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A novel multiple attribute decision making method
based on q-rung dual hesitant uncertain linguistic sets

and Muirhead mean

JUN WANG, XIAOPU SHANG, XUE FENG and MENGYANG SUN

This paper aims to propose a new multi-attribute decision making (MADM) method in
complicated and fuzzy decision-making environment. To express both decision makers (DMs’)
quantitative and qualitative evaluation information comprehensively and consider their high
hesitancy in giving their assessment values in MADM process, we combine q-rung dual hesitant
fuzzy sets (q-RDHFSs) with uncertain linguistic variables and develop a new tool, called the
q-rung dual hesitant uncertain linguistic sets (q-RDHULSs). First, the definition, operations
and comparison method of q-RDHULSs are proposed. Second, given the interrelationship
among multiple q-rung dual hesitant uncertain linguistic variables (q-RDHULVs) we introduce
some aggregation operators (AOs) to fuse q-rung dual hesitant uncertain linguistic (q-RDHUL)
information based on the Muirhead mean, i.e. the q-RDHUL Muirhead mean operator, the q-
RDHUL weighted Muirhead mean operator, the q-RDHUL dual Muirhead mean operator, and
the q-RDHUL weighted dual Muirhead mean operator. To cope with MADM problems with
q-RDHUL information, we propose a new method based on the proposed AOs. Afterwards, we
apply the proposed method to an enterprise informatization level evaluation problem to verify
its effectiveness. In addition, we also explain why our proposed method is more powerful and
flexible than others.
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1. Introduction

As practical decision-making problems are becoming more and more compli-
cated, decision-makers (DMs) always experience the difficulties of appropriately
expressing their evaluation information. Generally, it is usually impossible for
DMs to express their evaluation information in the form of clear numbers. In
order to effectually deal with vague information, Zadeh [1] creatively introduced
a new methodology, called fuzzy sets (FSs). The uniqueness of FS is that it in-
corporates the concept of membership degree (MD), depicting the degree that an
element belongs to a given fixed set. Given the striking advantages of FSs on deal-
ing with ambiguity, FS theory based multi-attribute decision making (MADM)
methods have attracted quite a few scientists’ interests [2]. With the emergence of
new and complex MADM problems, the shortcomings of FSs have been becom-
ing more and more obvious, which received extensive attention from scholars
globally. The FS uses only one value to represent the MD, however, in most prac-
tical MADM problems, DMs hesitate among several values when establishing
the MD. To effectively deal with such cases as well as DMs’ high hesitancy, Torra
[3] introduced a concept of a hesitant fuzzy set (HFS), which allows the MD to
be denoted by several single values instead of only one. Owing to its good ability
of depicting fuzzy information and DMs’ hesitancy, HFS has been regarded as
one the most powerful and flexible tools in MADM procedure [4–12].

Nevertheless, HFSs are still insufficient in handling complicated decision-
making systems. The main drawback of HFS is that it only describes the degree
that an element belongs to a given set by MD, whereas ignores the grade that an
element does not be included to a given set. Motivated by the intuitionistic fuzzy
set (IFS) which describes fuzzy information from both positive and negative
aspects, Zhu et al. [13] introduced the dual hesitant fuzzy set (DHFS), which
permits not only the MD but also the non-membership degree (NMD) to be
denoted by several values. Hence, compared with HFS, DHFS is better to model
DMs’ hesitancy and can describe fuzzy data more comprehensively. Afterwards,
Wang et al. [14] and Yu and Li [15] proposed simple dual hesitant fuzzy weighted
aggregation operators. To capture more information from aggregated DHFSs,
Xing et al. [16] introduced the dual hesitant fuzzy point operators. Ju et al. [17]
explored operational laws of dual hesitant fuzzy elements (DHFEs) based on
Hamacher t-norm and t-conorm. Wang et al. [18] demonstrated the dual hesitant
fuzzy operations on the basis of Archimedean t-conorm and t-norm (ATT) and
proposed dual hesitant fuzzy power average operators based on the proposed
operational rules. Ju et al. [19] generalized DHFSs to interval-valued DHFSs and
studied their aggregation operators (AOs). Peng et al. [20] investigated interval-
valued dual hesitant fuzzy AOs based on ATT. Zhao et al. [21] proposed AOs for
DHFEs based on Einstein t-norm and t-conorm. Ju [22] introduced the Choquet
integral to DHFSs to consider the relationship among attributes. Ren et al. [23]
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proposed new comparison method for DHFEs and a new dual hesitant fuzzy
MADM method based on VIKOR. Yang and Ju [24] introduced the dual hesitant
fuzzy linguistic sets (DHFLSs) and their AOs. Su et al. [25] investigated distance
and similarity measures for DHFSs and applied them in pattern recognition. Liu
and Tang [26] introduced interval-valued dual hesitant fuzzy uncertain linguistic
sets and proposed their generalized Shapely Choquet geometric operators. Tu et
al. [27] presented the dual hesitant fuzzy Bonferroni mean operators to take into
account the interrelationship among DHFEs. For the same purpose, Yu et al. [28]
put forward the dual hesitant fuzzy Heronian mean operators. Tang et al. [29]
studied dual hesitant fuzzy operational rules under Frank t-norm and t-norm.
In addition, scholars also studied dual hesitant fuzzy rough sets [30–32], dual
hesitant fuzzy soft sets [33–35], correlation coefficients of DHFSs [36, 37], etc.

The DHFSs must satisfy the constraint that the sum of MD and NMD is
equal to or less than one. However, in complicated real MADM problems this
constraint cannot be always met. For example, a group of DMs are hesitant
between 0.5, 0.6, and 0.7 for determining MD and 0.7, 0.8 for providing NMD.
Hence, DMs’ evaluation can be denoted by d = {{0.5, 0.6, 0.7}, {0.7, 0.8}}. As
0.7 + 0.8 = 1.5 > 1, then d cannot be handled by DHFSs. To enlarge the
information space that DHFSs can describe, Xu et al. [38] gave the notion of
q-rung dual hesitant fuzzy sets (q-RDHFSs). The q-RDHFSs are based on q-
rung orthopair fuzzy sets (q-ROFSs), whose powerfulness in depicting fuzzy
information has been proved by scientists [39–44]. Therefore, q-RDHFSs inherit
the advantages of q-ROFSs, i.e. they can deal with the circumstances in which
the sum and square sum of MD and NMD are larger than one. In Ref. [38], Xu
et al. also proposed q-rung hesitant fuzzy Heronian mean operators to aggregate
attribute values. However, the MADM method proposed by Xu et al. [38] still has
limitations. Firstly, it only focuses on DMs’ quantitative evaluation information,
whereas neglects their qualitative assessments. More and more scholars have
been aware of the importance and necessity of taking into consideration of both
DMs’ quantitative and qualitative evaluation ideas [45–47]. Secondly, the method
proposed by Xu et al. [38] only captures the interrelationship among any two
attributes. In practical MADM issues, interrelationship usually exists among
multiple attributes. Hence, the MADM method introduced by Xu et al. [38] is
still insufficient to deal with complex MADM problems in real life.

To overcome the above-mentioned shortcomings, we firstly propose a new
tool, called q-rung dual hesitant uncertain linguistic sets (q-RDHULSs) to repre-
sent DMs’ evaluation information both quantificationally and qualitatively. The
q-RDHULS is a combination of q-RDHFS with uncertain linguistic variable
(ULV). In other word, q-RDHULS utilizes q-RDHFS to denote the MD and
NMD of an alternative to a ULV. The q-RDHULS is parallel to dual hesitant
fuzzy uncertain linguistic sets (DHFULSs) but is more powerful as its constraint
is laxer, making it more suitable and powerful to deal with complicated real
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MADM. To capture the interrelationship among multiple attributes, we further
propose a series of q-rung dual hesitant uncertain linguistic (q-RDHUL) Muir-
head mean (MM) operators. The main superiority of MM [48] is its ability to
proceed the interrelationship among multiple attributes, and recently it has suc-
cessfully attracted many scholars’ research interests and been extensively studied
[49–53]. Finally, based on the proposed q-rung dual hesitant uncertain linguistic
MM operators, we investigate a novel MADM method.

To present our works clearly, we organize the rest of this paper as follows.
Section 2 recalls existing concepts and proposes the q-RDHULSs. Section 3
introduces q-rung dual hesitant uncertain linguistic AOs based on MM. Section 4
introduces a new MADM method within q-RDHUL context. Section 5 applies
the proposed method to evaluate enterprise informatization level and analyzes
the effectiveness and advantages of the new method. Conclusion remarks are
provided in Section 6.

2. Basic concepts

In this section, we recall basic notions which will be used in the following
section.

2.1. q-RDHFSs and q-RDHULSs

Xu et al. [38] generalized q-ROFSs to q-RDHFSs, which permit the MD and
NMD to be denoted by several values rather than single ones.

Definition 1 [38] Let X be a given ordinary set, a q-rung dual hesitant fuzzy set
(q-RDHFS) A defined on X is expressed as

A =
{ ⟨x, gA(x), t A(x)⟩ | x ∈ X

}
, (1)

where gA(x) and t A(x) are two sets of values in the interval [0, 1], representing
the possible MD and NMD of x ∈ X to the set A. In addition, gA(x) and t A(x)
satisfy the condition that δq + πq ¬ 1 (q  1), where δ ∈ gA(x) and π ∈ t A(x)
for all x ∈ X . For easy description, the ordered pair d(x) =

(
gA(x), t A(x)

)
is

called a q-rung dual hesitant fuzzy element (q-RDHFE), which can be denoted
as d = (g, t) for simplicity, with the condition δ ∈ g, π ∈ t, 0 ¬ δ, π ¬ 1 and
0 ¬ δq + πq ¬ 1 (q  1).

The linguistic term set (LTS) and linguistic variables (LVs) proposed by
Prof. Zadeh are effective to represent quantitative information. Recently, Xu
[54] extended the classical LTS to continuous LTS and proposed the concept of
ULVs. Compared with LVs, ULVs can describe DMs’ quantitative information
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more appropriately and comprehensively. However, the main shortcoming of
ULV is that when DMs’ use ULVs to express their evaluation information, the
MD and NMD of an element to a ULV are ignored. In the other words, the
proposed ULVs express DMs’ quantitative but neglect their quantitative decision
information. Hence, Liu and Jin [55] utilized the IFS to represent the MD and
NMD of an element to a given ULV and proposed the concept of intuitionistic
uncertain linguistic set. Similarly, this paper proposes the concept of q-RDHULS
by combining q-RDHFS with ULVs. In q-RDHULS, q-RDHFS is utilized to
represent the MD and NMD of an ULV.

Definition 2 Let X be a given fixed set S̃ be a continuous linguistic term set,
a q-rung dual hesitant uncertain linguistic set (q-RDHULS) A defined on X is
expressed as

A =
{⟨

x,
( [

sθ(x), sξ (x)
]
,
(
gA(x), t A(x)

))⟩ |x ∈ X
}
, (2)

where
[
sθ, sξ

]
∈ S is a ULV, and gA(x), t A(x) : X → [0, 1], with the condition that

0 ¬
(
gA(x)

)q
+ (t A(x))q ¬ 1. The values of gA(x) and t A(x) denote the MD and

NMD of the element x to the ULV
[
sθ, sξ

]
, respectively. For convenience, we call

the pair α(x) =
⟨[

sθ(x), sξ (x)
]
,
(
gA(x), t A(x)

)⟩
a q-rung dual hesitant uncertain

linguistic variable (q-RDHULV), which can be denoted as α =
⟨[

sθ, sξ
]
, (g, t)

⟩
for simplify.

From Definition 2, we can find out that when q = 1, then q-RDHULS reduces
to the dual hesitant uncertain linguistic set. When q = 2, then q-RDHULS reduces
to the dual hesitant Pythagorean uncertain linguistic set.

In the following, we introduce operations of q-RDHULVs.

Definition 3 Let α1 =
⟨[

sθ1, sξ1

]
,
(
g1, t1

)⟩
, α2 =

⟨[
sθ2, sξ2

]
,
(
g2, t2

)⟩
and α =⟨[

sθ, sξ
]
, (g, t)

⟩
be any three q-RDHULVs and λ be a positive real number, then

(1) α1⊕α2 =

⟨[
sθ1+θ2, sξ1+ξ2

]
,
∪
δ1∈g1, δ2∈g2,
π1∈t1, π2∈t2

{{(
δ

q
1 + δ

q
2 − δ

q
1δ

q
2

)1/q}
, {π1π2}

}⟩
;

(2) α1 ⊗ α2 =

⟨[
sθ1×θ2, sξ1×ξ2

]
,
∪
δ1∈g1, δ2∈g2,
π1∈t1, π2∈t2

{
{δ1δ2} ,

{
π

q
1 + π

q
2 − π

q
1π

q
2

}}⟩
;

(3) λα =
⟨[

sλ·θ, sλ·ξ
]
,
∪
δ∈g, π∈t

{{(
1 − (1 − δq)λ

)1/q}
,

{
πλ

}}⟩
;

(4) αλ =
⟨[

sθλ, sξλ
]
,
∪
δ∈g, π∈t

{{
δλ

}
,
{(

1 − (1 − πq)λ
)1/q}}⟩

.

According to Definition 3, the following theorem can be easily obtained.
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Theorem 1 Let α1, α2 and α be any three q-RDHULVs, then
(1) α1 ⊕ α2 = α2 ⊕ α1;
(2) α1 ⊗ α2 = α2 ⊗ α1;
(3) λ (α1 ⊕ α2) = λα1 ⊕ λα2, λ > 0;
(4) (α1 ⊗ α2)λ = αλ1 ⊗ α

λ
2, λ > 0;

(5) λ1α ⊕ λ2α = (λ1 + λ2) α, λ1, λ2 > 0;
(6) αλ1 ⊗ αλ2 = α(λ1+λ2), λ1, λ2 > 0.

To rank any two q-RDHULVs, we introduce a comparison method for
q-RDHULVs.

Definition 4 Let α =
⟨[

sθ, sξ
]
, (g, t)

⟩
be a q-RDHULV, then the score function

of α is given as

S(α) =
1
8

(
θ + ξ

) × *.,1 + *.,
1
#g

∑
δ∈g

δ
+/-

q

− *, 1
#t

∑
π∈t

π+-
q+/- , (3)

and the accuracy function of α is expressed as

H (α) =
1
4

(
θ + ξ

) × *.,
*.,

1
#g

∑
δ∈g

δ
+/-

q

− *, 1
#t

∑
π∈t

π+-
q+/- , (4)

where #g and #t denote the numbers of values in g and t respectively. For any
two q-RDHULVs α1 =

⟨[
sθ1, sξ1

]
,
(
g1, t1

)⟩
and α2 =

⟨[
sθ2, sξ2

]
,
(
g2, t2

)⟩
, then

(1) If S(α1) > S(α2), then α1 > α2;
(2) If S(α1) > S(α2), then

If H (α1) > H (α2), then α1 > α2;
If H (α1) = H (α2), then α1 = α2.

2.2. Muirhead mean operator and its dual form

Definition 5 [48] Let b j ( j = 1, 2, . . . , n) a set of positive real numbers and
L = (l1, l2, . . . , ln) ∈ Rn be a collection of parameters. If

MML (b1, b2, . . . , bn) = *.,
1
n!

∑
σ∈Rn

n∏
j=1

bl j
σ( j)

+/-
1

n∑
j=1

lj

, (5)

then MML is called the Muirhead mean (MM), where Rn represents all possible
permutations of (1, 2, . . . , n) and σ( j) ( j = 1, 2, . . . , n) is any one of Rn.
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The dual form of MM operator is presented as follows.

Definition 6 [53] Let b j ( j = 1, 2, . . . , n) a set of positive real numbers and
L = (l1, l2, . . . , ln) ∈ Rn be a collection of parameters. Then the dual Muirhead
mean (DMM) operator is defined as

DMML (b1, b2, . . . , bn) =
1

n∑
j=1

l j

*.,
∏
σ∈Rn

n∑
j=1

(
l j bσ( j)

)+/-
1
n!

, (6)

where Rn represents all possible permutations of (1, 2, . . . , n) and σ( j) ( j =
1, 2, . . . , n) is any one of Rn.

3. Some q-rung dual hesitant uncertain linguistic aggregation operators

In this section, we propose some AOs for fusing q-RDHUL information based
on MM and DMM.

3.1. The q-rung dual hesitant uncertain linguistic Muirhead mean (q-RDHULMM)
operator

Definition 7 Let α j =
⟨[

sθ j, sξ j
]
,
(
g j, t j

)⟩
( j = 1, 2, . . . , n) be a collection of

q-RDHULVs and L = (l1, l2, . . . , ln) ∈ Rn be a collection of parameters. If

q-RDHULMML (α1, α2, . . . , αn) = *.,
1
n!

⊕
σ∈Rn

n⊗
j=1

α
l j
σ( j)

+/-
1

n∑
j=1

lj

, (7)

then q-RDHULMML is called the q-rung dual hesitant uncertain linguistic Muir-
head mean (q-RDHULMM) operator, where Rn represents all possible permuta-
tions of (1, 2, . . . , n) and σ( j) ( j = 1, 2, . . . , n) is any one of Rn.

Theorem 2 Let α j =
⟨[

sθ j, sξ j
]
,
(
g j, t j

)⟩
( j = 1, 2, . . . , n) be a collection of

q-RDHULVs and L = (l1, l2, . . . , ln) ∈ Rn be a collection of parameters. The
aggregated value by the q-RDHULMM operator is also a q-RDHULV and
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q-RDHULMML (α1, α2, . . . , αn) =

=

⟨ 
s

*, 1
n!

∑
σ∈Rn

n∏
j=1

θ
lj
σ( j)

+-
1

n∑
j=1

lj

, s

*, 1
n!

∑
σ∈Rn

n∏
j=1

ξ
lj
σ( j)

+-
1

n∑
j=1

lj


,

∪
δσ( j)∈gσ( j),
πσ( j)∈tσ( j)




*...,
*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1
δ

ql j
σ( j)

+/-
+/-

1
n! +//-

1/q+///-
1

n∑
j=1

lj


,


*....,
1 −

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − πq

σ( j)

) l j +/-
+/-

1
n! +//-

1
n∑
j=1

lj +////-
1/q 



⟩
.

(8)

Proof. We firstly prove that Eq. (8) holds, and afterwards we prove the aggregated
value is a q-RDHULV. According to the operations of q-RDHULVs, we have

α
l j
σ( j) =

⟨[
s
θ
lj
σ( j)

, s
ξ
lj
σ( j)

]
,

∪
δσ( j)∈gσ( j),
πσ( j)∈tσ( j)

{{
δ

l j
σ( j)

}
,

{(
1 −

(
1 − πq

σ( j)

) l j
)1/q}}⟩

,

and
n⊗

j=1
α

l j
σ( j) =

=

⟨s n∏
j=1

θ
lj
σ( j)

, s n∏
j=1

ξ
lj
σ( j)

 ,
∪

δσ( j)∈gσ( j),
πσ( j)∈tσ( j)




n∏
j=1

δ
l j
σ( j)

 ,


*.,1 −
n∏

j=1

(
1 − πq

σ( j)

) l j +/-
1/q 


⟩
.

Hence,

⊕
σ∈Rn

n⊗
j=1

α
l j
σ( j) =

⟨ s ∑
σ∈Rn

n∏
j=1

θ
lj
σ( j)

, s ∑
σ∈Rn

n∏
j=1

ξ
lj
σ( j)

 ,
∪

δσ( j)∈gσ( j),
πσ( j)∈tσ( j)


*.,1 −

∏
σ∈Rn

*.,1 −
n∏

j=1
δ

ql j
σ( j)

+/-
+/-

1/q  ,


∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − πq

σ( j)

) l j +/-
1/q 


⟩
,
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and

1
n!

⊕
σ∈Rn

n⊗
j=1

α
l j
σ( j) =

⟨ s 1
n!

∑
σ∈Rn

n∏
j=1

θ
lj
σ( j)

, s 1
n!

∑
σ∈Rn

n∏
j=1

ξ
lj
σ( j)

 ,
∪

δσ( j)∈gσ( j),
πσ( j)∈tσ( j)


*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1
δ

ql j
σ( j)

+/-
+/-

1
n! +//-

1/q 
,


*..,
∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − πq

σ( j)

) l j +/-
1/q+//-

1
n! 


⟩
.

Thus,

*.,
1
n!

⊕
σ∈Rn

n⊗
j=1

α
l j
σ( j)

+/-
1

n∑
j=1

lj

=

⟨ 
s

*, 1
n!

∑
σ∈Rn

n∏
j=1

θ
lj
σ( j)

+-
1

n∑
j=1

lj

, s

*, 1
n!

∑
σ∈Rn

n∏
j=1

ξ
lj
σ( j)

+-
1

n∑
j=1

lj


,

∪
δσ( j)∈gσ( j),
πσ( j)∈tσ( j)




*...,
*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1
δ

ql j
σ( j)

+/-
+/-

1
n! +//-

1/q+///-
1

n∑
j=1

lj


,


*....,
1 −

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − πq

σ( j)

) l j+/-
+/-

1
n! +//-

1
n∑
j=1

lj +////-
1/q 



⟩
which proves the rightness of Eq. (8). In the followings, we shall prove that the
aggregated value is a q-RDHULV. For easy description, let

δ =
*...,

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1
δ

ql j
σ( j)

+/-
+/-

1
n! +//-

1/q+///-
1

n∑
j=1

lj

,

π =

*....,
1 −

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − πq

σ( j)

) l j +/-
+/-

1
n! +//-

1
n∑
j=1

lj +////-
1/q

.
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It is easy to prove that 0 ¬ δ, π ¬ 1. Since δq
σ( j) + π

q
σ( j) ¬ 1, then δq

σ( j) ¬
1 − πq

σ( j), and we can obtain

δq + πq =
*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1
δ

ql j
σ( j)

+/-
+/-

1
n! +//-

1
n∑
j=1

lj

+ 1 −
*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − πq

σ( j)

) l j +/-
+/-

1
n! +//-

1
n∑
j=1

lj

¬
*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − πq

σ( j)

) l j +/-
+/-

1
n! +//-

1
n∑
j=1

lj

+ 1 −
*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − πq

σ( j)

) l j +/-
+/-

1
n! +//-

1
n∑
j=1

lj

= 1,

which proves that the aggregated value is also a q-RDHULVs.
In the followings, we discuss some properties of the proposed q-RDHULMM

operator.
Property 1 (Idempotency) Let α j ( j = 1, 2, . . . , n) be a collection of q-
RDHULVs. If all q-RDHULVs are equal, i.e. α j = α holds for j = 1, 2, . . . , n,
and α only has one ULV, one MD and one NMD, then

q-RDHULMML (α1, α2, . . . , αn) = α. (9)

Proof. Since α j = α =
⟨[

sθ, sξ
]
, {{δ}, {π}}

⟩
holds for all j, then we have

q-RDHULMML (α1, α2, . . . , αn) =

⟨ 
s

*, 1
n!

∑
σ∈Rn

n∏
j=1

θlj +-
1

n∑
j=1

lj

, s

*, 1
n!

∑
σ∈Rn

n∏
j=1

ξlj +-
1

n∑
j=1

lj


,

∪
δ∈g, π∈t




*...,
*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1
δql j +/-

+/-
1
n! +//-

1/q+///-
1

n∑
j=1

lj


,


*....,
1 −

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − πq) l j +/-

+/-
1
n! +//-

1
n∑
j=1

lj +////-
1/q 



⟩
.
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Further,

s

*, 1
n!

∑
σ∈Rn

n∏
j=1

θ
lj +-

1
n∑
j=1

lj

= s*..,
1
n!

∑
σ∈Rn

θ

n∑
j=1

lj +//-
1

n∑
j=1

lj

= s*..,
1
n! n!θ

n∑
j=1

lj +//-
1

n∑
j=1

lj

= sθ .

Similarly,
s

*, 1
n!

∑
σ∈Rn

n∏
j=1

ξ
lj
σ( j)

+-
1

n∑
j=1

lj

= sξ .

In addition,

*...,
*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1
δ

ql j
σ( j)

+/-
+/-

1
n! +//-

1/q+///-
1

n∑
j=1

lj

=

=
*...,

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1
δql j +/-

+/-
1
n! +//-

1/q+///-
1

n∑
j=1

lj

=

*....,
*...,1 −

*..,
*.,1 −

n∏
j=1

δql j +/-
n!+//-

1
n! +///-

1/q+////-

1
n∑
j=1

lj

,

and *..,
*.,

n∏
j=1

δql j +/-
1/q+//-

1
n∑
j=1

lj

=
*..,

*.,δ
q

n∑
j=1

l j +/-
1/q+//-

1
n∑
j=1

lj

= δ.

Similarly,

*....,
1 −

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − πq

σ( j)

) l j +/-
+/-

1
n! +//-

1
n∑
j=1

lj +////-
1/q

= π.

Hence, q-RDHULMML (α1, α2, . . . , αn) = α.

Property 2 (Monotonicity) Let α j =
⟨[

sθ j, sξ j
]
,
(
g j, t j

)⟩
and β j =⟨[

sψ j, sϑ j

]
,
(
k j,m j

)⟩
( j = 1, 2, . . . , n) be two collections of q-RDHULVs. If

sθ j ¬ sψ j , sξ j ¬ sϑ j , δ ¬ η and π  γ hold for j = 1, 2, . . . , n, where δ ∈ g j ,
η ∈ k j , π ∈ t j and ρ ∈ m j , then

q-RDHULMML (α1, α2, . . . , αn) ¬ q-RDHULMML (
β1, β2, . . . , βn

)
. (10)
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Proof. For easy description, we assume

q-RDHULMML (α1, α2, . . . , αn) =
⟨[

sθ, sξ
]
, (g, t)

⟩

=

⟨ 
s

*, 1
n!

∑
σ∈Rn

n∏
j=1

θ
lj
σ( j)

+-
1

n∑
j=1

lj

, s

*, 1
n!

∑
σ∈Rn

n∏
j=1

ξ
lj
σ( j)

+-
1

n∑
j=1

lj


,

∪
δσ( j)∈gσ( j),
πσ( j)∈tσ( j)




*...,
*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1
δ

ql j
σ( j)

+/-
+/-

1
n! +//-

1/q+///-
1

n∑
j=1

lj


,


*....,
1 −

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − πq

σ( j)

) l j +/-
+/-

1
n! +//-

1
n∑
j=1

lj +////-
1/q 



⟩
,

and

q-RDHULMML (
β1, β2, . . . , βn

)
=

⟨[
sψ, sϑ

]
, (k,m)

⟩

=

⟨ 
s

*, 1
n!

∑
σ∈Rn

n∏
j=1

ψ
lj
σ( j)

+-
1

n∑
j=1

lj

, s

*, 1
n!

∑
σ∈Rn

n∏
j=1

ϑ
lj
σ( j)

+-
1

n∑
j=1

lj


,

∪
ησ( j)∈kσ( j),
γσ( j)∈mσ( j)




*...,
*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1
η

ql j
σ( j)

+/-
+/-

1
n! +//-

1/q+///-
1

n∑
j=1

lj


,


*....,
1 −

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − γq

σ( j)

) l j +/-
+/-

1
n! +//-

1
n∑
j=1

lj +////-
1/q 



⟩
.
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Since sθ j ¬ sψ j and sξ j ¬ sϑ j hold for j = 1, 2, . . . , n, it is easy to prove that

s

*, 1
n!

∑
σ∈Rn

n∏
j=1

θ
lj
σ( j)

+-
1

n∑
j=1

lj

¬ s

*, 1
n!

∑
σ∈Rn

n∏
j=1

ψ
lj
σ( j)

+-
1

n∑
j=1

lj

,

s

*, 1
n!

∑
σ∈Rn

n∏
j=1

ξ
lj
σ( j)

+-
1

n∑
j=1

lj

¬ s

*, 1
n!

∑
σ∈Rn

n∏
j=1

ϑ
lj
σ( j)

+-
1

n∑
j=1

lj

,

i.e. sθ ¬ sψ and sξ ¬ sϑ.
In addition, since δ ¬ η holds for j = 1, 2, . . . , n, where δ ∈ g j , η ∈ k j , we

have
n∏

j=1
δ

ql j
σ( j) ¬

n∏
j=1

η
ql j
σ( j) ⇒ 1 −

n∏
j=1

δ
ql j
σ( j)  1 −

n∏
j=1

η
ql j
σ( j)

⇒
∏
σ∈Rn

*.,1 −
n∏

j=1
δ

ql j
σ( j)

+/- 
∏
σ∈Rn

*.,1 −
n∏

j=1
η

ql j
σ( j)

+/-
⇒ *.,

∏
σ∈Rn

*.,1 −
n∏

j=1
δ

ql j
σ( j)

+/-
+/-

1
n!

 *.,
∏
σ∈Rn

*.,1 −
n∏

j=1
η

ql j
σ( j)

+/-
+/-

1
n!

⇒ 1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1
δ

ql j
σ( j)

+/-
+/-

1
n!

¬ 1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1
η

ql j
σ( j)

+/-
+/-

1
n!

⇒
*...,
*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1
δ

ql j
σ( j)

+/-
+/-

1
n! +//-

1/q+///-
1

n∑
j=1

lj

¬
*...,
*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1
η

ql j
σ( j)

+/-
+/-

1
n! +//-

1/q+///-
1

n∑
j=1

lj

.

Similarly,
*....,
1 −

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − πq

σ( j)

) l j +/-
+/-

1
n! +//-

1
n∑
j=1

lj +////-
1/q 
¬

¬


*....,
1 −

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − γq

σ( j)

) l j +/-
+/-

1
n! +//-

1
n∑
j=1

lj +////-
1/q 

.
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Hence, for any element δ ∈ g there exits an element η (η ∈ k), satisfying
δ ¬ η. For any element π ∈ t, there exits an element γ (γ ∈ m), satisfying δ ¬ γ.
Therefore, according to Definition 4, we can obtain

q-RDHULMML (α1, α2, . . . , αn) ¬ q-RDHULMML (
β1, β2, . . . , βn

)
.

Property 3 (Boundedness) Let α j =
⟨[

sθ j, sξ j
]
,
(
g j, t j

)⟩
( j = 1, 2, . . . , n) be a

collection of q-RDHULVs. If

α+ =

⟨s nmax
j=1

(θ j), s nmax
j=1

(ξ j)

 ,
∪

δ j∈gj,πj∈t j

{{
nmax

j=1

(
δ j

)}
,

{
n

min
j=1

(
π j

)}}⟩
, (11)

and

α− =

⟨s n
min
j=1

(θ j)
, s n

min
j=1

(ξ j)

 ,
∪

δ j∈gj,πj∈t j

{{
n

min
j=1

(
δ j

)}
,

{
nmax

j=1

(
π j

)}}⟩
. (12)

Then
α− ¬ q-RDHULMML (α1, α2, . . . , αn) ¬ α+. (13)

Proof. According to property 2, we can easily obtain that

q-RDHULMML (
α−, α−, . . . , α−

)
¬ q-RDHULMML (α1, α2, . . . , αn)

¬ q-RDHULMML (
α+, α+, . . . , α+

)
.

In addition, both α− and α+ only have one ULV, one MD and one NMD.
Therefore,

q-RDHULMML (
α−, α−, . . . , α−

)
= α−,

q-RDHULMML (
α+, α+, . . . , α+

)
= α+.

Hence,
α− ¬ q-RDHULMML (α1, α2, . . . , αn) ¬ α+.

In the following part, we shall present special cases of the q-RDHULMM
operator. As we know, the MM operators have some special cases. In other
words, some existing AOs are special cases of MM. The q-RDHULMM operator
can be regard as a generalized of MM to q-RDHULSs so that it also has some
special cases with respect to the parameter vector L and parameter q.
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(1) If L = (1, 0, . . . , 0), then we have

q-RDHULMM(1,0,...,0) (α1, α2, . . . , αn)

=
1
n

n⊕
j=1

α j =

=

⟨s 1
n

n∑
j=1

θ j
, s 1

n

n∑
j=1

ξ j

 ,
∪
δ j∈gj,
πj∈t j




*.,1 −
n∏

j=1

(
1 − δq

j

)1/n+/-
1/q  ,


n∏

j=1
π1/n

j



⟩
,

(14)

and so that the q-RDHULMM operator reduces to the q-rung dual hesitant
uncertain linguistic average (q-RDHULA) operator.

(2) If L = (1, 1, 0, 0, . . . , 0), then we have

q-RDHULMM(1,1,0,0,...,0) (α1, α2, . . . , αn) =

=
*.,

1
n(n − 1)

n⊕
i, j=1;i, j

(
αi ⊗ α j

)+/-
1/2

=

=

⟨ 
s*, 1

n(n−1)

n∑
i, j=1;i,j

θiθ j+-
1/2, s*, 1

n(n−1)

n∑
i, j=1;i,j

ξiξ j+-
1/2


,

∪
δi∈gi,δ j∈gj,
πi∈ti,πj∈t j




*..,1 − *.,
n∏

i, j=1;i, j

(
1 −

(
δiδ j

)q)+/-
1

n(n−1) +//-
1

2q 
,


*....,
1 −

*..,1 − *.,
n∏

i, j=1;i, j

(
π

q
i + π

q
j − π

q
i π

q
j

)+/-
1

n(n−1) +//-
1
2 +////-

1
q 



⟩
,

(15)

and so that the q-RDHULMM operator reduces to the q-rung dual hesitant
uncertain linguistic Bonferroni mean operator.
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(3) If L =
k︷       ︸︸       ︷

(1, 1, . . . , 1,
n−k︷       ︸︸       ︷

0, 0, . . . , 0), then we have

q-RDHULMM

k︷       ︸︸       ︷
(1, 1, . . . , 1,

n−k︷       ︸︸       ︷
0, 0, . . . , 0) (α1, α2, . . . , αn) =

=

*......,

⊕
1¬i1<...<ik¬n

k⊗
j=1

αi j

Ck
n

+//////-

1/k

=

=

⟨ 
s*....,

∑
1¬i1<...<ik¬n

k∏
j=1

θij

Ck
n

+////-
1/k, s*....,

∑
1¬i1<...<ik¬n

k∏
j=1

ξij

Ck
n

+////-
1/k


,

∪
δij ∈gij ,
πij ∈tij




*.,1 −

(
1 −

(
1 − ∏

1¬i1<...<ik¬n

(
1 −

(
k∏

j=1
δi j

)q))) 1
Ck
n +/-

1/qk  ,
*..,1 − *.,1 − ∏

1¬i1<...<ik¬n

(
1 −

k∏
j=1

(
1 − πi j

)) 1
Ck
n +/-

1/k+//-
1/q 



⟩
,

(16)

and so that the q-RDHULMM operator reduces to the q-rung dual hesitant
uncertain linguistic Maclaurin symmetric mean operator.

(4) If L = (1, 1, . . . , 1), then we have

q-RDHULMM(1,1,...,1) (α1, α2, . . . , αn) =
n⊗

j=1
α1/n

j =

=

⟨s n∏
j=1

θ1/n
j

, s n∏
j=1

ξ1/n
j

 ,
∪
δ j∈gj,
πj∈t j




n∏
j=1

δ1/n
j

 ,


*.,1 −
n∏

j=1

(
1 − πq

j

)1/n+/-
1/q 


⟩
,

(17)

and so that the q-RDHULMM operator reduces to the q-rung dual hesitant
uncertain linguistic geometric (q-RDHULG) operator.

(5) If L = (1/n, 1/n, . . . , 1/n), then the q-RDHULMM operator also becomes
the q-RDHULG operator shown as Eq. (17).
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(6) If q = 1, then we have

q-RDHULMML (α1, α2, . . . , αn) =

=

⟨ 
s

*, 1
n!

∑
σ∈Rn

n∏
j=1

θ
lj
σ( j)

+-
1

n∑
j=1

lj

, s

*, 1
n!

∑
σ∈Rn

n∏
j=1

ξ
lj
σ( j)

+-
1

n∑
j=1

lj


,

∪
δσ( j)∈gσ( j),
πσ( j)∈tσ( j)




*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1
δ

l j
σ( j)

+/-
+/-

1
n! +//-

1
n∑
j=1

lj


,


1 −

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − πσ( j)

) l j +/-
+/-

1
n! +//-

1
n∑
j=1

lj




⟩
,

(18)

and so that the q-RDHULMM operator reduces to the dual hesitant uncertain
linguistic Muirhead mean operator.

(7) If q = 2, then we have

q-RDHULMML (α1, α2, . . . , αn) =

=

⟨ 
s

*, 1
n!

∑
σ∈Rn

n∏
j=1

θ
lj
σ( j)

+-
1

n∑
j=1

lj

, s

*, 1
n!

∑
σ∈Rn

n∏
j=1

ξ
lj
σ( j)

+-
1

n∑
j=1

lj


,

∪
δσ( j)∈gσ( j),
πσ( j)∈tσ( j)




*...,
*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1
δ

2l j
σ( j)

+/-
+/-

1
n! +//-

1/2+///-
1

n∑
j=1

lj


,


*.....,
1 −

*....,
1 −

*..,
∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − π2

σ( j)

) l j +/-
1
n! +//-

1
n∑
j=1

lj +////-
1/2+/////-




⟩
,

(19)

and so that the q-RDHULMM operator reduces to the dual Pythagorean hesitant
uncertain linguistic Muirhead mean operator.
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3.2. The q-rung dual hesitant uncertain linguistic weighted Muirhead mean
(q-RDHULWMM) operator

Definition 8 Let α j =
⟨[

sθ j, sξ j
]
,
(
g j, t j

)⟩
( j = 1, 2, . . . , n) be a collection of

q-RDHULVs and L = (l1, l2, . . . , ln) ∈ Rn be a collection of parameters. Let
w = (w1,w2, . . . ,wn)T be the weight vector of α j ( j = 1, 2, . . . , n), satisfying

0 ¬ w j ¬ 1 and
n∑

j=1
w j = 1. If

q-RDHULWMML (α1, α2, . . . , αn) = *.,
1
n!

⊕
σ∈Rn

n⊗
j=1

(
nwσ( j)ασ( j)

) l j +/-
1

n∑
j=1

lj

, (20)

then q-RDHULWMML is the q-rung dual hesitant uncertain linguistic weighted
Muirhead mean (q-RDHULWMM) operator, where Rn represents all possible
permutations of (1, 2, . . . , n) and σ( j) ( j = 1, 2, . . . , n) is any one of Rn.

Theorem 3 Let α j =
⟨[

sθ j, sξ j
]
,
(
g j, t j

)⟩
( j = 1, 2, . . . , n) be a collection of

q-RDHULVs and L = (l1, l2, . . . , ln) ∈ Rn be a collection of parameters. The
aggregated value by the q-RDHULWMM operator is still a q-RDHULV and

q-RDHULWMML (α1, α2, . . . , αn) =

=

⟨ 
s

*, 1
n!

∑
σ∈Rn

n∏
j=1

(nwσ( j)θσ( j))lj +-
1

n∑
j=1

lj

, s

*, 1
n!

∑
σ∈Rn

n∏
j=1

(nwσ( j)ξσ( j))lj +-
1

n∑
j=1

lj


,

∪
δσ( j)∈gσ( j),
πσ( j)∈tσ( j)




*...,
*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 −

(
1 − δq

σ( j)

)nwσ( j)
) l j +/-

+/-
1
n! +//-

1/q+///-
1

n∑
j=1

lj


,


*....,
1 −

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 −

(
π

nwσ( j)

σ( j)

)q) l j +/-
+/-

1
n! +//-

1
n∑
j=1

lj +////-
1/q 



⟩
.

(21)

The proof of Theorem 3 is similar to that of Theorem 2. In addition, it is easy
to prove that the q-RDHULWMM operator has the properties of monotonicity
and boundedness.
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3.3. The q-rung dual hesitant uncertain linguistic dual Muirhead mean
(q-RDHULDMM) operator

Definition 9 Let α j =
⟨[

sθ j, sξ j
]
,
(
g j, t j

)⟩
( j = 1, 2, . . . , n) be a collection of

q-RDHULVs and L = (l1, l2, . . . , ln) ∈ Rn be a collection of parameters. If

q-RDHULDMML (α1, α2, . . . , αn) =
1

n∑
j=1

l j

*.,
⊗
σ∈Rn

n⊕
j=1

(
l jασ( j)

)+/-
1
n!

, (22)

then q-RDHULDMML is the q-rung dual hesitant uncertain linguistic dual Muir-
head mean (q-RDHULDMM) operator, where Rn represents all possible permu-
tations of (1, 2, . . . , n) and σ( j) ( j = 1, 2, . . . , n) is any one of Rn.

Theorem 4 Let α j =
⟨[

sθ j, sξ j
]
,
(
g j, t j

)⟩
( j = 1, 2, . . . , n) be a collection of

q-RDHULVs and L = (l1, l2, . . . , ln) ∈ Rn be a collection of parameters. The
aggregated value by the q-RDHULDMM operator is still a q-RDHULV and

q-RDHULDMML (α1, α2, . . . , αn) =

=

⟨ 
s

1
n∑
j=1

lj

*, ∏
σ∈Rn

n∑
j=1

(l jθσ( j))+-
1
n!
, s

1
n∑
j=1

hj

*, ∏
σ∈Rn

n∑
j=1

(l j ξσ( j))+-
1
n!


,

∪
δσ( j)∈gσ( j),
πσ( j)∈tσ( j)




*....,
1 −

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − δq

σ( j)

) l j +/-
+/-

1
n! +//-

1
n∑
j=1

lj +////-
1/q 

,


*...,

*..,1 − *.,
∏
σ∈Rn

*.,1 −
n∏

j=1
π

ql j
σ( j)

+/-
+/-

1
n! +//-

1/q+///-
1

n∑
j=1

lj




⟩
.

(23)

The proof of Theorem 4 is similar to that of Theorem 2. In addition, it is easy
to prove that the q-RDHULDMM operator has the properties of idempotency,
monotonicity and boundedness. In the following, we discuss special cases of the
q-RDHULDMM operator with respect to the parameter vector L and parameter q.

(1) If L = (1, 0, . . . , 0) in the q-RDHULDMM operator, then it will become
to the q-RDHULG operator, shown as Eq. (17).
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(2) If L = (1, 1, 0, . . . , 0) in the q-RDHULDMM operator, then we have

q-RDHULDMM(1,1,0,...,0) (α1, α2, . . . , αn) =
1
2

*.,
n⊗

i, j=1;i, j

(
αi ⊕ α j

)+/-
1

n(n−1)

=

=

⟨ s
1
2

n∏
i, j=1;i,j

(θi+θ j)
1

n(n−1)
, s

1
2

n∏
i, j=1;i,j

(ξi+ξ j)
1

n(n−1)

 ,
∪

δi∈gi,δ j∈gj,
πi∈ti,πj∈t j




*....,
1 −

*..,1 − *.,
n∏

i, j=1;i, j

(
δ

q
i + δ

q
j − δ

q
i δ

q
j

)+/-
1

n(n−1) +//-
1
2 +////-

1
q 
,


*..,1 − *.,

n∏
i, j=1;i, j

(
1 −

(
πiπ j

)q)+/-
1

n(n−1) +//-
1

2q 

⟩
,

(24)

which is the q-rung dual hesitant uncertain linguistic geometric Bonferroni mean
operator.

(3) If L =
k︷       ︸︸       ︷

(1, 1, . . . , 1,
n−k︷       ︸︸       ︷

0, 0, . . . , 0) in the q-RDHULDMM operator, then we
have

q-RDHULDMM

k︷        ︸︸        ︷
(1, 1, . . . , 1,

n−k︷       ︸︸       ︷
0, 0, . . . , 0) (α1, α2, . . . , αn) =

=
1
k

*....,
⊗

1¬i1<...
...<ik¬n

*.,
k⊕

j=1
αi j

+/-
1/Ck

n +////-
=

⟨
s

1
k

*..,
∏

1¬i1<...
...<ik¬n

*,
k∑
j=1

θij
+-

1
Ck
n +//-
, s

1
k

*..,
∏

1¬i1<...
...<ik¬n

*,
k∑
j=1

ξij
+-

1
Ck
n +//-


,

∪
δij ∈gij ,
πij ∈tij




*...,1 −
*..,1 −

∏
1¬i1<...<ik¬n

*.,1 −
k∏

j=1

(
1 − δi j

)+/-
1

Ck
n +//-

1/k+///-
1/q 

,


*..,1 − *.,1 − *.,1 −

∏
1¬i1<...<ik¬n

*.,1 − *.,
k∏

j=1
πi j

+/-
q+/-

+/-
+/-

1
Ck
n +//-

1/qk 

⟩
,

(25)
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which is the q-rung dual hesitant uncertain linguistic dual Maclaurin symmetric
mean operator.

(4) If L = (1, 1, . . . , 1) or L = (1/n, 1/n, . . . , 1/n) in the q-RDHULDMM
operator, then it will become the q-RDHULA, shown as Eq. (14).

(5) If q = 1 in the in the q-RDHULDMM operator, then we have

q-RDHULDMML (α1, α2, . . . , αn) =

=

⟨ 
s

1
n∑
j=1

lj

*, ∏
σ∈Rn

n∑
j=1

(l jθσ( j))+-
1
n!
, s

1
n∑
j=1

lj

*, ∏
σ∈Rn

n∑
j=1

(l j ξσ( j))+-
1
n!


,

∪
δσ( j)∈gσ( j),
πσ( j)∈tσ( j)
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*..,1 − *.,

∏
σ∈Rn

*.,1 −
n∏

j=1

(
1 − δσ( j)

) l j +/-
+/-

1
n! +//-

1
n∑
j=1

lj


,
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∏
σ∈Rn

*.,1 −
n∏

j=1
π

l j
σ( j)

+/-
+/-

1
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1
n∑
j=1

lj




⟩
,

(26)

which is the dual hesitant uncertain linguistic dual Muirhead mean operator.
(6) If q = 2 in the in the q-RDHULDMM operator, then we have

q-RDHULDMML (α1, α2, . . . , αn) =

=

⟨ 
s

1
n∑
j=1

lj

*, ∏
σ∈Rn

n∑
j=1

(l jθσ( j))+-
1
n!
, s
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lj
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j=1

(
1 − δσ( j)

) l j +/-
+/-

1
n! +//-

1
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lj
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⟩
,

(27)
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which is the dual Pythagorean hesitant uncertain linguistic dual Muirhead mean
operator.

3.4. The q-rung dual hesitant uncertain linguistic weighted dual Muirhead mean
(q-RDHULDMM) operator

Definition 10 Let α j =
⟨[

sθ j, sξ j
]
,
(
g j, t j

)⟩
( j = 1, 2, . . . , n) be a collection of

q-RDHULVs and L = (l1, l2, . . . , ln) ∈ Rn be a collection of parameters. Let
w = (w1,w2, . . . ,wn)T be the weight vector of α j ( j = 1, 2, . . . , n), satisfying

0 ¬ w j ¬ 1 and
n∑

j=1
w j = 1. If

q-RDHULWDMML (α1, α2, . . . , αn) =
1

n∑
j=1

l j

*.,
⊗
σ∈Rn

n⊕
j=1

(
l jα

nwσ( j)

σ( j)

)+/-
1
n!

, (28)

then q-RDHULWMML is the q-rung dual hesitant uncertain linguistic weighted
dual Muirhead mean (q-RDHULWDMM) operator, where Rn represents all pos-
sible permutations of (1, 2, . . . , n) and σ( j) ( j = 1, 2, . . . , n) is any one of Rn.

Theorem 5 Let α j =
⟨[

sθ j, sξ j
]
,
(
g j, t j

)⟩
( j = 1, 2, . . . , n) be a collection of

q-RDHULVs and L = (l1, l2, . . . , ln) ∈ Rn be a collection of parameters. The
aggregated value by the q-RDHULWDMM operator is still a q-RDHULV and

q-RDHULWDMML (α1, α2, . . . , αn) =

=

⟨ 
s

1
n∑
j=1

lj

*, ∏
σ∈Rn

n∑
j=1

(
l jθ

nwσ( j)
σ( j)
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1
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nwσ( j)
σ( j)

)+-
1
n!


,
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⟩
.

(29)
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The proof of Theorem 5 is similar to that of Theorem 2. In addition, the
proposed q-RDHULWDMM operator has the properties of monotonicity and
boundedness.

4. A new MADM method with q-rung dual hesitant uncertain
linguistic information

In the above sections, we have analyzed the powerfulness of the q-RDHULSs
and the proposed q-RDHUL AOs. In this section, we consider MADM problem
in q-RDHUL decision-making environment. There are m alternatives to be eval-
uated, which can be denoted as X = {X1, X2, . . . , Xm}. DMs are invited to be a
decision-making committee to evaluate the candidates from n aspects, which can
be presented by C = {C1,C2, . . . ,Cn}. The importance degree of attribute Cj is

w j , satisfying 0 ¬ w j ¬ 1 and
n∑

j=1
w j = 1. In other word, w = (w1,w2, . . . ,wn)T

is the weight vector of attributes. Let S = {s1, s2, s3, s4, s5, s6, s7} be a LTS and
based on which DMs use a q-RDHULV αi j =

⟨[
sθi j, sξi j

]
,
(
gi j, ti j

)⟩
to express

their evaluation value for attribute Cj over alternative Xi. Hence, a q-RDHUL
decision matrix D =

(
αi j

)
m×n

is determined. In the followings, we solve this
MADM problem based on the proposed AOs.

Step 1 Standardize the original q-RDHUL decision matrix according to the
following equation

D =
(
αi j

)
m×n
=


⟨[

sθi j, sξi j
]
,
(
gi j, ti j

)⟩
Cj ∈ I1 ,⟨[

sθi j, sξi j
]
,
(
ti j, gi j

)⟩
Cj ∈ I2 ,

(30)

where I1 and I2 denote benefit type and cost type of attribute.
Step 2 Utilize the q-RDHULWMM operator

αi = q-RDHULWMML (αi1, αi2, . . . , αin) , (31)

or the q-RDHULWDMM operator

αi = q-RDHULWDMML (αi1, αi2, . . . , αin) , (32)

to aggregate attribute values of alternative Xi (i = 1, 2, . . . ,m). Hence, a collective
of overall evaluation values are derived.

Step 3 Calculate the scores of the comprehensive evaluation values according
to Definition 4.

Step 4 Rank alternatives according to their corresponding scores and select
the optimal one.
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5. A practical application of proposed method in enterprise informatization
level evaluation

Enterprise information construction refers to improving the production and
operation efficiency of enterprises through the deployment of computer technol-
ogy, reducing operational risks and costs, thereby improving the overall man-
agement level and the ability of continuous operation. The main purpose of
enterprise informatization is to use advanced information technology and mod-
ern management methods to enhance and optimize the business process and
management level of the enterprise. In the fierce domestic and international
competition, many Chinese companies are accelerating the pace of informati-
zation construction. Before the construction of information technology, enter-
prises need to comprehensively evaluate the current level of informatization
from multiple aspects. In essence, the evaluation of enterprise informatization
level is a MADM problem. A group wants to evaluate the information level of
its four subsidiaries, which can be denoted as X = {X1, X2, X3, X4}. In order
to make an accurate evaluation, the company has invited a number of senior
experts in the field of enterprise information construction to evaluate the four
possible alternatives. Taking into account the actual business and business con-
ditions of the company, the decision-making experts evaluate the informatization
level of the four subsidiaries from the following four aspects, i.e. C1 (enterprise
scale level), C2 (proportion of investment for informatization), C3 (institutional
standards construction), and C4 (attention from leader). The weight vector of
these attributes is w = (0.2, 0.1, 0.3, 0.4)T . Let S = {s0, s1, s2, s3, s4, s5, s6} be
an LTS and DMs are invited to use a q-RDHULV αi j =

⟨[
sθi j, sξi j

]
,
(
gi j, ti j

)⟩
(i, j = 1, 2, 3, 4) to express their evaluation information. Hence, a q-RDHUL
decision matrix can be obtained, which is shown as Table 1. In the followings,
we utilize the proposed method to evaluate the overall performance of the four
alternatives.

5.1. The decision making process

In the following, we utilize the proposed method to deal with the MADM
problem.

Step 1 Given that all attributes are benefit type, the original q-rung dual
hesitant uncertain linguistic does not need to be normalized.

Step 2 Utilize the q-RDHULWMM operator to aggregate attribute values
of each alternative. Hence, for each alternative an overall evaluation value is
obtained. Without loss of generality, let L = (1, 1, 1, 1) and q = 2. As the
comprehensive evaluation values of each alternatives are too complex, we omit
them here to save space.
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Table 1: The q-rung dual hesitant uncertain linguistic decision matrix provided by experts

C1 C2

X1 ⟨[s3, s4], {{0.3, 0.5}, {0.2, 0.4}}⟩ ⟨[s5, s6], {{0.5, 0.6}, {0.3, 0.4}}⟩
X2 ⟨[s1, s3], {{0.2, 0.4, 0.5}, {0.1, 0.3}}⟩ ⟨[s4, s6], {{0.5, 0.6, 0.7}, {0.1, 0.2, 0.3}}⟩
X3 ⟨[s2, s4], {{0.3, 0.4}, {0.1, 0.2, 0.3}}⟩ ⟨[s5, s7], {{0.3, 0.5}, {0.1, 0.2}}⟩
X4 ⟨[s2, s4], {{0.3, 0.4}, {0.1, 0.2, 0.3}}⟩ ⟨[s6, s7], {{0.2, 0.6}, {0.1, 0.3, 0.4}}⟩

C3 C4

X1 ⟨[s1, s3], {{0.2, 0.3, 0.5}, {0.2, 0.3}}⟩ ⟨[s5, s7], {{0.6, 0.7}, {0.1, 0.2}}⟩
X2 ⟨[s2, s3], {{0.1, 0.5}, {0.1, 0.5}}⟩ ⟨[s6, s7], {{0.1, 0.6}, {0.1, 0.3}}⟩
X3 ⟨[s2, s3], {{0.1, 0.3, 0.4}, {0.1, 0.4}}⟩ ⟨[s4, s7], {{0.2, 0.5}, {0.3, 0.5}}⟩
X4 ⟨[s2, s4], {{0.2, 0.4, 0.6}, {0.1, 0.3}}⟩ ⟨[s5, s6], {{0.3, 0.6}, {0.3, 0.4}}⟩

Step 3 Calculate the scores of the comprehensive evaluation values, and we
can obtain

S(α1) = 0.2774, S(α2) = 0.2398, S(α3) = 0.2686, S(α4) = 0.2782.

Step 4 Rank alternatives according to their scores and we have X4 ≻ X1 ≻
X3 ≻ X2, and X4 is the best alternative. In other word, the subsidiary X4 has the
highest informatization level.

In Step 2, if we utilize the q-RDHULWDMM operator to aggregate attributes
of each alternative, then the scores of alternatives are (q = 2 and L = (1, 1, 1, 1))

S(α1) = 0.0715, S(α2) = 0.0669, S(α3) = 0.0728, S(α4) = 0.0729.

Hence, the ranking orders is X4 ≻ X3 ≻ X1 ≻ X2, and the optimal alternative
is X4, which also illustrates that X4 has highest informatization level.

5.2. The validity of our proposed method

In this subsection, we prove the validity and effectiveness of our proposed
method by solving real MADM problems. We compare the decision results
obtained by our method with those derived by some existing methods and conduct
analysis in detail.

Example 1 (From Ref. [24]) A company wants to select an investment project
among four possible alternatives, denoted by Ai (i = 1, 2, 3, 4). A group of DMs
are organized as a committee to evaluate the four potential alternatives under
three attributes Cj ( j = 1, 2, 3), i.e. the risk analysis (C1), the growth analysis
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(C2), and the environmental impact analysis (C3). The weight vector of attributes
is w = (0.35, 0.25, 0.40)T . Let S = {s0, s1, s2, s3, s4, s5, s6} be a LTS and for
attribute Cj ( j = 1, 2, 3) of alternative Ai (i = 1, 2, 3, 4), DMs utilize a dual
hesitant fuzzy linguistic element (DHFLE) αi j =

⟨
sθi j,

(
gi j, ti j

)⟩
to express their

evaluation values. Therefore, a dual hesitant fuzzy linguistic decision matrix can
be obtained, which is listed in Table 2.

Table 2: The dual hesitant fuzzy linguistic decision matrix of Example 1

C1 C2 C3

A1 ⟨s3, {{0.4, 0.5, 0.6}, {0.3, 0.4}}⟩ ⟨s4, {{0.3, 0.5}, {0.2, 0.3}}⟩ ⟨s4, {{0.3, 0.5, 0.6}, {0.1, 0.2}}⟩

A2 ⟨s2, {{0.4, 0.5}, {0.3, 0.4}}⟩
⟨
s5, {{0.4, 0.5}, {0.4, 0.5}}

⟩ ⟨s3, {{0.2, 0.5, 0.6}, {0.2, 0.4}}⟩

A3 ⟨s4, {{0.5, 0.7}, {0.2, 0.3}}⟩ ⟨s3, {{0.2, 0.4, 0.5}, {0.3, 0.4}}⟩ ⟨s3, {{0.4, 0.5, 0.7}, {0.2, 0.3}}⟩

A4 ⟨s4, {{0.4, 0.6, 0.8}, {0.1, 0.2}}⟩ ⟨s2, {{0.5, 0.6}, {0.2, 0.4}}⟩
⟨
s5, {{0.6, 0.7}, {0.1, 0.3}}

⟩
It is worth to point out that in Example 1, DMs utilize DHFLEs to represent

the attribute values. Actually, a DHFLE is a special case of the proposed q-
RDHULV and we can transform a DHFLE into a q-RDHULV. For example,
let α = ⟨s3, {{0.4, 0.5, 0.6}, {0.3, 0.4}}⟩ be a DHFLE and we transform it into
a q-RDHULV, i.e. α = ⟨[s3, s3], {{0.4, 0.5, 0.6}, {0.3, 0.4}}⟩. It is obvious that
the information of α has not been changed during the transformation. Hence,
we can transform the original dual hesitant fuzzy linguistic decision matrix of
Example 1 into a q-RDHUL decision matrix, which is shown as Table 3. We
utilize the method proposed by Yang and Ju [24] based on the dual hesitant fuzzy
linguistic weighted geometric (DHFLWG) operator and our proposed method
based on the q-RDHULWDMM operator to solve Example 1 and present their
results in Table 4.

Table 3: The corresponding q-rung dual hesitant uncertain linguistic decision matrix of
Example 1

C1 C2 C3

A1
⟨[s3, s3],

{{0.4, 0.5, 0.6}, {0.3, 0.4}}⟩
⟨[s4, s4],

{{0.3, 0.5}, {0.2, 0.3}}⟩
⟨[s4, s4],

{{0.3, 0.5, 0.6}, {0.1, 0.2}}⟩

A2
⟨[s2, s2],

{{0.4, 0.5}, {0.3, 0.4}}⟩
⟨[s5, s5],

{{0.4, 0.5}, {0.4, 0.5}}⟩
⟨[s3, s3],

{{0.2, 0.5, 0.6}, {0.2, 0.4}}⟩

A3
⟨[s4, s4],

{{0.5, 0.7}, {0.2, 0.3}}⟩
⟨[s3, s3],

{{0.2, 0.4, 0.5}, {0.3, 0.4}}⟩
⟨[s3, s3],

{{0.4, 0.5, 0.7}, {0.2, 0.3}}⟩

A4
⟨[s4, s4],

{{0.4, 0.6, 0.8}, {0.1, 0.2}}⟩
⟨[s2, s2],

{{0.5, 0.6}, {0.2, 0.4}}⟩
⟨[s5, s5],

{{0.6, 0.7}, {0.1, 0.3}}⟩
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Table 4: The decision results of Example 1 by different methods

Method Score values S(αi) (i = 1, 2, 3, 4) Ranking order
The method introduced by Yang
and Ju [24] based on the
DHFLWG operator

S(α1) = 0.1196 S(α2) = 0.0304
S(α3) = 0.0905 S(α4) = 0.1951 A4 ≻ A1 ≻ A3 ≻ A2

The method presented in this paper
based on the q-RDHULWDMM
operator (q = 1 and L = (1, 0, 0))

S(α1) = 0.6028 S(α2) = 0.5145
S(α3) = 0.7056 S(α4) = 0.7202 A4 ≻ A3 ≻ A1 ≻ A2

From Table 4, we can find out that although the ranking order derived by our
method is slightly different from that obtained by Yang and Ju’s [24] method, but
the best and worst alternatives are all A4 and A2, respectively, which proves the
effectiveness and correctness of our proposed method.

5.3. The effects of the parameters on the results

In this subsection, we investigate the influence of the parameters on the result.
First, we study the effect of the parameter q on the scores and ranking orders.
We utilize different values of q in the q-RDHULWMM and q-RDHULWDMM
operators when aggregating attribute values and present the scores and ranking
results in Tables 5 and 6. Without loss of generality, we assume L = (1, 1, 1, 1).

Table 5: The decision results by using the q-RDHULWMM operator with different values
of q

q Score values S(αi) (i = 1, 2, 3, 4) Ranking order

1 S(α1) = 0.2826 S(α2) = 0.2455
S(α3) = 0.2749 S(α4) = 0.2899 X4 ≻ X1 ≻ X3 ≻ X2

2 S(α1) = 0.2774 S(α2) = 0.2398
S(α3) = 0.2686 S(α4) = 0.2782 X4 ≻ X1 ≻ X3 ≻ X2

3 S(α1) = 0.2701 S(α2) = 0.2322
S(α3) = 0.2602 S(α4) = 0.2677 X1 ≻ X4 ≻ X3 ≻ X2

5 S(α1) = 0.2567 S(α2) = 0.2189
S(α3) = 0.2455 S(α4) = 0.2543 X1 ≻ X4 ≻ X3 ≻ X2

7 S(α1) = 0.2469 S(α2) = 0.2095
S(α3) = 0.2351 S(α4) = 0.2478 X4 ≻ X1 ≻ X3 ≻ X2

As seen from Table 5, if we assign different values to the parameter q in
the q-RDHULWMM operator, different scores of alternatives are derived, which
further leads to different ranking orders. Moreover, we notice that the increase of
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Table 6: The decision results by using the q-RDHULWDMM with different values of q

q Score values S(αi) (i = 1, 2, 3, 4) Ranking order

1 S(α1) = 0.0683 S(α2) = 0.0631
S(α3) = 0.0687 S(α4) = 0.0697 X4 ≻ X3 ≻ X1 ≻ X2

2 S(α1) = 0.0715 S(α2) = 0.0669
S(α3) = 0.0728 S(α4) = 0.0729 X4 ≻ X3 ≻ X1 ≻ X2

3 S(α1) = 0.0744 S(α2) = 0.0695
S(α3) = 0.0758 S(α4) = 0.0761 X4 ≻ X3 ≻ X1 ≻ X2

5 S(α1) = 0.0783 S(α2) = 0.0719
S(α3) = 0.0786 S(α4) = 0.0805 X4 ≻ X3 ≻ X1 ≻ X2

7 S(α1) = 0.0802 S(α2) = 0.0723
S(α3) = 0.0792 S(α4) = 0.0826 X4 ≻ X1 ≻ X3 ≻ X2

the value of q results in the decrease of the scores. In Table 6, we can also find
the phenomenon that different scores and corresponding ranking orders of alter-
natives are obtained with different values of q in the q-RDHULWDMM operator.
What is opposite is that the increase of the value of q results in the increase
of score values. This reveals that the parameter q in q-RDHULWMM and q-
RDHULWDMM operators has inverse influence on the score values. Hence, how
to select an appropriate value of q is a fundamental problem before determining
the best alternative. Basically, we argue that the value of q should be taken as the
smallest integer such that δq + πq ¬ 1, for any δ ∈ g and π ∈ t. For instance,
if a DM provides ⟨[s3, s6], {{0.3, 0.5, 0.7}, {0.2, 0.4, 0.9}}⟩ as his/her evaluation
value, as 0.73 + 0.93 = 1.072 > 1 and 0.74 + 0.94 = 0.8962 < 1, then q can
be taken as 4. In the followings, we further study the influence of the parameter
vector L on the results. Similarly, we assign different parameter vector to L in the
q-RDHULWMM and q-RDHULWDMM operators and present the score values
and corresponding ranking orders in Tables 7 and 8.

As we can see from Tables 7 and 8, different score values are derived with
different values of L in the q-RDHULWMM and q-RDHULWDMM operators.
For easy description, we denote the number of related parameters in parameter
vector L as nL (nL = 1, 2, 3, 4). As noticed in Table 7, when nL = 1 the scores
of alternatives are extremely small, which is even smaller than the smallest score
of any attribute value. This is inconsistent with our intuition and the reality.
When nL = 2, 3, 4, the scores of alternatives of alternatives are comparatively
reasonable. In Table 8, we can find the similar phenomenon. What is inverse is that
when nL = 1, the scores of alternatives are extremely bigger, which is even bigger
than the biggest score of attribute values. The main reason is that when nL = 1 in
the q-RDHULWMM (q-RDHULWDMM) operator, the interrelationship among
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Table 7: The decision results by using different parameter vector L in the q-RDHULWMM
operator

L Score values S(αi) (i = 1, 2, 3, 4) Ranking order

L = (1, 0, 0, 0) S(α1) = 0.0561 S(α2) = 0.0382
S(α3) = 0.0554 S(α4) = 0.0719 X4 ≻ X1 ≻ X3 ≻ X2

L = (1, 1, 0, 0) S(α1) = 0.1623 S(α2) = 0.1265
S(α3) = 0.1562 S(α4) = 0.1766 X4 ≻ X1 ≻ X3 ≻ X2

L = (1, 1, 1, 0) S(α1) = 0.2345 S(α2) = 0.1958
S(α3) = 0.2269 S(α4) = 0.2446 X4 ≻ X1 ≻ X3 ≻ X2

L = (1, 1, 1, 1) S(α1) = 0.2826 S(α2) = 0.2455
S(α3) = 0.2749 S(α4) = 0.2899 X4 ≻ X1 ≻ X3 ≻ X2

L = (2, 2, 2, 2) S(α1) = 0.2826 S(α2) = 0.2455
S(α3) = 0.2749 S(α4) = 0.2899 X4 ≻ X1 ≻ X3 ≻ X2

L = (2, 0, 0, 0) S(α1) = 0.0561 S(α2) = 0.0382
S(α3) = 0.0554 S(α4) = 0.0719 X4 ≻ X1 ≻ X3 ≻ X2

L = (5, 0, 0, 0) S(α1) = 0.0561 S(α2) = 0.0382
S(α3) = 0.0554 S(α4) = 0.0719 X4 ≻ X1 ≻ X3 ≻ X2

Table 8: The decision results by using different parameter vector L in the
q-RDHULWDMM operator

L Score values S(αi) (i = 1, 2, 3, 4) Ranking order

L = (1, 0, 0, 0) S(α1) = 0.5637 S(α2) = 0.4953
S(α3) = 0.5445 S(α4) = 0.5717 X4 ≻ X1 ≻ X3 ≻ X2

L = (1, 1, 0, 0) S(α1) = 0.2130 S(α2) = 0.1916
S(α3) = 0.2096 S(α4) = 0.2161 X4 ≻ X1 ≻ X3 ≻ X2

L = (1, 1, 1, 0) S(α1) = 0.1114 S(α2) = 0.1018
S(α3) = 0.1110 S(α4) = 0.1133 X4 ≻ X1 ≻ X3 ≻ X2

L = (1, 1, 1, 1) S(α1) = 0.0683 S(α2) = 0.0631
S(α3) = 0.0687 S(α4) = 0.0697 X4 ≻ X3 ≻ X1 ≻ X2

L = (2, 2, 2, 2) S(α1) = 0.0683 S(α2) = 0.0631
S(α3) = 0.0687 S(α4) = 0.0697 X4 ≻ X3 ≻ X1 ≻ X2

L = (2, 0, 0, 0) S(α1) = 0.5637 S(α2) = 0.4953
S(α3) = 0.5445 S(α4) = 0.5717 X4 ≻ X1 ≻ X3 ≻ X2

L = (5, 0, 0, 0) S(α1) = 0.5637 S(α2) = 0.4953
S(α3) = 0.5445 S(α4) = 0.5717 X4 ≻ X1 ≻ X3 ≻ X2

attributes is not taken into account. Another interesting phenomenon we can find
out is that the increase of nL in the q-RDHULWMM operator leads to the increase
of the score functions S(αi) (i = 1, 2, 3, 4) and inversely, the increase of nL in the
q-RDHULWDMM operator leads to the decrease of the score functions.
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5.4. Superiorities of the proposed method

In the followings, we compare the proposed method based on the q-
RDHULWMM operator with that proposed by Wang et al. [56] based on the
q-rung orthopair uncertain linguistic weighted Muirhead mean (q-ROULWMM)
operator, that proposed by Yang and Ju [24] based on the dual hesitant linguistic
weighted average (DHLWA) operator, and that proposed by Xu et al. [38] based
on the q-rung hesitant fuzzy weighted Heronian mean (q-RDHFWHM) operator.
We utilize some of these methods to solve some MADM problems, compare their
results and discuss the advantages and superiorities of our method in detail.

5.4.1. Its ability of capturing DMs’ hesitancy and uncertainty

Our proposed method is based on q-RDHULSs, which allow the NDs and
NMDs of ULVs to be denoted by two sets of values. The MADM method proposed
by Wang et al. [56] is based on the q-ROULSs wherein the MD and NMD of an
ULV are denoted by a single value. Hence, q-RDHULSs are more powerful and
flexible than q-ROULSs, as they can appropriately express DMs’ high hesitancy
in giving their evaluation values. In other word, the q-ROULSs are a special case
the proposed q-RDHULSs where there are only one MD and one NMD. Thus,
our proposed method can also effectively deal with MADM problems in which
DMs’ evaluation values are in the form of q-ROULSs. To better demonstrate this
advantage of our method, we give the following example.

Example 2 (From Ref. [57]) To make a great profit, a company wants to in-
vest some money into an alternative. After primary evaluation, there are four
potential alternatives to be selected, which are denoted by Ai (i = 1, 2, 3, 4). To
determine the most suitable alternative, the company invites a set of DMs to
evaluation the performance of the possible alternatives under four attributes,
which are denoted by Ci (i = 1, 2, 3, 4). The weight vector of attributes is
w = (0.32, 0.26, 0.18, 0.27)T . Let S = {s0, s1, s2, s3, s4, s5, s6}, and DMs are re-
quired to utilize q-rung orthopair uncertain linguistic variables (q-ROULVs) to
express their evaluation values, which constructs a q-rung orthopair uncertain lin-
guistic decision matrix (see Table 9). We utilize the method presented by Wang

Table 9: The q-rung orthopair uncertain linguistic decision matrix of Example 2

C1 C2 C3 C4

A1
⟨[

s5, s5
]
, (0.7, 0.1)

⟩ ⟨[
s3, s3

]
, (0.7, 0.3)

⟩ ⟨[
s4, s5

]
, (0.6, 0.1)

⟩ ⟨[
s4, s5

]
, (0.7, 0.2)

⟩
A2

⟨[
s4, s5

]
, (0.6, 0.2)

⟩ ⟨[
s5, s5

]
, (0.6, 0.3)

⟩ ⟨[
s2, s3

]
, (0.8, 0.1)

⟩ ⟨[
s3, s4

]
, (0.6, 0.4)

⟩
A3

⟨[
s3, s4

]
, (0.7, 0.2)

⟩ ⟨[
s4, s5

]
, (0.6, 0.2)

⟩ ⟨[s1, s2] , (0.7, 0.1)⟩ ⟨[
s2, s3

]
, (0.7, 0.1)

⟩
A4

⟨[
s3, s3

]
, (0.5, 0.2)

⟩ ⟨[
s2, s3

]
, (0.7, 0.1)

⟩ ⟨[
s3, s4

]
, (0.6, 0.3)

⟩ ⟨[s4, s4] , (0.5, 0.3)⟩
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et al. [56] based on the q-rung orthopair uncertain linguistic weighted Muirhead
mean (q-ROULWMM) operator and our proposed method to solve Example 2
and present the results in Table 10.

Table 10: The decision results of Example 2 by different methods

Method Score values S(αi ) (i = 1, 2, 3, 4) Ranking order

Wang et al.’s [56] method based on
the q-ROULWMM operator
(when q = 2 and P = (1, 1, 1, 1))

S(α1) = 0.4108 S(α2) = 0.4007
S(α3) = 0.3916 S(α4) = 0.3215 A1 ≻ A2 ≻ A3 ≻ A4

Our proposed method based on
the q-RDHULWMM operator
(when q = 2 and L = (1, 1, 1, 1))

S(α1) = 0.4500 S(α2) = 0.4102
S(α3) = 0.4002 S(α4) = 0.3564 A1 ≻ A2 ≻ A3 ≻ A4

The decision results in Table 10 also demonstrate the correctness of our
proposed method. However, Example 2 assumes that DMs are not hesitant when
providing their evaluation values. In most actual MADM problems, DMs often
hesitate among a set of values when giving the MDs and NMDs of ULVs and
generally they hope to provide several values for MD and NMD of an ULV
instead of single values. In addition, in some real situations DMs have different
opinions on MD and NMD of an ULV. For instance, as per attribute C1 of A1
some DMs may give 0.5 and 0.1 as for the MD and NMD of the ULV[s5, s5].
Some DMs would like to provide 0.6 and 0.2 as the MD and NMD, and the others
would like to give 0.7 and 0.3 for the MD and NMD. Hence, to comprehensive
represent the attribute value of C1 OF alternative A1, we can use a q-RDHULV,
i.e. ⟨[s5, s5], {{0.5, 0.6, 0.7}, {0.1, 0.2, 0.3}}⟩. Afterward, we utilize Wang et al.’s
[56] method and our proposed method to solve Example 2 and present the results
in Table 11.

Table 11: The new decision results of Example 2 by different methods

Method Score values S(αi ) (i = 1, 2, 3, 4) Ranking order

Wang et al.’s [56] method based on
the q-ROULWMM operator Cannot be computed No

Our proposed method based on
the q-RDHULWMM operator
(when q = 2 and L = (1, 1, 1, 1))

S(α1) = 0.4223 S(α2) = 0.4102
S(α3) = 0.4002 S(α4) = 0.3564 A1 ≻ A2 ≻ A3 ≻ A4

From Table 11 we can easily find that the method proposed by Wang et al.
[56] cannot be applied to solve the revised Example 2, whereas is suitable to solve
this example. This is because Wang et al.’s [56] method is based on q-ROULSs
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in which the MD and NMD of an ULV can only be represented by two single
values. In other word, Wang et al.’s [56] method cannot effectively deal with
DMs inherent hesitancy in expressing their evaluation information. However, our
proposed method is based on q-RDHULSs, which allow the MD and NMD of
ULVs to be represented by two sets of values. In other word, our proposed method
has good ability of reflecting and capturing DMs’ high hesitancy in the evaluation
process. This feature makes our method suitable to deal with complicated practical
MADM problems.

5.4.2. Larger information space that it can depict

Our proposed method is based on q-RDHULSs, whose constraint is that the
sum of q-th power of MD and q-th power of NMD should be less than or equal
to one. This characteristic provides great freedom for DMs to comprehensively
express their evaluation values and results ion less information distortion. To
better demonstrate this advantage, we give the following example.
Example 3 In Example 1, DMs use DHFLEs to express their preference infor-
mation. The constraint of DHFLE is that the sum of MD and NMD of a linguistic
variable should be less than or equal to one. However, in real MADM problems
such restriction cannot always been satisfied. Basically, we should not set rigorous
constraint for DMs before they provide their evaluation information. To accurately
and comprehensively capture DMs’ ideas, we should give them more freedom. For
instance, for the attribute C1 of A1 DMs provide ⟨s3, {{0.4, 0.5, 0.8}, {0.3, 0.9}}⟩
as their assessment, then as 0.8 + 0.9 = 1.7 > 1, the method proposed by Yang
and Ju [24] is not suitable to deal with this case. Nevertheless, as our proposed
method has a laxer constraint, our method can be applied to solve this prob-
lem and the results are listed in Table 12. (As 0.84 + 0.94 = 1.0657 > 1 and
0.85 + 0.85 = 0.9182 < 1, then q can be taken as 5).

Table 12: The decision results of Example 3 by different MADM method

Method Score values S(αi ) (i = 1, 2, 3, 4) Ranking order

The proposed method introduced
by Yang and Ju [24] Cannot be calculated No

Our proposed method in this paper
(when q = 5 and L = (1, 0, 0))

S(α1) = 0.4844 S(α2) = 0.3963
S(α3) = 0.5695 S(α4) = 0.5651 A3 ≻ A4 ≻ A1 ≻ A2

In practical MADM problems, we cannot require DMs to meet a rigorous
constraint, otherwise some important decision-making information will lose
in the evaluating process. We should give DMs enough freedom to express
their preference and so that we can get comprehensive evaluation values of
possible alternatives. As our proposed method has a laxer constraint, which
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makes it effective to describe larger information space. Hence, our method pro-
vides enough freedom for DMs to fully and comprehensively give their prefer-
ence information. This characteristic makes it suitable to handle actual MADM
problems.

5.4.3. The ability of considering both DMs’ quantitative and qualitative
evaluation information

In Ref. [38], Xu et al. proposed the concept of q-RDHFSs, studied their
aggregation operators and investigated their applications in MADM. This pa-
per proposes a new tool to express DMs’ evaluation information, called q-
RDHFULS, which is combination of Xu et al.’s [38] q-RDHFSs with ULVs.
Basically, the MADM method proposed by Xu et al. [38] can only reflect DMs’
preference information quantificationally. In real MADM problems, the short-
coming of Xu et al.’s [38] method is conspicuous. Due to the increasing com-
plexity of MADM problems, DMs would like to express their assessments from
both quantitative and qualitative aspects. The overlook of either DMs’ quanti-
tative or qualitative decision information will lead to unreasonable results. In
our method, DMs utilize q-RDHFULVs to denote their assessments, which can
fully depict DMs’ preference information both quantificationally and qualita-
tively. Hence, our method is more sufficient and suitable to deal with practical
MADM problems.

5.4.4. The flexibility of dealing with the interrelationship among
any numbers of attributes

In most real MADM problems, attributes are usually correlated and igno-
rance of such kind of interrelationship among attributes will lead to unreasonable
decision results. For instance, in the enterprise informatization level evaluation
problem, if leaders pay more attention to the informatization construction, the
enterprise will invest more money into the informatization procedure, and the
enterprise scale level will also improve. In other word, there exists significant
interrelationship among the attributes C1, C2 and C3. In Example 2, there is
also significant correlation among the attributes C1, C2 and C3. However, the
MADM method proposed by Yang and Ju [24] is based on the simple weighted
geometric operator, which ignores the interrelationship among attribute values.
The method presented by Xu et al. [38] can only consider the interrelationship
between any two attributes. Our proposed method is based on MM so that it is
powerful to reflect the interrelationship among any numbers of attributes (Details
can be found in subsection 3.2). Hence, our proposed method is more suitable
to deal with MADM problems. To better demonstrate the advantages superiori-
ties of our method. We present the characteristics of some MADM methods in
Table 13.
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Table 13: The characteristics of different methods

Method
Whether considers
DMs’ quantitative

evaluation
information

Whether considers
DMs’ qualitative

evaluation
information

Whether comprehensively
captures DMs’ hesitancy

in providing their
evaluations

Yang and Ju’s [24] method
based on the DHFLWG
operator

Yes Yes Yes

Wang et al.’ method [56]
based on the q-ROULWMM
operator

Yes Yes No

Xu et al.’s method [38]
based on the q-RDHFWHM
operator

Yes No Yes

The proposed method based on
the q-RDHULWMM operator

Yes Yes Yes

Method
Whether permits
the sum of MD
and NMD to be
greater than one

Whether captures
the interrelationship

between any two
attributes

Whether captures
the interrelationship

among multiple
attributes

Yang and Ju’s [24] method
based on the DHFLWG
operator

No No No

Wang et al.’ method [56]
based on the q-ROULWMM
operator

Yes Yes Yes

Xu et al.’s method [38]
based on the q-RDHFWHM
operator

Yes Yes No

The proposed method based on
the q-RDHULWMM operator

Yes Yes Yes

6. Conclusions

This paper studies new method for MADM problems. We firstly introduced the
q-RDHFULSs, which are effective to denote DMs’ evaluations qualitatively and
quantificationally. Moreover, they can efficiently and comprehensively capture
DMs’ high hesitancy in providing their evaluation values. With respect to MADM
issues wherein attribute values are in the form of q-RDHFULVs, we introduced
some AOs to effectively integrate DMs’ evaluation values. Based on these AOs,
a novel approach to q-rung dual hesitant uncertain linguistic MADM problems
are illustrated stepwise. We utilized the proposed method to solve an enterprise
informatization level evaluation instance to show its validity and effectiveness.
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We also detailedly discussed and analyzed the advantages and superiorities of
our proposed method over some existing MADM methods through comparative
analysis. Given the good performance of the proposed MADM method, in further
works we will study the applications of the method in some other practical
MADM problems, such as low carbon supplier selection, medical diagnosis, the
best airline selection, etc.
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