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Abstract. In this work we consider a problem from the field of power- and energy-aware scheduling, in which a set of batteries have to be 
charged in a minimum time. The formulated problem is to schedule independent and nonpreemptable jobs to minimize the schedule length, where 
each job requires some amount of power and consumes a certain amount of energy during its processing. We assume that the power demand 
of each job linearly decreases with time, as it is the case when Li-ion batteries are being charged. For the assumed job model we prove that 
each next job should be started as soon as the required amount of power is available. Basing on the proven theorem we formulate a procedure 
generating a minimum-length schedule for an assumed order of jobs. We also analyze the case of identical jobs, and show some interesting 
properties of this case.

Key words: scheduling, makespan, power, energy, continuous resource.

Scheduling battery charging jobs with linearly decreasing power 
demands to minimize the total time

R. RÓŻYCKI, G. WALIGÓRA * , and J. WĘGLARZ

Poznan University of Technology, Institute of Computing Science, Piotrowo 2, 60-965 Poznań, Poland

electrical power source. Each battery has a known capacity 
(energy consumption), and an initial power demand which, 
in general, can be different for different batteries. The power 
demand, however, drops along with the charging degree, as it is 
typical for Lithium-ion batteries used, e.g., in electric cars. The 
time characteristic of charging such batteries [8] shows that the 
power used is a nonincreasing function of the charging time, 
and decreases from a known initial value. Battery charging time 
depends on the degree of its discharge, but it can be assumed 
that it is known a priori. In order to model this situation, it is 
convenient to use a job model whose profile is described with 
a descending linear function with both initial and final values 
known. Final value corresponds to the power used at the end of 
charging. For the moment, we will assume that the final value 
is equal to 0, i.e. after a battery is fully charged, it does not 
require power anymore.

Although in this paper power is a continuous doubly-con-
strained resource, let us notice that the presented model is not 
restricted to that particular resource. For example, money is 
a classical doubly-constrained resource since, usually, both its 
temporal availability and the total budget of the entire project 
are limited [9, 10]. If, in such a case, additionally the temporary 
demand of each job decreases along with the job processing 
time, we obtain the situation considered in this paper. It is typ-
ical for many kinds of financial projects that jobs (or activities) 
require more money at the start of their processing, whereas 
towards the end of their execution their resource (money) 
requests drop. Similar examples concerning other practical sit-
uations adequate to the model considered in this paper can be 
given as well.

2.	 Problem formulation

We consider a problem of scheduling n independent, non-
preemptable jobs. Each job requires for its processing some 

1.	 Introduction

This paper deals with a scheduling problem coming, generally, 
from the field of green computing [1, 2], which aims at finding 
a good balance between computing performance and consump-
tion of natural resources. In particular, we consider a problem 
belonging to the class of so-called power- and energy-aware 
scheduling problems [3, 4]. In the problem under consideration, 
there is a set of independent jobs, each of them requiring some 
level of power, and consuming some amount of energy while 
processing. The total amount of power available at a time is 
limited, which implies that it is not possible to execute all jobs in 
parallel. Thus, the goal is to find a schedule that meets the power 
constraint, and minimizes the makespan (schedule length).

Let us first notice that power can be treated as a doubly-con-
strained continuous resource (see [5]), since usually both its 
temporal availability and its consumption over the entire sched-
ule (i.e. energy) are limited. In that context the considered prob-
lem is also related to the class of so-called discrete-continuous 
scheduling problems which have been studied in many pre-
vious papers (e.g. [6, 7]). However, in this work we assume 
that discrete resources (e.g. machines, terminals, etc.) are not 
limited; the only constrained resource is the continuous one, 
i.e. power. Moreover, we also assume that the energy consump-
tion of each job is fixed and known in advance. Consequently, 
the energy constraint is not active in this case, since it would 
be only a decision constraint defining whether there is enough 
energy to execute the given set of jobs or not.

In this research we additionally assume that the power 
demands of jobs decrease with time. This is a situation when, 
e.g., a number of batteries are being charged from a common 
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amount of power, and consumes some amount of energy during 
its execution. Each job i, i = 1, 2, …, n, is characterized by the 
amount ei of consumed energy, which represents the size of the 
job, the initial power usage P0i, and the power usage function 
pi(t). This function can be, in general, arbitrary, however, in this 
research we assume decreasing power usage functions of jobs, 
as discussed in the Introduction. Thus, the general job model 
can be given as follows:

	 pi(t) = 
	 0	 for t < si

	gi(t ¡ si)	 for si ∙ t ∙ ci

	 0	 for t > ci

� (1)

where gi(t) is a decreasing function, and si, ci are the start and 
completion times of job i, respectively.

Notice that having defined the size ei of a job, its initial 
power usage P0i, and the power usage function pi(t), the pro-
cessing time di of job i can be calculated using the following 
equations (2–4):

	 ei = 
Z

si

ci

pi(t)dt = 
Z

0

di

gi(t)dt� (2)

where

	 ci = si + di� (3)

	 pi(si) = P0i .� (4)

As discussed in the Introduction, in this work we consider 
a special case of the presented model, in which it is assumed 
that:
●	 the power usage function pi(t) of each job is linear,
●	 at the completion of a job its power usage is equal to 0, i.e. 

pi(ci) = 0.
The above assumptions result in a special case of the 

described job model, presented in Fig. 1.

Next, having two points (si, P0i) and (ci, 0) of a linear func-
tion, we can easily derive the function formula. Consequently, 
the job model can be mathematically described as:

	 pi(t) = 

	 0	 for t < si

	P0i ¡ P0i

di
(t ¡ si)	 for si ∙ t ∙ ci

	 0	 for t > ci

.� (5)

We can immediately notice that:

	 ei =  1
2

P0i di� (6)

which means that in this case, knowing the size ei of job i, its 
processing time:

	 di = 2ei/P0i � (7)

can be calculated much easier than from the general formula (2).
Thus, we have a set of jobs, from among which each is 

graphically represented, in the system of coordinates p and t, 
by a rectangular triangle of height P0i and length di.

The objective of the problem is to minimize the schedule 
length. However, the total amount of power available at a time 
is limited. We denote by P the total amount of power available 
at time t. Obviously, it must hold that P ¸ max i = 1, …, n{P0i}, 
otherwise no feasible schedule exists. Let p(t) be the total 
power used by all jobs processed at time t, i.e.:

p(t) = 
i 2 At

∑ pi(t)

where At is the set of jobs processed at time t. Taking into 
account equation (5) we can write:

	 p(t) = 
i 2 At

∑
µ

P0i ¡ P0i

di
(t ¡ si)

¶
� (8)

and consequently, the considered problem can be mathemati-
cally formulated as:

Problem T

minimize	 Cmax =  max
i = 1, …, n

{ci}� (9)

subject to	 ci = si + di,  i = 1, 2, …, n� (10)

	
i 2 At

∑
µ

P0i ¡ P0i

di
(t ¡ si)

¶
 ∙ P  for any t.� (11)

Thus, the problem is to find a vector s = 
£
s1, s2, …, sn

¤
 of 

starting times of jobs that minimizes the schedule length Cmax 
subject to the above constraints.Fig. 1. Graphical presentation of the job model

pi(t)

ei

t
si di ci

P

P0i
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Notice that from constraint (11) we can define the function 
of the remaining amount of power available at time t as:

	 P(t) = P ¡ 
i 2 At

∑
µ

P0i ¡ P0i

di
(t ¡ si)

¶
.� (12)

The function P(t) in (12) has always the shape presented in 
Fig. 2. In order to discuss the properties of the function, let us 
first introduce two definitions:

Definition 1. The function P(t) is divided into intervals defined 
by starting or completion times of consecutive jobs. One such 
interval will be called interval of power function and denoted 
by IPF.

Definition 2. A super-interval (SPF) is a sequence of IPFs in 
which function P(t) is continuous.

In Fig. 2 there are six IPFs, and each tk, k = 1, 2, …, 6, is 
the end of IPFk as well as the beginning of IPFk+1. However, 
there are only three SPFs: 

£
0; t2
¤
, 
£
t2; t3
¤
 and 

£
t3; t6
¤
. Notice 

that when a job starts, the value of function P(t) rapidly drops, 
since the job being started requires some amount of power 
to begin. Such a situation always determines a discontinuity of 
function P(t) (points t2, t3 and t6 in Fig. 2). However, between 
such two consecutive times, the function is always increasing, 
concave, and piece-wise linear, which follows from comple-
tion of other jobs. Such a section, according to Definition 2, 
is called a super-interval (SPF). Notice that after a job ends, 
a next IPF starts in which function P(t) grows slower; in other 
words, the slope of the next section to the time axis (i.e. the 
drop coefficient) is smaller. It follows from the fact that the 
completed job stops “returning” power (see formula (12)). 
This fact makes the function concave. Finally, function P(t) 
may only take values from 0 to P. If a starting job (or jobs) 
uses the total amount of power available at a time, the value 
of P(t) drops to 0 (point t3 in Fig. 2). On the other hand, when 
successive jobs being finished “return” power, while no new 
job is started, the value of P(t) may reach P, as it is at point t6 
in Fig. 2. In all other cases function P(t) starts a new IPF with 
a value between 0 and P (e.g. point t2 in Fig. 2).

3.	 Basic theorem

In this section we formulate and prove a basic theorem for 
constructing an optimal schedule to Problem T defined in Sec-
tion 2.

Let us first assume that jobs on a job list JL are ordered 
according to their nondecreasing starting times. i.e. for each 
job in position q, q = 2, 3, …, n, on JL the following condition 
holds:

sJL
£
q
¤ ¸ sJL

£
q ¡ 1

¤,  q = 2, …, n  

which means that job JL
£
q
¤
 in position q on JL must not start 

before any of its predecessors on JL.

Theorem 1. For a defined job list JL, an optimal schedule is 
obtained by scheduling each successive job i from the list at the 
earliest possible time when the required amount P0i of power 
becomes available.

Proof. For the purpose of the proof, let us focus on one SPF 
of function P(t), as presented in Fig. 3.

Fig. 3. An SPF

Fig. 2. Function P(t) of the remaining power amount

P(t)

P

t1 t2 t3 t4 t5 t6 t

si sj ci cj t

P(t)

P0i

P0j

ak + 1t + bk + 1

ak ¡ 1t + bk ¡ 1

ak ¡ 2t + bk ¡ 2

akt + bk

Assume that there are two jobs from JL to be scheduled: 
job i and job j. Since no other job is to be started, function 
P(t) maintains its continuity, and thereby considering an SPF is 
justified. Then assume that job i is scheduled at time si within 
interval IPFk, where the power function has the form akt + bk. 
According to the assumption made at the beginning of this sec-
tion, job j must not be started before si, i.e. sj ¸ si. As a result, 
one of two possible situations may happen:

–	either
A) �job j requiring power amount P0 j cannot be started 

within IPFk because insufficient power is available in 
the interval (function akt + bk does not reach the value 
of P0 j till the end of IPFk), and – consequently – job 
j will be scheduled in one of the successive intervals: 
IPFk + 1, IPFk + 2, …
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–	or
B) �job j may be started within IPFk since the available 

amount of power is high enough (function akt + bk 
reaches P0 j by the end of IPFk).

It is obvious that the schedule obtained in case A will not be 
better than the schedule obtained in case B, since in both cases 
job i is started at the same moment si, whereas job j in case A is 
started later. Thus, it is sufficient to show that if both jobs start 
within the same interval IPFk, a schedule obtained as a result of 
any delay of job i (i.e. by starting job i at a time si + dt, dt > 0) 
will not be better than a schedule obtained by starting job i as 
early as possible (i.e. when akt + bk = P0i).

Let us start with defining the function of the remaining 
power amount in IPFk when job i is started at time si:

Pk(t) = akt + bk ¡ 
Ã

P0i ¡ 
P0i

di
(t ¡ si)

!
 =

Pk(t) = 
Ã

ak + 
P0i

di

!
t + bk ¡ P0i ¡ 

P0i

di
si .

Job j may be started when function Pk(t) reaches the value 
of P0 j: Ã

ak + 
P0i

di

!
t + bk ¡ P0i ¡ 

P0i

di
si = P0 j

and hence:

	 t = 
µ

P0i + P0 j ¡ bk + P0i

di
si

¶Áµ
ak + P0i

di

¶
 = sj.� (13)

Finally, the part of the schedule composed of jobs i and j 
will be completed at time cij:

	 cij = max{ci; cj} = max{si + di; sj + dj}.� (14)

Now, let us assume that job i is delayed by ∆t > 0, i.e. it 
starts at time si + ∆t in IPFk. In such a case the function of the 
remaining power amount in IPFk will take the form:

Pk′(t) = akt + bk ¡ 
Ã

P0i ¡ 
P0i

di

£
t ¡ (si + ∆t)

¤!
 =

Pk(t) = 
Ã

ak + 
P0i

di

!
t + bk ¡ P0i ¡ 

P0i

di
si ¡ 

P0i

di
∆t.

This function will reach the value of P0 j enabling job j to start 
when:

Ã
ak + 

P0i

di

!
t + bk ¡ P0i ¡ 

P0i

di
si ¡ 

P0i

di
∆t = P0 j

which means that:

	

t = 
µ

P0i + P0 j ¡ bk + P0i

di
si + P0i

di
∆t
¶Á

t = 
Áµ

ak + P0i

di

¶
 = sj′ .

� (15)

This time the part of the schedule will be completed at 
time c′ij:

	 c′i j = max{c′i; c′j} = max{si + ∆t + di; sj′ + dj}.� (16)

Now, comparing (14) and (16) it can be seen that:

c′ij > cij

since:
si + ∆t + di > si + di

which is obvious because ∆t > 0, and:

s′j > sj

which, in turn, follows from the fact that 
P0i

di
∆t > 0 in (15) 

and thus, the numerator in (15) is greater than the numerator in 
(13), whereas both denominators are equal.

Thus, delaying job i will always result in an inferior partial 
schedule composed of job i and j. The same argument can be 
applied for any pair of jobs. As a result, the entire schedule 
may not be better that the schedule obtained by starting each 
job i as soon as possible. □

Summarizing, for a given list JL a minimum-length sched-
ule is found by starting successive job from the list as soon as 
the required amount of power becomes available. Obviously, 
the first l jobs from JL for which ∑ l

q = 1 P0, JL
£
q
¤ ∙ P start at 

time t = 0. Then, it is easy to establish the earliest start time for 
the next job j in position q of JL, q = l + 1, l + 2, …, n, using 
formula (12). From equations (12) and P(t) = P0 j we obtain:

P ¡ 
i 2 At

∑
Ã

P0i ¡ 
P0i

di
(t ¡ si)

!
 = P0 j

hence:

i 2 At

∑ P0i

di
t = P0 j ¡ P + 

i 2 At

∑ P0i + 
i 2 At

∑ P0i

di
si

and, by deriving t, we obtain:

	 t = 
P0 j ¡ P + ∑ i 2 At

P0i + ∑ i 2 At

P0i

di
si

∑ i 2 At

P0i

di

 = sj.� (17)

The next job j from list JL should be started at time sj.
Now, in order to find a globally optimal schedule, all lists 

JL have to be generated and the one leading to an optimum 
schedule has to be chosen. Unfortunately, the number of all 
such lists grows exponentially with the number of jobs, as 
they are permutations of n independent jobs. The number of 
all such permutations is, of course, n!. However, for a given 
list JL Theorem 1 can be used to construct a schedule of the 
minimum length. In the next section a procedure for generation 
such a schedule will be described.
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4.	 Schedule generation procedure

According to Theorem 1, each successive job from list JL has 
to be started at the earliest possible moment. Hawing known 
the set At of jobs processed at time t, the calculation of the 
closest time stamp at which the next job from the list should 
be started is done from equation (17). Now, we can distinguish 
combinations (subsets) of jobs performed between two con-
secutive time stamps. Let Zk denote the set of jobs executed 
between time stamps k ¡ 1 and k, k = 1, 2, …, i.e. in the k-th 
time interval. tk is the k‑th time stamp, i.e. the end of the k-th 
interval. sk and ck are vectors of size h, where h is the number of 
jobs already scheduled, containing the starting and completion 
times, correspondingly, of jobs started up to time tk. If vector 
Q of size n contains for each job its position q on list JL, i.e. 
Q
£
i
¤
 = q , JL

£
q
¤
 = i, then we can write:

	 ck
£
Q£i¤
¤
 = sk

£
Q£i¤
¤
 + di, for every i 2 Zk.� (18)

Moreover, let nk denote the number of jobs in combination 
Zk, i.e. nk = jZkj. It is easy to calculate the value of n1 as the 
biggest integer for which the following condition holds:

	
q = 1

n1

∑ P0, JL
£
q
¤ ∙ P� (19)

i.e. in the first combination Z1 the maximum number n1 of the 
first jobs from JL is processed, for which their overall initial 
power demand does not exceed the power limit P. Thus, jobs 
JL
£
1
¤
 to JL

£
n1
¤
 are processed in the first interval. If n1 is equal 

to n, it means that all jobs can be started in the first interval, 
and the algorithm stops.

Let us now stress one important issue. At any time we know 
the set of jobs performed at that time, along with their starting 
times and completion times. It may sometimes happen (and, 
surely, will happen) that the next time stamp calculated from 
formula (17) will exceed completion time of one or more jobs. 
In that situation we have to reconfigure the set At of jobs being 
executed by removing from the set the job (or jobs) that is fin-
ished at the earliest, and then recalculate the next time stamp 
for the new reduced set At. More precisely, if for the current 
combination Zk the calculated value of time stamp tk is greater 
than any element of ck, we have to generate a new combination 
Zk + 1 by removing from Zk job (or jobs) with completion time  
cmin

k  = min i 2 Zk{ck
£
Q
£
i
¤¤} and then calculate a new value of tk + 1  

for the reduced combination Zk + 1, using formula (17) again.
On a basis of the above discussion, we can propose the fol-

lowing iterative procedure for generation an optimal schedule 
for a given list JL.

Schedule generation procedure (SGP):

Step 1.
k := 1;
Calculate n1 as the biggest integer for which condition (19) 
holds;

if  (n1 = n)
then STOP and Cmax := max i = 1, …, n{di};
otherwise:

Put the first n1 jobs from JL to Z1;
Set 0 to the first n1 positions of sk;
Calculate the first n1 elements of ck from (18);

Step 2.
repeat
At := Zk;
cmin

k  := min i 2 Zk{ck
£
Q
£
i
¤¤};

Calculate tk from (17);
if  (tk > cmin

k ) then
tk := cmin

k ;
Zk + 1 := Zkn{i: i 2 Zk ^ ck

£
Q
£
i
¤¤

 = c min
k }

otherwise
Zk + 1 := Zk [ {next unscheduled job from JL}

Create vectors sk + 1 and ck + 1;
k + +;
until (there is no unscheduled job on JL);

Step 3.
Cmax :=  max

i = 1, …, n
{ck

£
i
¤}.

The complexity of the procedure is O(n2) since n jobs are 
being successively scheduled, and for each of them at most n 
backsteps may be needed in Step 2 in order to reduce the current 
combination Zk.

5.	 The case of identical jobs

In this section we will analyze a special case of the problem 
where initial power demands, as well as the lengths (pro-
cessing times) of all jobs are identical, i.e. P0i = P0, di = d, 
i = 1, 2, …, n. In this situation we can treat all jobs as unit-time 
ones, i.e. we can assume that di = d = 1, i = 1, 2, …, n.

For unit-time jobs, formula (17) takes the form:

	 t = 
Y + ∑ i 2 At

1 + ∑ i 2 At
si

∑ i 2 At
1

� (20)

where Y = 
Ã

1 ¡   P
P0

!
 < 0 is a negative constant (since P > P0).

Notice now that for At = Zk, component ∑ i 2 At
1 in (20) is 

equal to nk, i.e. the number of jobs processed in combination 
Zk. As a result, we obtain:

	 tk =  
Y + ∑ i 2 Zk

si

nk
 + 1� (21)

and, in particular:

	 t1 =   Y
n1

 + 1.� (22)

Thus, for the case of unit-time jobs, the calculation of the 
next time stamp at which the next job can be started is much 
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easier that in the general case. Moreover, it is obvious, that for 
unit-time jobs the choice of the next job to perform is of no 
importance – each job is represented by a triangle of the same 
height and length. Thus, the jobs can be scheduled in an arbi-
trary order, e.g. according to their increasing indices, and the 
next job is started as soon as the available amount of power is 
sufficient, i.e. at the consecutive time stamp tk given by formula 
(21). Consequently, for identical jobs an optimal schedule is 
found by applying procedure SGP to an arbitrary job list JL.

Let us also add that in each IPFk, the formula for the func-
tion of the remaining power amount can be easily established 
from formula (12) in which P0i = P0, di = d, i = 1, 2, …, n, i.e.:

	 Pk(t) = P ¡ 
i 2 Zk

∑ P0 + 
i 2 Zk

∑ P0 t ¡ 
i 2 Zk

∑ P0si� (23)

where t 2 
£
tk ¡ 1, tk

¤
.

6.	 Numerical example

In this section we show a numerical example of applying pro-
cedure SGP to a case of identical jobs.

Let us consider the following instance of the problem. A set 
of 7 jobs is to be scheduled. The maximum available amount 
of power is equal to 5, whereas the initial power usage is equal 
to 2. Thus, the parameters of the problem are: n = 7; P = 5; 
P0 = 2. We assume that jobs on list JL appear according to their 
increasing indices.

Now, let us analyze the steps of procedure SGP:

Step 1.
k := 1; n1 := b5/2c = 2;
Since n1 < n, the procedure does not stop, and n1 = 2 jobs 
(job 1 and job 2) can be started at time t0 = 0. The following 
combination Z1 and vectors s1 and c1 are:

Z1 = 
n

1
2

o
; s1 = 

£0
0

¤
; c1 = 

£1
1

¤
;

We can now calculate the constant Y:
Y := 1 ¡ 5

2 
 = – 3

2 
;

and the time t1 at which the next job will be able to start:

t1 =  Y
n1

 + 1 =  
– ³⁄₂

2
 + 1 = 1

4 
;

The function of remaining power amount (see formula 
(23)) for t 2 

£
0; 1/4
¤
 is P1(t) = 4t + 1 and, as it is easy to see, 

P1(1/4) = 2 = P0.

Step 2a. (* beginning of „repeat until” loop *)
A new job 3 is added to the set of jobs being processed. It 
starts at time t1 = 1/4.
k = 2; n2 = 3;

Z2 = 
1
2
3

; s2 = 
0
0

1/4

; c1 = 
1
1

5/4

;

Now we calculate the starting time of job 4:

t2 = 
– ³⁄₂ + (0 + 0 + ¹⁄₄)

3
 + 1 =  7

12 
.

None of the jobs from combination Z2 is completed before 
time t2.
Remaining power amount function for t 2 

£
1/4, 7/12

¤
 is 

P2(t) = 6t ¡ 3/2, and P2(1/4) = 0; P2(7/12) = 2.

Step 2b.
This iteration goes analogically to Step 2a.
k = 3; n3 = 4;

Z3 = 
1
2
3
4

; s3 = 

0
0

1/4
7/12

; c1 = 

1
1

5/4
19/12

;

t3 =  
– ³⁄₂ + (¹⁄₄ + ⁷⁄₁₂)

4
 + 1 =  5

6 
.

Again, no job f rom combination Z3 is completed before 
time t3.
Remaining power amount function for t 2 

£
7/12, 5/6

¤
 is 

P3(t) = 8t ¡ 42/3, and P3(7/12) = 0; P3(5/6) = 2.

Step 2c.
k = 4; n4 = 5;

Z4 =  

1
2
3
4
5

; s4 =  

0
0

1/4
7/12
5/6

; c4 =  

1
1

5/4
19/12
11/6

;

t4 =  
– ³⁄₂ + (¹⁄₄ + ⁷⁄₁₂ + ⁵⁄₆)

5
 + 1 =  31

30 
.

Notice that now c4
£
1
¤
 =  c4

£
2
¤
 = 1 < t4, and thus job 1 

and job 2 from combination Z4 would be completed before 
time t4. We have to remove them from the combination and 
calculate time t5 for the reduced combination Z5 containing 
n5 = 3 jobs. Consequently:

Z5 =  
3
4
5

; s5 =  

−0
−0

1/4
7/12
5/6

; c5 =  

−1
−1

5/4
19/12
11/6

;

n5 = 3;

t5 =  
– ³⁄₂ + (¹⁄₄ + ⁷⁄₁₂ + ⁵⁄₆)

3
 + 1 =  19

18 
.

Now, in order to define the formula for the remaining 
power amount function, we have to divide the 4th SPF into 
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two IPFs: 
£

5/6 , 1
¤
 and 

£
1, 19/18

¤
. For t 2 

£
5/6 , 1
¤
 the func-

tion is P4(t) = 10t ¡ 81/3, where P4(5/6) = 0; P4(1) = 12/3, 
whereas for t 2 

£
1, 19/18

¤
 the function is P5(t) = 6t ¡ 41/3, 

where P5(1) = 12/3; P5(19/18) = 2.

Step 2d.
k = 6; n6 = 4;

Z6 =  
3
4
5
6

; s6 =  

−0
−0

1/4
7/12
5/6

19/18

; c6 =  

−1
−1

5/4
19/12
11/6
37/18

;

t6 =  
– ³⁄₂ + (¹⁄₄ + ⁷⁄₁₂ + ⁵⁄₆ + ¹⁹⁄₁₈)

3
 + 1 = 47

36 
.

Job 3 is completed before time t6, and it will be removed 
from combination Z6.

Z7 =  
4
5
6

; s7 =  

−0
−0
|−1/−4
7/12
5/6

19/18

; c7 =  

−1
−1
|−5/−4

19/12
11/6
37/18

;

n7 = 3;

t7 =  
– ³⁄₂ + (⁷⁄₁₂ + ⁵⁄₆ + ¹⁹⁄₁₈)

3
 + 1 = 143

108 
.

As in Step 4, the current SPF has to be divided into 
two IPFs: 

£
19/18, 5/4

¤
 and 

£
5/4 , 143/108

¤
. For t 2 

£
19/18, 5/4

¤
 the 

remaining power amount function is P6(t) = 8t ¡ 84/9, where 
P6(19/18) = 0; P6(5/4) = 15/9, whereas for t 2 

£
5/4 , 143/108

¤
 

the function is P7(t) = 6t ¡ 517/18, where P7(5/4) = 15/9; 
P7(143/108) = 2.

Step 2e.
k = 8; n8 = 4;

Z8 =  
4
5
6
7

; s8 =  

−0
−0
|−1/−4
7/12
5/6

19/18
143/108

; c8 =  

−1
−1
|−5/−4

19/12
11/6
37/18

251/108

;

Since all the jobs have been scheduled then STOP.

Step 3.

Cmax = c6
£
7
¤
 = 251/108 ¼ 2,3.

The final schedule is shown in Fig. 4.

Notice that for the case of identical jobs vector ck is not 
necessary, since its elements are always greater by 1 than the 
corresponding elements of vector sk (i.e. ck

£
i
¤
 = sk

£
i
¤
 + 1). It 

is, obviously, not the case for the general problem.

7.	 Property of identical jobs case

In this section we show an interesting property of the case 
of identical jobs, defining the maximum number of jobs per-
formed in parallel at a time.

Property 1. The maximum number of jobs performed in paral-
lel at a given moment does not exceed the number n1 + 1 + x, 
where x is the maximum integer for which the following 
inequality is met:

	 t1 + 
i = 1

x

∑ 1
n1 + i

 < 1.� (24)

As you can see, the maximum number of jobs performed 
in parallel in a given schedule obtained using procedure SGP 
occurs just before the end of the earliest completed job (or 
jobs). It is enough to specify how many jobs will be started 
up to this point. At the moment t = 0, n1 jobs are started. It is 
known that the next job will be launched at the moment t1 given 
by formula (22).

For identical jobs, it can be shown that until the first job (or 
jobs) is completed, the intervals between subsequent jobs’ start 
times do not depend on P or P0, and are equal to the inverse of 
the number of currently running jobs. Therefore, the maximum 
number of jobs running simultaneously can be determined by 
formula (24).

Let us consider the following instance of the problem. The 
maximum available amount of power is equal to 10, whereas 
the initial power usage is equal to 3. Thus, the parameters of 
the problem are: P = 10; P0 = 3.

The schedule where consecutive jobs are started till the 
completion of the first job is presented in Fig. 5.

Fig. 4. Gantt chart for the numerical example
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For the considered instance, the maximum number of jobs 
executed in parallel equals 8 since:

t1 =  –¹⁰⁄₃
3

 + 1 =  1
9 

t1 +  1
4 

 +  1
5 

 +  1
6 

 +  1
7 

 = 1237
1260

 < 1 < 1237
1260

 +  1
8 

.

8.	 Conclusions

In this work, we have considered a problem of scheduling non-
preemptable and independent jobs with power demands linearly 
decreasing with time, in order to minimize the schedule length. 
We have proved that in an optimal schedule, each job should be 
started as soon as the required power amount becomes avail-
able. As a result, in order to find a globally optimal schedule, 
all sequences of jobs have to be examined, in general. Thus, 
various heuristics, metaheuristics, or priority rules can be 
applied to look for an optimal job permutation. We have pre-
sented a schedule generation procedure (SGP), building a min-
imum-length schedule for a given sequence of jobs.

We have also analyzed a special case of the problem with 
identical jobs, for which an arbitrary job sequence leads to an 

optimal schedule. For this case we have illustrated the SGP 
procedure by an in-depth numerical example. We have also 
shown an interesting property of this case, related to a maxi-
mum number of jobs performed in parallel.

In the future research we plan to further analyze the general 
problem in order to identify properties of optimal schedules. 
On the other hand, various heuristics for f inding sequences 
of jobs leading to high-quality schedules can be computation-
ally tested. Practically justif ied extensions and special cases 
of the problem should be analytically and numerically studied 
in future works.
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Fig. 5. Jobs started till the completion of the first job
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