
archives
of thermodynamics

Vol. 41(2020), No. 2, 223–238
DOI: 10.24425/ather.2020.133630

Heat and mass transfer mechanism on

three-dimensional flow of inclined magneto
Carreau nanofluid with chemical reaction

B. MADHUSUDHANA RAOa

DEGAVATH GOPALb

NAIKOTI KISHANb

SAAD AHMEDa

PUTTA DURGA PRASAD∗c

a Lecturer in Mathematics, Higher College of Technology (IT), Muscat,
Oman-133

b Department of Mathematics, UCS, Osmania University, Hyderabad,
TS-500007, India

c Department of Mathematics, SAS, Vellore Institute of Technology,
Chennai, TN-600127, India

Abstract The characteristic of nano sized particles mass flux conditions
are engaged in this investigation. Here we assume that the nano sized par-
ticle flux is zero and the nano sized particle fraction arranged itself on the
boundary layer. With this convincing and revised relation, the features of
Buongiorno relation on three-dimensional flow of Carreau fluid can be ap-
plied in a more efficient way. The governing partial differential equations of
continuity, momentum, energy and concentration equations which are trans-
mitted into set of pair of nonlinear ordinary differential equations utilizing
similar transformations. The numeric solutions are acquired by engaging the
bvp4c scheme, which is a finite-difference code for solving boundary value
problems. A parametric study is accomplished to demonstrate the impact
of Prandtl number, Weissenberg numbers, radiation parameter, chemical re-
action parameter, thermophoresis parameter, Brownian motion parameter
and Lewis number on the fluid velocity, temperature and concentration pro-
files as well skin friction coefficient, Nusselt number and Sherwood number
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within the boundary layer. From this we find the way in which magnetic pa-
rameter contributes to the increase in local skin fraction, and the decrease
in the Nusselt and Sherwood numbers in these cases. The effects of the
velocity temperature and concentration profile are obtained and presented
graphically.
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Nomenclature

a, b – positive constants
B0 – strength of the magnetic field
C – concentration of the nanofluid
C∞ – free stream concentration of the nanofluid
Cf – skin friction coefficient
DB , DT – Brownian and thermophoresis diffusion coefficients
f, g – dimensionless components of velocity
k0 – chemical reaction coefficient
k∗ – mean absorption coefficient
Le – Lewis number
M – magnetic field parameter
Nb – Brownian motion parameter
Nt – thermophoresis parameter
Nu – Nusselt number
n – power law exponent
Pr – Prandtl number
qr – radiative heat flux
qw – mass flux
R – radiation parameter
Re – Reynolds number
Sh – Sherwood number
T – temperature of the nanofluid
T∞ – free stream temperature of the nanofluid
u, v, z – velocity components in x, y and z directions
We1, We2 – Weissenberg numbers
x, y, z – Cartesian coordinates

Greek symbols

α – inclination of the stretching sheet parameter
α1 – thermal conductivity
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α1 – stretching ratio parameter
β – Casson fluid parameter
Γ – material rate constant
η – dimensionless variable
θ – dimensionless temperature
ν – kinematic viscosity
ρ – density of the fluid
σ – electric conductivity
σ∗ – Stefan-Boltzmann constant
τ – chemical reaction parameter
φ – dimensionless concentration

Subscripts

∞ – condition at the free stream
f – dimensionless velocity
w – condition at the free surface

1 Introduction

Present modern nanotechnology offers preparation of nanometer sized par-
ticles or nanostructured engineering materials on the atomic or molecu-
lar scales with enhanced thermophysical properties, if compared to their
respective larger forms. These nanoparticle-fluid suspensions are termed
nanofluids, obtained by dispersing nanometer sized particles in a conven-
tional base fluid like water, oil, ethylene glycol, etc. Historically it was Choi
and Eastman [1] who provided ideas of how to make suspensions of the fluid
and nano-sized particles and named such mixture a nanofluid. One can find
further applications related to nanofluids in [2].

Nanoparticles of materials such as metallic oxides (Al2O3, CuO), nitride
ceramics (AIN, SiC), carbide ceramics (SiC, TiC), metals (Cu, Ag, Au), etc.
have been used for the preparation of nanofluids. These nanofluids have
been developed to possess an enhanced thermal conductivity as well as im-
proved heat transfer performance at low concentrations of nanoparticles.
Even at very low volume fractions of the suspended particles, an attractive
enhancement in thermal conductivity has been reported on these nanopar-
ticle based fluids. For instance, numerous exhausting investigations [3–6]
have established an escalation in the thermal conductivity of ordinary flu-
ids containing the nanoparticles. Nowadays the non-Newtonian fluid [7–11]
acquires a new courtesy because of its strong use in industrial applications,
mostly in chemical engineering processes and polymer processing. Owing
to this significance of non-Newtonian fluids in 1944 Powell and Eyring an-
ticipated a novel fluid model known as the Eyring-Powell fluid model [12].
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The studies formerly cited ultimately stress that the condition of three-
dimensional boundary layer flow is not well renowned for such fluids. Our
concern in the simultaneous analysis is to argue the influence of non-linear
radiative flow on the magnetohydrodynamic (MHD) three-dimensional flow
of Eyring-Powell fluid [13–14]. The chemical reaction stimulates a great role
in the investigation involving heat and mass transfer in areas of science and
engineering technology as result of wide coverage of industrial applications
[15], entropy generation analysis for peristalsis of nanofluid with Ohmic
heating, temperature dependent viscosity and Hall effects [16], numerical
analysis of nanofluid flow in permeable media under the effect of exter-
nal magnetic source [17], and non-uniform heat source/sink and multiple
slips on three-dimensional magnetic-Casson fluid in a suspension of copper
nanoparticles over a porous slendering sheet [18].

A chemical reaction between the conventional fluid and nanoparticles
are classified as a homogeneous reaction during a given phase or heteroge-
neous reaction that is surrounded by a boundary of the phase. Reaction
rate in a first-order chemical reaction is directly related to the concentra-
tion. In view of the pertinent applications, several authors have considered
and collected their results of chemical reaction effects on the flow of heat
and mass transfer with different geometries [19–21].

In Carreau model, the viscosity depends upon the shear rate. This is in-
troduced by Carreau, using the Cauchy’s equation involving the extra stress
tensor for the ‘Carreau fluid’ [24]. Additionally, the power-law of Carreau
fluid is also the one of the non-Newtonian fluids. Carreau fluid model is
valid for viscous, high and low shear rates. Because of this advancement,
it has benefited in many technological and manufacturing flows. With that
in mind, the mass transfer characteristics of Carreau fluid over a swarm of
Newtonian drop was scrutinized in [25]. The time dependent Poiseuille flow
of Carreau fluid in the presence of slip effect was investigated in [26] and it
was concluded that the wavelength and amplitude of oscillations in radial
direction are decreasing with the increase in the slip effect. The peristaltic
flow characteristics of Carreau fluid in the uniform tube was discussed in
terms of the heat transfer characteristics of Carreau fluid in [27].

In view of these facts the present investigation focuses on the three-
dimensional flow of magnetohydrodynamic Carreau fluid in presence of
chemical reaction. The effect has been incorporated into the proposed
mathematical model. The boundary layer equations given as a set of par-
tial differential equations are first transformed into a non-linear ordinary
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differential equations and subsequently solved numerically using the Runge-
Kutta method. The effects of the governing flow parameters on the velocity,
temperature and concentration profiles have been discussed and presented
in graphs.

2 Mathematical formulation of the model

We ponder the steady three-dimensional electrically conducting forced con-
vective Carreau nanofluid over a bidirectional stretched surface. The flow
is induced owing to stretching surface in two horizontal x- and y-axis di-
rections with velocity u1/4ax and v1/4by, respectively, where a and b are
stretching rates and the fluid flow occupies the region in the domain z > 0.
The transverse magnetic field of strength B0 is imposed parallel to z-axis
as revealed. It is also assumed that induced magnetic and electric fields
are insignificant when compared to the applied magnetic field. This postu-
late is effective only for the insignificant magnetic Reynolds number range.
Temperature of the nanofluid at the surface Tw is superior to temperature
of nanofluid distant from the stretched surface. The Carreau nanofluid
relation in view of overhead declared assumptions is given below:

ux + vy + wz = 0 , (1)

uux + vuy + wuz = νuzz

[

1 + Γ (uz)2
]

n−1
2

+ν(n− 1)Γ2 (uz)2 uzz

[

1 + Γ2 (uz)2
]

n−3
2 − σB2

0

ρf
u sin2 α , (2)

uvx + vvy + wvz = νvzz

[

1 + Γ (vz)2
]

n−1
2

+ν(n− 1)Γ2 (vz)2 vzz

[

1 + Γ2 (vz)2
]

n−3
2 − σB2

0

ρf
v sin2 α , (3)

uTx + vTy + wTz = α1Tzz + τ

[

DBCzTz +
DT

T∞

(Tz)2
]

− 1

(ρc)f

(qr)z , (4)

uCx + vCy +wCz = DBCzz +
DT

T∞

Tzz − k0 (C − C∞) . (5)

The boundary conditions suitable to the present flow problem are

u = ax = Uw (x) , v = by = Vw (y) , w = 0, T = Tw,
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DBCz +
DT

T∞

Tz = 0 as z → 0, u → 0, v → 0, T → T∞, C → C∞ as z → ∞.

(6)
The Rosseland approximation for radiation is given below

(qr)z = −4σ∗

3k∗
T 4

z . (7)

It is assumed that the temperature differences within the flow, such as
the term T 4, are expressed as a linear function of temperature. The Taylor
series expansion for T 4 about a free stream temperature T∞ after neglecting
higher order terms yields

T 4 = 4T 4
∞T − 3T 4

∞ . (8)

Using Eqs. (7) and (8), we obtain

(qr)z = −16σ∗T 3
∞

3k∗
Tzz . (9)

By incorporation of the Rosseland approximation (Brewster [22]), the en-
ergy, Eq. (4), can be cast into the form

uTx + vTy +wTz = α1Tzz + τ

[

DBCzTz +
DT

T∞

(Tz)2
]

+
16σ∗T 3

∞

3 (ρc)f k
∗
Tzz. (10)

Introducing the definitions of velocity components u = axfη(η), v = aygη(η),
w = − (aν)0.5 [f(η) + g(η)] , the non-dimensional transformation variables
are obtained:

θ(η) =
T − T∞

Tw − T∞

, φ(η) =
C − C∞

Cw − C∞

, η = z

(

a

ν

)0.5

. (11)

Equations (2), (3), (5), and (10) reduce to the relations:

fηηη

[

1 + We2
1 (fηη)2

]
n−3

2
[

1 + nWe2
1 (fηη)2

]

− (fη)2 + fηη (f + g) −M2fη sinα = 0 , (12)

gηηη

[

1 + We2
2 (gηη)2

]
n−3

2
[

1 + nWe2
2 (gηη)2

]

− (gη)2 + gηη (f + g) −M2gη sinα = 0 , (13)
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(

1 +
4R

3

)

θηη + Pr (f + g) θη + PrNbθηφη + PrNtθ2
η = 0 , (14)

φηη + LePr (f + g)φη +

(

Nt

Nb

)

θηη − LePrτ
′

φ = 0 . (15)

The corresponding boundary conditions are

f(η) = 0, g(η) = 0, f ′(η) = 1, g′(η) = α1, θ(η) = 1 ,

Nbφ′(η) +Ntθ′(η) = 0 as η → 0, f ′(η) → 0 ,

g′(η) → 0, θ(η) → 0 as η → ∞ , (16)

We1 =

(

Γ2aU2
w

ν

)0.5

, We2 =

(

Γ2aV 2
w

ν

)0.5

, M =

(

σB2
0

ρfa

)

,

R =
4σ∗T 3

∞

k∗k
, Nb =

DBτ (Cw − C∞)

ν
, Nt =

DT τ (Tw − T∞)

T∞ν
,

τ ′ =
k0

a
, Le =

γ

DB
, Pr =

ν

γ
, α1 =

b

a
.

The physical point of interest is the expressions for the local skin friction
coefficient, Cf , on the surface along the x- and y-axis directions, which
are denoted by Cfx and Cfy . The local Nusselt number, i.e. the non-
dimensional heat transfer coefficient and Sherwood numbers are defined
as:

Cfx =
τxz

0.5ρfU2
w

, Cfy =
τyz

0.5ρfV 2
w

, Shx =
xqw

DB(Cw − C∞)
,

Nux = − x

Tw − T∞

(Tz)z=0 +
xqr

k(Tw − T∞)
. (17)

The non-dimensional form of the skin friction, Nusselt number, and Sher-
wood number are given below:

0.5CfxRe0.5
x = fηη(0)

[

1 + We2
1f

2
ηη(0)

]
n−1

2 ,

0.5Cfy Re0.5
x = gηη(0)

[

1 + We2
2g

2
ηη(0)

]
n−1

2 ,

Re−0.5
x Nux = −

(

1 +
4R

3

)

θη(0), Re−0.5
x Shx = − (φη(0)) . (18)

Here τxz and τyz are the wall shear stresses along x- and y-axis directions,
whereas Rex = Ux

ν and Rey = V y
ν are the local Reynolds numbers in x- and

y-axis directions.
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3 Results and discussion

The foremost attention of this section is to inspect the features of new
mass flux conditions for the three-dimensional magnetohydrodynamic flow
of Carreau nanofluid over a bidirectional stretching surface. For the sake
of numerical computations, the finite-difference code for solving boundary
value problems bvp4c has been applied for the exploration of the numer-
ous parameters on the velocity components, temperature and concentra-
tion field.

The graphs are presented in the further showing the influences of vari-
ous parameters on velocity components. Finally the local skin friction and
the local Nusselt number are deliberated in detail. Figure 1 plotted to en-
visage the characteristics of the magnetic field parameter on the nanofluid
velocity components f ′(η) and g′(η) for shear thinning and shear thickening
fluid. Since magnetic field specifies the fraction of viscous force to hydro-
magnetic force, improvement in magnetic field parameter causes strength
in hydromagnetic body force which trends to decelerate the fluid motion.
Consequently, the collisions between the nanoparticles boosts, this mech-
anism reduces the associated momentum boundary layer. Therefore, the
velocity of the nanofluid declines.
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Figure 1: Influence of the magnetic field parameter M on velocity components f ′(η) and
g′(η).

Figure 2 is depicted to investigate the characteristics of magnetic parameter
on the temperature and concentration distributions. It is found that large
values of magnetic field M increase the temperature and concentration
profiles, as magnetic field presents a force.
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Figure 2: Influence of the magnetic field parameter M on temperature θ(η) and concen-
tration φ(η) profiles.
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Figure 3: Influence of the Weissenberg number We1 on velocity components f ′(η), and
temperature θ(η) and concentration φ(η) profiles.



232 B. Madhusudhana Rao, D. Gopal, N. Kishan, Saad Ahmed and P. Durga Prasad

From Fig. 3 it is noticed that velocity decreases, temperature and con-
centration increase with the increase in Weissenberg number for n = 0.4
and 1.4.
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Figure 4: Influence of the inclination of the stretching sheet parameter α on velocity com-
ponents f ′(η) and g′(η) and temperature θ(η) and concentration φ(η) profiles.

From Fig. 4 it is observed that the nanofluid velocity components f ′(η) and
g′(η) and for shear thinning and shear thickening fluid decrease, nanofluid
temperature and concentration components increase with the increase in
inclination of the stretching sheet parameter (α) for n = 0.4 and 1.4. From
Fig. 5 it is seen that nanofluid temperature and concentration components
for shear thinning and shear thickening fluid are decreasing with the in-
crease in Prandtl number (Pr). From Fig. 6 it is noticed that the nanofluid
temperature increases and nanofluid concentration decreases for shear thin-
ning and shear thickening fluid with the increase in radiation parameter (R).
From Fig. 7 it is noticed that the nanofluid temperature and concentra-
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Figure 5: Influence of the Prandtl number Pr on temperature θ(η) and concentration
φ(η) profiles.
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Figure 6: Influence of the radiation parameter R on temperature θ(η) and concentration
φ(η) profiles.

tion components decrease for shear thinning and shear thickening fluid with
the increase in chemical reaction. The effect of thermophoresis parameter
(Nt) and Lewis number (Le) on concentration distributions is plotted in
Figs. 8a and 8b. It is clear that all the profiles (concentration) decrease in
the corresponding thermophoresis parameter and Lewis number. Figure 8c
shows that the solute boundary layer thickness increases with the increase
in Brownian motion parameter Nb. Note that the Brownian motion of the
nanoparticles induces convection which increases the thermal conductivity
of nanoparticles. So, higher the Brownian motion causes to enhance the
temperature field.
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Figure 7: Influence of the chemical reaction parameter τ on temperature θ(η) and con-
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Figure 9: Influence of the magnetic field parameter M on skin friction coefficient Cf (a)
and (b), Nusselt number (c), and Sherwood number (d) versus the Weissenberg
number.

Figures 9a–d show the characteristics of magnetic field parameter for skin
friction, Nusselt number and Sherwood number in function of the Weis-
senberg number. From these figures we observe that the increase in the
magnetic field parameter causes the decrease in the friction factor, heat
and mass transfer rates.

In order to test the accurateness of our present investigation we have
calculated −θ′(0) for various values of Nt and compared with Khan and
Pop [23] by considering the situation in absence of magnetic field parameter,
Lewis number, Brownian motion parameter, radiation parameter. Table 1
is a comparison with Khan and Pop numerical results which shows a good
agreement with the present work.
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Table 1: Comparison of different values of physical parameter and fixed parameters when
M = We1 = Le = R = Nb = 0, Pr = 10 and α = π/2.

Nt Khan and Pop [23] Present results

0.1 0.9524 0.952433

0.2 0.6932 0.693212

0.3 0.5201 0.520149

04 0.4026 0.402633

0.5 0.3211 0.321152

4 Conclusions

Due to numerous applications of three-dimensional flow in manufacturing
processes like super capacitors, water desalination, lithium ion batteries
and fuel cells in this study, we examined the heat and mass transfer effects
on three-dimensional magneto Carreau fluid in the presence of chemical
reaction. The Runge-Kutta method has been employed to resolve the al-
tered governing non-linear equations and results are presented through the
graphs. The following points are worth mentioning.

• The magnetic field parameter causes to decrease the velocity distri-
bution.

• Chemical reaction parameter decelerates the temperature and con-
centration profiles.

• The angle of inclination reduces the velocity distributions for various
values of n = 0.4 and n = 1.4.

• The magnetic field parameter decelerates the friction factor rates
along with local Weissenberg numbers and also reduces the heat and
mass transfer rates.

• The Brownian motion parameter improves the mass transfer rate.

• Lewis number and thermophoresis parameters are decreasing the rate
of mass transfer rate.

Received 19 October 2018
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