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On a finding the coefficient of one nonlinear wave
equation in the mixed problem

ZUMRUD R. SAFAROVA

The paper is devoted to the finding of the coefficient of one nonlinear wave equation in the
mixed problem. The considered problem is reduced to the optimal control problem with proper
functional. Differentiability of functional is proved and the necessary optimality conditions are
derived in the form of the variational inequality. Existence of the optimal control is proved.
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1. Introduction

Usually wave processes are described by the hyperbolic equations and also
different type Schrodinger and Korteweg-de Vries equations. When the process
has nonlinear character the mathematical model becomes more complicated and
involves different type nonlinear terms. A nonlinear term as, for example, up will
tend to magnify the size of u, where u is large, and to be negligible where u is
small. It can make a solution blow up in finite time, it can produce a solitary wave,
or (it involve derivative of u) it can produce a shock wave. Some generalizations
of the nonlinear wave equations describe free-electron laser operation in higher
harmonics; this significantly extends their tunable range to shorter wavelengths.
The dynamics of the laser field’s amplitude and phase are explored for a wide
range of parameters. Such a parameter can be the coefficients of the equation
that indeed may describe various properties of the medium under investigation
and such problems arise in different fields of in nature [1]. The close problem
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was considered in [2], where the singular system of optimality was obtained.
In [3] the author studies optimal control problems for the various nonlinear
systems in partial derivatives. In [4] the optimal control problem with control
at the coefficient is considered for the nonlinear wave equation occurring in the
relativistic quantum mechanics. In that work the existence of the optimal control
and Gateaux differentiability of the functional is proved and necessary optimality
condition is derived. In [5, 6] the problem of determining the coefficient at
the lowest term in the equation of oscillations and determination of the initial
functions from the observed values of the boundary functions for the second-
order hyperbolic equation is considered. In the works [8] optimal boundary
control problem is considered for the nonlinear hyperbolic equation. In [7, 9]
solution of the nonlinear hyperbolic equations is investigated stimulated by the
strong relation of such problems with different applications. In this work the
problem of finding the coefficients of the nonlinear wave equation is reduced to
the optimal control problem. The existence of the optimal control, continuous
Frechet differentiability of the functional is proved and necessary optimality
condition in the form of variational inequality is derived.

2. Formulation of the problem

Consider the problem of finding of the pair {u(x, t), v(x)} ∈ U × V subject to

∂2u
∂t2 − ∆u + |u|u + vu = f (x, t), (x, t) ∈ Q, (1)

u = 0, (x, t) ∈ S, u��t=0 = u0(x),
∂u
∂t

�����t=0
= u1(x), x ∈ Ω, (2)

u(x,T ) = φ(x), x ∈ Ω, (3)

where ∆ is the Laplace operator with respect to x, f (x, t), u0(x), u1(x), φ(x) are
given functions; Q = Ω × (0,T ) is a cylinder in Rn+1; Ω is a bounded domain in
Rn, n = 3, 4 with smooth enough boundary Γ; S = Γ × (0,T ) is a lateral surface
of the cylinder Q, T > 0 is a given number,

U =
{

u : u ∈ L∞(0,T ; H1
0 (Ω)),

∂u
∂t
∈ L∞(0,T ; L2(Ω))

}
,

V =
{
v : v ∈ L2(Ω), a ¬ v(x) ¬ b a.e. in Ω

}
, (4)

where a and b are some constants, moreover a < b.
Note that boundary value problem (1)–(3) is an inverse to direct problem (1),

(2) by the given function v(x). We reduce this problem to the following optimal
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control problem: find the minimum of the functional

J0(v) =
1
2

∫
Ω

[
u(x,T ; v) − φ(x)

]2 d x (5)

in the class of functions V subject to (1), (2), where u(x, t; v) is a solution of
problem (1), (2) for the function v(x). The function v(x) we call a control, and
the set V – a class of admissible controls.

It should be noted that there exists a bold relation between problems (1)–(3)
and (1), (2), (4), (5) – if the minimum of functional (5) in problem (1), (2), (4),
(5) is equal to zero, then the additional condition (3) holds true. In future to
avoid the possible degeration in the obtained necessary condition of optimality
we consider the following problem: find the control v ∈ V that gives minimum
to the functional

Jα (v) = J0(v) +
α

2

∫
Ω

|v(x) |2 d x (6)

subject to (1), (2), where α > 0 is a given number [4, p. 45].
This problem we call problem (1), (2), (4), (6).
Let the following conditions on the data of problem (1), (2), (4), (6) hold true

f ∈ L2(Q), u0, φ ∈ H1
0 (Ω), u1 ∈ L2(Ω). (7)

Similarly to [10, pp. 20–29] may be proved that under conditions (7) problem
(1), (2) at the given function v(x) from V has the unique generalized solution
u = u(v) = u(x, t; v) in the space U , moreover for the solution of problem (1),
(2) is valid the estimation

∥u∥2
H1

0 (Ω) +
∂u
∂t


2

L2(Ω)
¬ c

[
∥u0∥2H1

0 (Ω) + ∥u1∥2L2(Ω) + ∥ f ∥2L2(Q)

]
, t ∈ [0,T]. (8)

Here and hereinafter, by c we will denote various constants independent of the
estimated quantities and of the admissible controls.

In [10], is considered the following equation

∂2u
∂t2 − ∆u + |u|ρu = f ,

where ρ > 0 is a given number, and the space U is taken as

U =
{

u|u ∈ L∞(0,T ; H1
0 (Ω) ∩ Lp(Ω)),

∂u
∂t
∈ L∞(0,T ; L2(Ω))

}
,
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with p = ρ+2. In our case n = 3 or 4, ρ = 1, therefore by the embedding theorem

H1
0 (Ω) ⊂ Lq(Ω), q =

2n
n − 2

we have H1
0 (Ω) ∩ Lp(Ω) = H1

0 (Ω).
As a generalized solution of problem (1), (2) for the given v(x) ∈ V we

take the function u = u(v) from U which for t = 0 satisfies the condition
u(x, 0; v) = u0(x)) and integral identity

∫
Q

−∂u
∂t

∂n
∂t
+

n∑
i=1

∂u
∂ki

∂η

∂xi
+ |u|uη + vuη

 d xdt

−
∫
Ω

u1(x)η(x, 0)d x =
∫
Q

f ηd xdt

∀η ∈ U, moreover is equal to zero at t = T .

3. Some auxiliary facts and the solvability of problem (1), (2), (4), (6)

Lemma 1 Under condition (7), the mapping u(v) : L2(Ω) → U for problem (1),
(2) is weakly continuous.

Proof. Let vk → v weakly in L2(Ω) at k → ∞. Then due to estimate (8), the
corresponding sequence {uk ≡ u(vk )} of the solutions of boundary value problem
(1), (2) is bounded in the space U . Therefore after choosing the subsequence (we
keep the same denotations) we get weak in Uconvergence u(vk ) → u. This
convergence is weak on H1(Q). Then by the Rellich theorem [11, p. 64] uk → u
strongly in L2(Q) and a.e. in Q. By the embedding theorem H1

0 (Ω) ⊂ L4(Ω) the
sequence {|uk | uk } is bounded in L2(Q). Therefore by lemma 1.3 from [10, p. 25]
we get that |uk | uk → u|u weakly on L2(Q).

Using the compactness theorem [11, p. 71] we conclude that uk (x,T ) ≡
u(x,T ; vk ) → u(x,T ) strongly in L2(Ω) at k → ∞. Now we show that u =
u(x, t; v). Since uk, η ∈ U and n = 3 or 4, uk, η ∈ L∞(0,T ; L4(Ω)).

Therefore

lim
k→∞

∫
Q

|uk | ukηd xdt =
∫
Q

|u|uηd xdt, ∀η ∈ U . (9)
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For any η ∈ U is valid��������
∫
Q

vkukηd xdt −
∫
Q

vuηd xdt

�������� ¬
��������
∫
Q

(vk − v)uηd xdt

��������+
��������
∫
Q

vk (uk − u)ηd xdt

�������� .
Then considering that uη ∈ L2(Q) and {vkη} are bounded in L2(Q), and also
above proved convergence of the sequences {vk } and {uk } weakly and strongly on
L2(Ω) and L2(Q), correspondingly, from the last inequality we obtain

lim
k→∞

∫
Q

vkukηd xdt =
∫
Q

vuηd xdt. (10)

Then if in the definition of the generalized solution of problem (1), (2)∫
Q

−∂u(vk )
∂t

∂η

∂t
+

n∑
i=1

∂u(vk )
∂xi

∂η

∂xi
+ |u(vk ) | u(vk )η + vku(vk )η

 d xdt

−
∫
Ω

u1(x)η(x, 0)d x =
∫
Q

f ηd xdt

to pass to limit at v = vk and consider weak convergence of the sequence
uk = u(vk ) to u in H1(Q) and relations (9), (10) we can conclude that u = u(v)
and u(x, T ) = u(x,T ; v). Lemma 1 is proved. □

Lemma 2 Under conditions (7) functional (6) is weak semicontinuous on L2(Ω).

Proof. By Lemma 1, the first term in the expression of functional (6) is weakly
continuous in L2(Ω). Since the second term in the expression of functional
(6) is weak semicontinuous from below on L2(Ω), then functional (6) is weak
semicontinuous from below in L2(Ω). Lemma 2 is proved. □

Theorem 1 Let the conditions set in the formulation of problem (1), (2), (4),
(6) be satisfied. Then the set of optimal controls for this problem V∗ = {v∗ ∈
V : Jα (v∗) = inf{J∗(v) : v ∈ V }} is not empty, is weak compact on L2(Ω) and
arbitrary minimizing sequence {vm(x)} converges to the set V∗ weakly in L2(Ω).

Proof of the theorem follows from the proof of Theorem 2 from [12, p. 49].
Actually the set V is weak compact in L2(Ω) and by the Lemma 2 the functional
Jα (v) is weak semicontinuous from below on the set V . Thus all conditions of
Theorem 2 from [12, p. 49] are satisfied and so all statements of Theorem 1 are
valid. □
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4. Differentiability of functional (6) and necessary optimality conditions

Now we investigate Frechet differentiability of functional (6) and get neces-
sary optimality conditions in problem (1), (2), (4), (6). Let δv ∈ L∞(Ω) be an
increment of the control on the element v ∈ V such that v + δv ∈ V . Denote
δu = δu(x, t) = u(x, t; v + δv) − u(x, t; v). It is clear that the function δu(x, t) is
a generalized solution from U for the boundary value problem

∂2δu
∂t2 − ∆δu + 2 |u + θδu| δu + (v + δv)δu = −uδv, (x, t) ∈ Q, (11)

δu = 0, (x, t) ∈ S, δu��t=0 = 0,
∂δu
∂t

�����t=0
= 0, x ∈ Ω, (12)

where 0 ¬ θ ¬ 1.
The generalized solution from U of problem (11), (12) is equal to zero at t = 0

and satisfy the identity∫
Q

∂δu
∂t

∂η

∂t
−

n∑
i=1

∂δu
∂xi

∂η

∂xi
− 2 |u + θδu| δuη − (v + δv) δuη

 d xdt

=

∫
Q

uδvηd xdt (13)

for all η = η(x, t) ∈ U equaling to zero at t = T .
Lemma 3 For the solution of problem (11), (12) is valid∂δu

∂t


2

L2(Ω)
+ ∥δu∥2

H1
0 (Ω) ¬ c∥δv∥2L∞(Ω), t ∈ [0,T]. (14)

Proof. Let {wk (x)}∞k=1 be a complete family of the linearly independent elements
of the space H1

0 (Ω). According to the Faedo-Galerkin method the approximate
solution of problem (11), (12) of order N we define as follows

δuN (x, t) =
N∑

k=1
ξk N (t)wk (x), N = 1, 2, . . . ,

where the functions ξk N (t) are such that the following relations hold∫
Ω

∂2δuN

∂t2 w j d x +
∫
Ω

n∑
i=1

∂δuN

∂xi

∂w j

∂xi
d x +

∫
Ω

2 ���u + θδuN ��� δuNw j d x+

+

∫
Ω

(v + δv)δuNw j d x = −
∫
Ω

uδvw j d x, j = 1, . . . , N,
(15)
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ξk N (0) = 0, ξ̇k N (0) = 0. (16)
Relation (15) presents a system of nonlinear second order ordinary differential
equations with respect to (ξ1N (t), . . . , ξ̇N N (t)). The general results on the non-
linear systems guarantee the existence of the solution for problem (15), (16) on
the interval [0, tN ]; the a-prior estimate show that tN = T [10].

Multiplying the j-th equality of (15) by ξ̇ j N (t) and summing over j = 1, . . . , N
we get∫
Ω

∂
2δuN

∂t2
∂δuN

∂t
+

n∑
i=1

∂δuN

∂xi

∂2δuN

∂t∂xi

 d x = −2
∫
Ω

���u + θδuN ��� δuN ∂δuN

∂t
d x

−
∫
Ω

(v + δv)δuN ∂δuN

∂t
d x −

∫
Ω

uδv
∂δuN

∂t
d x .

Adding the term
∫
Ω

2 ���θδuN ��� δuN ∂δuN

∂t
d x to the both sides of this equality after

some transformation we obtain∫
Ω

12 ∂

∂t

�����∂δuN

∂t

�����
2

+
1
2
∂

∂t

n∑
i=1

�����∂δuN

∂xi

�����
2 d x +

2θ
3

∫
Ω

∂

∂t
���δuN ���3 d x ¬

¬ 2
∫
Ω

������θδuN ��� − ���u + θδuN ������ ���δuN ��� �����∂δuN

∂t

����� d x+

+

∫
Ω

|v + δv | ���δuN ��� �����∂δuN

∂t

����� d x +
∫
Ω

|u| |δv |
�����∂δuN

∂t

����� d x.

From this integration over t from 0 to t due to (16) gives∫
Ω


�����∂δuN

∂t

�����
2

+

n∑
i=1

�����∂δuN

∂xi

�����
2 d x +

4θ
3

∫
Ω

���δuN ���3 d x ¬

¬ 4
t∫

0

∫
Ω

|u| ���δuN ��� �����∂δuN

∂t

����� d xd s + 2
t∫

0

∫
Ω

|v + δv | ���δuN ��� �����∂δuN

∂t

����� d xd s+

+ 2
t∫

0

∫
Ω

|u| |δv |
�����∂δuN

∂t

����� d xd s.
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According to elementary inequalities and definition of the class of the admissible
controls from this we get

∫
Ω


�����∂δuN

∂t

�����
2

+

n∑
i=1

�����∂δuN

∂xi

�����
2 d x ¬ c

t∫
0

∫
Ω

|u| ���δuN ��� �����∂δuN

∂t

����� d xd s+

+c

t∫
0

∫
Ω

���δuN ��� + n∑
i=1

�����∂δuN

∂xi

�����
2

+
�����∂δuN

∂t

�����
2 d xd s + c ∥δv∥2L∞(Ω) .

(17)

It follows from Holder’s inequality that�������
∫
Ω

ξηζ d x
������� ¬ c ∥ξ∥Lp (Ω) ∥η∥Lr (Ω) ∥ζ ∥Ls (Ω) , (18)

where c > 0, 1/p + 1/r + 1/s = 1.

For n = 3 or 4 in inequality (18) we set p = n, r =
2n

n − 2
, s = 2 and ξ = |u|,

η =
���δuN ���, ζ = �����∂δuN

∂t

�����.
Note that, under the conditions of the theorem, it follows from Sobolev’s

theorem on the continuity of the embedding H1
0 (Ω) ⊂ Lr (Ω) that implies U ⊂

L∞(0,T ; Lr (Ω)). Then the following embedding is valid u ∈ L∞(0,T ; Lr (Ω)).
Considering n ¬ r we set that u ∈ L∞(0,T ; Ln(Ω)).

Using inequality (18) and the equivalence of the norms in the space H1
0 (Ω),

from (17) we obtain

∂δuN (t)
∂t


2

L2(Ω)
+
δuN (t)2

H1
0 (Ω)
¬

¬ c

t∫
0

∥u(s)∥Ln (Ω)
δuN (s)Lr (Ω)

∂δuN (s)
∂t

L2(Ω)
d s+

+ c

t∫
0


∂δuN (s)

∂t


2

L2(Ω)
+
δuN (s)2

H1
0 (Ω)

 d s + c ∥δv∥2L∞(Ω) ¬

¬ c

t∫
0


∂δuN (s)

∂t


2

L2(Ω)
+
δuN (s)2

H1
0 (Ω)
+
δuN (s)2

Lr (Ω)

 d s + c ∥δv∥2L∞(Ω) .
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According to the embedding H1
0 (Ω) ⊂ Lr (Ω) this implies

∂δuN (t)
∂t


2

L2(Ω)
+
δuN (t)2

H1
0 (Ω)
¬ c

t∫
0


∂δuN (s)

∂t


2

L2(Ω)
+
δuN (s)2

H1
0 (Ω)

 d s+

+ c ∥δv∥2L∞(Ω) .

Using the Gronwall’s lemma we get

∂δuN (t)
∂t


2

L2(Ω)
+
δuN (t)2

H1
0 (Ω)
¬ c ∥δv∥2L∞(Ω) , t ∈ [0,T]. (19)

Then as follows from (19) the sequence {δuN (x, t)} is bounded in U . Therefore
we can take

δuN → δu ∗ – weekly in L∞(0,T ; H1
0 (Ω)),

∂δuN

∂t
→ ∂δu

∂t
∗ – weekly in L∞(0,T ; L2(Ω)).

Since the norm is weak lower semicontinuous in Banach spaces, estimate (14)
holds for the limit function δu(x, t)and it can easily be shown that it is a generalized
solution to problem (11), (12). Lemma 3 is proved. □

Let ψ = ψ(x, t; v) be a generalized solution from U for the adjoint problem

∂2ψ

∂t2 − ∆ψ + 2|u|ψ + vψ = 0, (x, t) ∈ Q, (20)

ψ = 0, (x, t) ∈ S, ψ��t=T = 0,
∂ψ

∂t

�����t=T
= −[u(x,T ; v) − φ(x)], x ∈ Ω. (21)

Equation (20) is linear relative to the function ψ = ψ(x, t; v). One may prove
that problem (20), (21) under conditions set on the data of problem (1), (2), (4),
(6) in U has the only generalized solution. As a generalized solution of problem
(20), (21) at given v ∈ V we take the function U that is equal to zero t = T and
satisfies the integral identity∫

Q

−∂ψ∂t
∂g

∂t
+

n∑
i=1

∂ψ

∂xi

∂g

∂xi
+ 2|u|ψg + vψg

 d xdt−

−
∫
Ω

[
u(x,T ; v) − φ(x)

]
g(x,T )d x = 0, ∀g = g(x, t) ∈ U .

(22)
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Applying the same technique as in the proof of estimation (14) one can obtain
the following estimate for the solution of problem (20), (21)

∥ψ∥2
H1

0 (Ω) +
∂ψ∂t


2

L2(Ω)
¬ c ∥u(x,T ; v) − φ(x)∥2H1

0 (Ω) , t ∈ [0,T]. (23)

Then it follows from (8) and (23) that

∥ψ∥2
H1

0 (Ω) +
∂ψ∂t


2

L2(Ω)
¬ c

[
∥u0∥2H1

0 (Ω) + ∥u1∥2L2(Ω) +

+ ∥ f ∥2L2(Q) + ∥φ∥2H1
0 (Ω

]
, t ∈ [0,T].

(24)

Theorem 2 Let the conditions set on the problem (1), (2), (4), (6) are valid. Then
functional (6) is continuously Frechet differentiable on V and its differential at
v ∈ V with the increment δv ∈ L∞(Ω) is defined by the expression

⟨
J′α (v), δv

⟩
=

∫
Ω

αv −
T∫

0

uψdt

 δvd x. (25)

Proof. Consider the increment of functional (6)

Jα (v) = Jα (v + δv) − Jα (v) =

= α

∫
Ω

vδvd x +
∫
Ω

[
u(x,T ; v) − φ(x)

]
δu(x,T )d x+

+
α

2

∫
Ω

|δv |2 d x +
1
2

∫
Ω

|δu(x,T ) |2 d x.

(26)

If in (13) take η = ψ(x, t; v) and in (22) take g = δu(x, t) and sum the obtained
expressions we get∫

Q

2ψδu [|u| − |u + θδu|] d xdt −
∫
Q

ψδuδvd xdt

−
∫
Ω

[
u(x,T ; v) − φ(x)

]
δu(x,T )d x =

∫
Q

uψδvd xdt.
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It follows from this∫
Ω

[
u(x,T ; v) − φ(x)

]
δu(x,T )d x = −

∫
Q

uψδvd xdt+

+ 2
∫
Q

ψδu [|u| − |u + θδu|] d xdt −
∫
Q

ψδuδvd xdt.
(27)

If consider formula (27) in (26) we obtain the following formula for the increment
of functional (6)

∆Jα (v) =
∫
Ω

αv(x) −
T∫

0

u(x, t; v)ψ(x, t; v)dt

 δv(x)d x + R, (28)

where

R =
α

2

∫
Ω

|δv(x) |2 d x +
1
2

∫
Ω

|δu(x,T ) |2 d x −
∫
Q

ψδuδvd xdt+

+ 2
∫
Q

ψδu [|u| − |u + θδu|] d xdt

is a remainder term.
From this expression we obtain

|R| ¬ c∥δv∥2L∞(Ω) +
1
2
∥δu(x,T )∥2L∞(Ω) +

∫
Q

|ψ | |δu| d xdt∥δv∥L∞(Ω)+

+ c
∫
Q

|ψ | |δu|2 d xdt ¬ c ∥δv∥2L∞(Ω) +
1
2
∥δu(x,T )∥2L2(Ω) +

+

T∫
0

*..,
∫
Ω

|ψ |2d x
+//-

1/2 *..,
∫
Ω

|δu|2d x
+//-

1/2

dt∥δv∥L∞(Ω)+

+ c

T∫
0

*..,
∫
Ω

|ψ |2d x
+//-

1/2 *..,
∫
Ω

|δu|4d x
+//-

1/2

dt.

Considering estimates (14) and (24) and the embedding theorem H1
0 (Ω) ⊂

L4(Ω)it gives
|R| ¬ c ∥δv∥2L∞(Ω) . (29)
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Then as follows from (28) and (29) functional (6) is Frechet differentiable
on V and formula (25) is valid. Show that the mapping v → J′α (v) defined by
expression (25) acts continuously from V to the adjoint (L∞(Ω))∗ of the space
L∞(Ω). Let δψ(x, t) = ψ(x, t; v + δv) − ψ(x, t; v). From (20), (21) we get that
δψ(x, t) is a generalized solution from U for the boundary value problem

∂2δψ

∂t2 − ∆δψ + 2
[ |u + δu|ψ(x, t; v + δv) − |u|ψ(x, t; v)

]
+

+ (v + δv)δψ = −ψδv, (x, t) ∈ Q, (30)

δψ = 0, (x, t) ∈ S, δψ��t=T = 0,
∂ψ

∂t

�����t=T
= −δu(x,T ), x ∈ Ω. (31)

From (30), (31) one may obtain the estimate

∥δψ∥2H1
0 (Ω) +

∂δψ∂t


2

L2(Ω)
¬ c ∥δv∥2L∞(Ω) , t ∈ [0,T]. (32)

In addition, using (25) we can verify the inequalityJ′α (v + δv) − J′α (v)(L∞(Ω))∗ ¬

¬
∫
Ω

α |δv | +
T∫

0

[ |u| |δψ | + |ψ | |δu| + |δu| |δψ |] dt
 d x ¬

¬ c∥δv∥L∞(Ω) + c
[
∥δu∥L2(Q) + ∥δψ∥L2(Q) + ∥δu∥L2(Q) ∥δψ∥L2(Q)

]
.

By virtue of estimates (14) and (32), the right-hand side of this inequality tends
to zero for ∥δv∥L∞(Ω) → 0. From this it follows that v → J′α (v) is a continuous
mapping from V to (L∞(Ω))∗. Theorem 2 is proved. □

Theorem 3 Let the conditions of Theorem 2 are valid. Then for the optimality of
the control v∗ = v∗(x) ∈ V in problem (1), (2), (4), (6) it is necessary fulfilment
of the inequality

∫
Ω

αu∗(x) −
T∫

0

u∗(x.t)ψ∗(x, t)d x

 (v(x) − v∗(x))d x  0 (33)

for arbitrary control v = v(x) ∈ V , where u∗(x, t) = u(x, t; v∗), ψ∗(x, t) =
ψ(x, t; v) is a solution of problems (1), (2) and (20), (21) correspondingly at
v = v∗(x).
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Proof. The set V defined by relation (4) is convex in L∞(Ω). In addition by
virtue of Theorem 2 the functional Jα (u) is continuously Frechet differentiable
on V and its differential in the point v ∈ V is defined by equality (25). By virtue
of Theorem 5 [11, p. 28] on the element v∗ ∈ V is necessary fulfilment of the
inequality

⟨
J′α (v∗), v − v∗

⟩
 0, ∀v ∈ V . From this and (25) follows the validity

of inequality (33). Theorem 3 is proved. □
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