąd prognozy dla 75% obserwacji wahał 
się w przedziale (–25%; +37%), a jego średnia wartość dla wszystkich obserwacji nie przekraczała 
5% dla obu tych modeli. Wynik ten, mimo defektów modelowania liniowego, uznano za satysfak-
cjonujący. Następnie przy użyciu tych modeli wykonano prognozy kosztów jednostkowych i coal 
net output dla 220 ścian planowanych do wydobycia w  latach 2020–2030. Prognozy te wykonano 
w umownych przedziałach uciążliwości geologicznych i górniczych warunków procesu eksploatacji 
za pomocą wskaźników WUe i WUt. Modele uciążliwości dla celów prognostycznych skonstruowano 
z wykorzystaniem metody AHP (Analytic Hierarchy Process). Na bazie otrzymanych wyników teza 
badawcza została potwierdzona. Wzrost uciążliwości prowadzi do wzrostu kosztu jednostkowego 
ścian i  pogorszenia wyników produkcyjnych. Z ależność ta nie jest liniowa. K oszty jednostkowe 
ścian w  poszczególnych przedziałach uciążliwości mogą się wahać nawet do 30%, mieszcząc się 
w przedziale 52,0–120,3 zł/Mg. Podobnie również wydobycie dobowe ze ścian może być niższe nawet 
o 22%, i kształtować na poziomie średnim w przedziale 1,89–3,61 tys. Mg/d.
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