
Theoretical and Applied Informatics

ISSN 1896–5334

Vol. 25 (2013), no. 3–4

pp. 157–182

DOI: 10.2478/thai-2013-0008

Translation of probabilistic games in J2TADD

ARTUR RATAJ,

IITiS PAN, Bałtycka 5, Gliwice, Poland

Received 28 March 2013, Revised 18 September 2013, Accepted 31 September 2013.

Abstract: A new version of J2TADD – a translator from Java to automatons– is described, which

adds support for a translation of Markov processes with non–deterministic players, that can form coalitions,

which in turn strive for different aims. In order to ease the definition of a probabilistic game using a plain

Java application, several new constructs, and also a special library, are supported within the input language.

Ranges on variables or on expressions can be defined, what helps in checking the self–consistency of

a model, and can also make the solving of the model faster.

Keywords: model checking, Java, probabilistic game

1. Introduction

J2TADD [6, 7] is a translator of models specified in the Java language into

automatons supported by several model checkers like UPPAAL [1] or Prism [3]. The

current version of hc supports a number of new major features:

• choices, which are plain Java constructs, yet they are translated by J2TADD into

various forms of probabilistic and non–deterministic branches; on a JVM, an

identical or similar behaviour is realised (Sec. 2.);

• ranges on variables and on expressions – their correctness can be analysed by

both hc and a target model checker; also, ranges help in generating more optimal

models for Prism (Sec. 3.);

• conditions on clocks; can also be specified globally by using different schedulers

(Sec. 4.);

• translation of probabilistic games (also known as multi–agent systems) into

Prism models (Sec. 5.);

158

Sec. 6. shows an example of a model for hc, and finally there is a discussion in

Sec. 7.

2. Choices

Apart from the conditional and non-deterministic choices, existing also in previous

version there are also probabilistic choices available. Let us begin, though, with the

conditional choice, as it can now be ‘flattened’ into a single node.

2.1. Conditional choice

A conditional choice is a state with a number of transitions such that they have

complementary guards, i.e. always one and only one is true. In hc such an automaton

can be a result of a translation of one or more constructs like Java’s if, where the

condition is an expression that can be reduced to boolean comparisons of a mix of

variables and constants.

x
>
2

x
≤
1

x=2

Fig. 1: A conditional choice made out of a number of binary branches.

As a volatile variable (understood within hc as one that can be modified by several

threads), if evaluated multiple times, might yield a set of different values, a care is taken,

that testing of such variables in the output automaton matches exactly the one in the

source code. For non–volatile variables, though, optimisations can be applied, which

collapse several evaluations into a single one. An example of such a collapse is illustrated

in Fig. 1.

2.2. Probabilistic choice

A probabilistic choice is translated from conditional expressions that are of the form

if(Math.random() < i). A choice of that type is translated into a state with two

transitions, each decorated with a probability value, and these two values sum to 1. For

example, the mentioned construct would be translated as seen in Fig. 2.

A probabilistic choice defined using a single if has only two outgoing transitions.

To overcome that limitation, there is also available a balanced n–ary probabilistic choice,

159

0.4

0.6

Fig. 2: An example probabilistic choice.

that is translated into n transitions outcoming from a single state, each labelled with

a probability 1/n. It is defined using an expression (int)(Math.random()*n),

which is typically assigned to a variable.

3. Ranges

An allowable range of values of a variable or a primary expression can be defined

within a comment. Thanks to this, the model can still be a valid Java program. A range

contains two expressions, representing respectively a minimum and a maximum allowed

value. Such an expression can refer to any variable in a given scope, but hc must be able

do evaluate the expression into a constant value, after the main thread ceases to modify

the application. For that end, the compiler performs a number of optimisations in order

to replace expressions with constants.

Ranges on variables are roughly translated into ranges on state variables in the output

file – if hc can not verify by itself, that a given limit won’t be violated, it widens a state

variable’s range, so that it can generate a PCTL property to check for any violations

of that limit. Ranges on expressions, due to their locality, are translated into sub–

automatons. An invalid value leads to an error state.

4. Clocks

For a better support of timed automatons [4], this version of hc brings a few

enhancements to specification of clocks.

Let v be time in seconds. In previous versions of J2TADD, only a single delay

construct was available Thread.sleep(1 · 103 v), that was effectively translated

to two serial transitions: x := 0, x >= v. Currently, there are also methods

Sleep.exact(v), Sleep.min(v) and Sleep.max(v) that put different rela-

tional operators on the second transition.

Depending on the probability distribution of delay times, these methods can have a

parameter having one the following forms:

160

• a constant distribution, x = v:

Sleep.exact(v);

• a probabilistic negative exponential distribution1, x ∈ (0, ∞):

Sleep.exact(Dist.nxp(λ));

• a probabilistic tabularised distribution0, x ∈ (v1, vN):

Sleep.exact(Dist.tab(v, ρ));

• a non–determined, unknown distribution, x = 0, 1, . . . v − 1:

Sleep.exact(Random.nextInt(v)).

Wherever there is no clock condition or invariant on a state or on a transition, by

default any duration time is assumed. That can be modified by schedulers – they may

force, by adding clock conditions and invariants where they are absent, that the time of

staying in some state is either constant, or given by a probability distribution, or that a

state is left immediately, or is hidden. If an automaton A contains a hidden state S, then

it means that that there is not a time instant, when A is in S – a series of hidden states

merges with a first non–hidden state after that series, effectively forming a single update

to A’s state vector. A state with a synchronising label is never made hidden, from an

obvious reason.

A formalism of hidden states is not supported by Prism, but tells hc that it can

compact several transitions into a single one without affecting the model’s meaningful

behaviour. This is true e.g. in the case of turn based games, discussed in the next section.

As discussed, a scheduler by default affects only states or transitions, where no other

clock conditions are defined. This can be changed by defining an overriding scheduler,

that is applied to all states in a model.

5. Games

A Java thread, or effectively an automaton, can be declared as a player. These players

can form coalitions. Prism’s rPATL queries can then be used to find out e.g. optimal

strategies of players.

As Prism accepts only turn–based games now, only a single player can move at once,

and that quality must be explicitly seen by Prism. It would be impossible to implement

such a game by using Java’s locks, as, due to the way hc works, there are always at

least two automatons involved in a wait()/notify() operation [7], one of these is

a special lock automaton. Thus, a different synchronising mechanism is used in turn–

based games – a conditional barrier. It is directly translated to synchronising labels, and

optional conditions on leaving a barrier are translated to guards of these labels.

1currently not supported by hc’s backends

161

For easier implementation of a game, a pure Java library for implementing games

can be used, included with hc. It employs player synchronisation in a way compatible

with Prism’s requirements.

Using the hidden scheduling discussed in the previous section can greatly optimise

a network of players, and does not break a basic system behaviour – when one of the

players moves, the other players wait, and thus can’t see what happens in the automaton

of the moving player, in particular, that some of its states between synchronisation points

have been merged.

6. Case study

In this study, an example model will be specified. Also, several detailed features of

hc not discussed in the previous sections will be described if applicable.

Let us discuss a model of a distributed energy management system, as presented by

[2]. It consists of a local source of electrical power, that forms a microgrid together

with a number of nearby households. Similar schemes are becoming popular on energy

markets, where small power providers, like wind turbines, perform a complementary

service to global grid. The algorithm, if followed by the receivers of energy, smooths

out peaks in demand.

There is a scheduler and N households. At the beginning of each time interval, the

scheduler chooses one of the households at random, and then proposes it to buy load,

i.e. a quantity of electric power at a given price. The price, within a single time step, is

equal to the total number of loads generated by all households, including the additional

load to be bought.

The probability, that a household needs to buy a load, is determined by a daily

demand curve. If the household needs to buy a load, it is obliged to choose the microgrid

if the price is below a given threshold clim. Otherwise, a household must perform a

drawing, which with a constant probability Pstart decides, that the load must be bought

from the microgrid. Otherwise, that is with a probability 1 − Pstart, the household is

granted the right to back–off, e.g. by choosing a global grid instead. It is unknown, in

which way a household will take advantage of that right.

The system can be modelled as a game, with N + 1 agents or players: the scheduler

and each of the households. As a household has a choice of unknown characteristics,

then it is non–deterministic – it has a strategy of picking of one of the possibilities, and

the strategy is not specified in the model.

6.1. Source file

We will need to employ the mentioned non–determinism. In hc’s Java flavour

of input files, a non–deterministic choice of one of N outcomes is modelled by the

162

method Random.nextInt(N). Definitely, it is not due to the Java language’s specs,

which says, that the method draws a value using an uniform distribution. Yet, there

is not an exact equivalent of what we need, and Random.nextInt(N) is a good

default approximation, if the model is to be run on a JVM. For custom JDK–side

implementations of strategies there is special a set of classes in hc’s library.

The discussed model is a turn game – only a single player can perform a move

at a time. We could directly use a synchronisation method for that – a conditional

barrier – but it is easier just to use a dedicated game package from hc’s library, which

conveniently wraps that barrier.

The beginning of our model specification, that provides all of the necessary imports,

is as follows:

Listing 1: Imports.

1 package example ;

2

3 i m p o r t j a v a . u t i l . Random ;

4

5 i m p o r t hc . ∗ ;

6 i m p o r t hc . game . ∗ ;

Let us follow the rules of modular programming and divide the model into N + 2
entities – the microgrid itself, a scheduler, and N households. And so, we begin with

the microgrid:

Listing 2: Class Microgrid.

1 /∗ ∗

2 ∗ A m i c r o g r i d demand−−s i d e management game , a s d e s c r i b e d

3 ∗ i n [1] .

4 ∗

5 ∗ [1] H. Hildmann and F . S a f f r e . I n f l u e n c e o f v a r i a b l e

6 ∗ s u p p l y and l o a d f l e x i b i l i t y on Demand−Side Management .

7 ∗ In Proc . 8 t h I n t e r n a t i o n a l C o n f e r e n c e on t h e European

8 ∗ Energy Market (EEM ’11) , pages 63 −68. 2 0 1 1 .

9 ∗ /

10 p u b l i c c l a s s M i c r o g r i d

This is the only public class in the source file, and thus the class gives its name to the

file. Also, the Microgrid class contains the start method or, in Java terms, the main

method, and thus that class will give its name also to the output file.

The microgrid has a number of basic traits, that must be defined, like the number of

households, or the demand curve. Let us define these:

163

Listing 3: Fields of Microgrid, part 1.

1 /∗ ∗

2 ∗ Number o f days .

3 ∗ /

4 p u b l i c s t a t i c f i n a l i n t DAYS = 3 ;

5 /∗ ∗

6 ∗ Number o f i n t e r v a l s p e r day .

7 ∗ /

8 p u b l i c s t a t i c f i n a l i n t INTERVALS = 1 6 ;

9 /∗ ∗

10 ∗ Number o f r o u n d s .

11 ∗ /

12 p u b l i c s t a t i c f i n a l i n t MAX_TIME = DAYS∗INTERVALS ;

13

14 /∗ ∗

15 ∗ Demand c u r v e .

16 ∗ /

17 p u b l i c s t a t i c f i n a l d o u b l e [] DEMAND = {

18 0 . 0 6 1 4 , 0 . 0 3 9 2 , 0 . 0 3 0 4 , 0 . 0 3 0 4 ,

19 0 . 0 3 5 5 , 0 . 0 5 1 8 , 0 . 0 6 5 1 , 0 . 0 6 4 3 ,

20 0 . 0 6 2 5 , 0 . 0 6 1 8 , 0 . 0 6 1 4 , 0 . 0 6 9 5 ,

21 0 . 0 8 8 7 , 0 . 1 0 1 3 , 0 . 1 0 0 5 , 0 . 0 7 6 2 ,

22 } ;

23 /∗ ∗

24 ∗ Number o f h o u s e h o l d s .

25 ∗ /

26 p u b l i c s t a t i c f i n a l i n t NUM_HOUSEHOLDS = 3 ;

Also, a few variables are needed to store the state of the grid.

Listing 4: Fields of Microgrid, part 2.

1 /∗ ∗

2 ∗ Househo lds .

3 ∗ /

4 p r o t e c t e d s t a t i c Household [] h o u s e h o l d s ;

5 /∗ ∗

6 ∗ C u r r e n t t ime or i n t e r v a l .

7 ∗ /

8 p u b l i c s t a t i c i n t /∗@(0 , MAX_TIME) ∗ / t ime ;

9 /∗ ∗

10 ∗ C u r r e n t number o f l o a d s g e n e r a t e d .

11 ∗ /

12 p u b l i c s t a t i c i n t /∗@(0 , NUM_HOUSEHOLDS) ∗ / numJobs ;

The microgrid must know, who its users are (line 4). It also remembers the current

time (line 8), and can store the total number of loads being executed (line 12).

There are ranges on the last two fields – they guard a self–consistency of the model,

164

as hc is able to produce descriptions containing rigorous checks of the ranges. This

helps in testing the specification for invalid assumptions and implementation bugs. The

ranges also help in making the model definition more self–explaining, and may also help

Prism in faster performing of computations.

The compiler can analyse expressions with ranged operands, in order to estimate the

range of the expression’s result. Thus, sometimes even a few scattered ranges may help

hc iteratively determine the missing ranges. If not found, a default range is assumed,

which, for the type int, is
〈

−215 + 1, 215 − 2
〉

.

Operations within a model specification can be executed by either a single main

thread, or in automaton threads. The main one is interpreted within hc, before

any output is generated by the compiler. That thread initialises variables and creates

instances of objects, including thread objects. Any such thread object, created by the

main thread and started, is an automaton thread. In hc’s output file, an automaton thread

translates to a single automaton. The main thread is not translated into any automaton,

and only effects of its actions are seen, in e.g. initial values of state variables, in the

generated model properties, and, of course, in the very presence of the automatons, as it

was the main thread, that initialised and started them.

Like in a regular Java application, the two types of threads may share code, by e.g.

calling the same methods. Yet, there are operations that only one of the thread types

supports. The divide is mostly intuitive – for example, the main thread is not able to

synchronise with other threads, as when it is alive, it is all alone, the automaton threads

exists as definitions only. An automaton thread, in turn, can not in general create objects,

to fit into some rigid automaton formalism enforced by model checkers.

Note that the main thread is executed by hc’s internal interpreter, and so it is not

very fast. It is typically speedy enough to create complex topologies of automatons, but

might be way too slow for performing intensive computations.

After the main thread ends (or in certain models almost ends, we will return to that

later), hc begins to analyse the state of the translated application, including searching

for all running automaton threads, which, even that started, did not perform a single

operation yet. They will do so, in a sense, only in simulators or in analytic engines of

model checkers.

Let us see, what the main thread does, in order to create the microgrid. The main

thread always starts with the main method:

165

Listing 5: Main method of Microgrid.

1 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

2 / / p l a y e r i d s a t t h e t a b l e : 0 s c h e d u l e r ,

3 / / 1 . . NUM_HOUSEHOLDS h o u s e h o l d s

4 TurnGame t a b l e = new TurnGame () ;

5 Model . name (t a b l e) ;

6 / / c r e a t e an a r r a y o f h o u s e h o l d s

7 h o u s e h o l d s = new Household [NUM_HOUSEHOLDS] ;

8 f o r (i n t i = 0 ; i < NUM_HOUSEHOLDS; ++ i) {

9 Household h = new Household (t a b l e , 1 + i) ;

10 h . s t a r t () ;

11 Model . name (h , " " , " " + (i + 1)) ;

12 Model . p l a y e r (h , " h " + (i + 1)) ;

13 h o u s e h o l d s [i] = h ;

14 }

15 / / c r e a t e t h e s c h e d u l e r

16 S c h e d u l e r s = new S c h e d u l e r (t a b l e) ;

17 s . s t a r t () ;

18 Model . name (s) ;

19 Model . p l a y e r (s , " s c h e d u l e r ") ;

20 / / r e s e t t ime

21 t ime = 0 ;

22 / / p l a y e r s c o n s i s t o f t h e s c h e d u l e r and of t h e

23 / / h o u s e h o l d s

24 t a b l e . s t a r t (1 + NUM_HOUSEHOLDS) ;

25 f o r (i n t t = 1 ; t <= MAX_TIME / 4 ; ++ t)

26 Model . check (" a t t ime " + t ,

27 " < <1 , 2 , 3>> R{ \ " v a l u e 1 2 3 \ " } max=? " +

28 " [F t ime =" + t + "] ") ;

29 Model . w a i t F i n i s h () ;

30 / / a n y t h i n g below won ’ t be e x e c u t e d by hc , b u t

31 / / w i l l w i t h i n JVM

32 System . o u t . p r i n t l n (" t ime = " + t ime) ;

33 / / r e l e a s e s a l l t h r e a d s s t i l l w a i t i n g on t h e

34 / / b a r r i e r

35 h o u s e h o l d s [0] . i n t e r r u p t () ;

36 }

In line 4, a helper object from a game package from hc’s library is created. Thanks to

using that package, some boilerplate code will be avoided in the model. In the next line,

one of the methods of the Model class is called. The class gives some control over the

output file generated by hc. In this particular case, it is specified that any field variables

belonging to table should not be decorated with any prefixes or suffixes in the output

files, raw names only. The method Model.name(Object, String prefix,

String suffix), and the convenience methods Model.name(Object,

String suffix), Model.name(Object) make names of state variables in the

166

output file shorter and predictable by adding a prefix and a suffix to the field name. If

such a custom naming scheme is used, though, then the user must arrange the naming

so that there are no resulting name conflicts. Object in the methods discussed can also

be an array reference, in such a case concatenated prefix and suffix alone refer to the

referenced array (not to the field).

Local variables, as opposed to non-static fields, do not fall into the naming scheme,

and thus have the default, conflict–free yet verbose and unpredictable names. This is

usually not a problem as locals are assumed to be generally not used within the properties

checked anyway, also because of the way an optimiser may treat a local (e.g. replace it

with a constant, specific for some method call). Designate a field if you want to test its

values.

The loop in lines 8–14 creates households. The class Household is a thread, and

thus its creation and starting causes an automaton to be generated. In the loop, there

is a yet not discussed method Model.player(), that makes an automaton thread a

named participant in the game.

There is a number of households, so we append numbers to their field names –

otherwise hc would complain about duplicates. There is only a single scheduler, so raw

field names are enough in its case.

In line 21, a field, and in effect a state variable, time, is initialised. In Java, integer

fields are initialised with 0 anyway, so the instruction is not needed in fact, but serves as

an example of a fragment of the definition of an initial state.

The next operation uses the helper table object to start the game. There are N + 1
players declared – hc will check, if it is a correct value. The value is in fact the number

of objects, that use a conditional barrier, which synchronises players – but in the case of

a TurnGame the value is the same as the number of players.

The statement is the first one executed by the main thread, that would actually made

the automaton threads active (in the sense of ‘not only waiting on a barrier’) if on a JVM.

This is why the initial state could still be specified (line 21) despite that the automaton

threads had already been started using Thread.start(). Because of the discussed

assumption within hc, that automaton threads never become active before the main

thread ceases to be active, a situation where both types of threads concurrently interact

(by e.g. modifying a variable by a thread of one type and reading that variable by a

thread of another type) might result in a disrepancy between the behaviour of the model

expected by hc, and an actual behaviour of the model on a JVM.

The next thing to do in the main thread is to specify the properties to check. These

will be put into a respective file, unless hc works in the range–checking mode, in which

special range–checking properties are generated instead. As can be seen, hc’s interpreter

may be a help in generating long sequences of PCTL or rPATL properties.

The statement Model.waitFinish() in line 29 waits until some automaton

167

thread encounters an operation Model.finish(). This may seem contradictory

to the way hc works – as has been said, the compiler exits without interpreting any

automaton thread. So, it would need to wait forever in Model.waitFinish().

Instead, hc’s interpreter treats the statement as a signal to immediately finish interpreting

of the main thread – any statement in lines 30–34 is invisible to hc. These are only

of use if the model is run on a JVM – you may thus specify code, that runs once

the automaton threads declare, that the simulation ends – yet note, that consequently

Model.finish() can only be executed if the automaton threads will no longer

modify any variable.

In our case, we use Model.waitFinish() to wait until the final simulation time

is displayed. Then, we would like to terminate all automaton threads, in order to cleanly

end a process. The scheduler ends by itself, but households wait on the barrier. They

can be terminated at once by taking advantage of that barrier’s property, which says, that

if any thread waiting on it is interrupted, then all of these threads enter the interrupted

state, as specified in the Java standard, and then leave the barrier. The statement at line 35

starts just that process. A counterpart statement in the definition of a household checks,

if the household’s automaton thread is in an interrupted state, and if yes, then leaves the

loop immediately (Listing 14, lines 5–6).

Because Microgrid declares a number of fields that characterise the microgrid in

general, let us also put some specifically microgrid–related functions into the class as

well. All of the methods, as opposed to the main one, will in our case be only called by

the automaton threads.

Let these methods be static. What is static and what is not is often the matter of

programming style, not to be discussed here. Let us just mention, that these method

were made class ones, because they are utility methods belonging to the main class

Microgrid, which does not itself have any instances – there is only a single microgrid

created. Were there more grids in a single network of automatons, we would make an

instance of appropriately rewritten Microgrid for each, and getNumJobs() would

not be static anymore. Were there separate demand curves for each microgrid, the array

DEMAND would not be static, and in effect, getDemand() were an object method as

well.

Let us now look at the contents of several methods, that report the microgrid’s state.

Listing 6: Other methods of Microgrid, part 1.

1 /∗ ∗

2 ∗ R e t u r n s t h e c u r r e n t l o a d demand .

3 ∗ /

4 p u b l i c s t a t i c d o u b l e getDemand () {

5 r e t u r n DEMAND[t ime%INTERVALS] ;

6 }

7 /∗ ∗

168

8 ∗ How many h o u s e h o l d s c u r r e n t l y g e n e r a t e a l o a d .

9 ∗ /

10 p u b l i c s t a t i c i n t getNumJobs () {

11 i n t /∗@(0 , NUM_HOUSEHOLDS) ∗ / numJobs = 0 ;

12 f o r (i n t i = 0 ; i < NUM_HOUSEHOLDS; ++ i)

13 i f (h o u s e h o l d s [i] . j o b > 0)

14 ++numJobs ;

15 r e t u r n numJobs ;

16 }

17 /∗ ∗

18 ∗ A p r i c e o f a l o a d t o be bough t .

19 ∗ /

20 p u b l i c s t a t i c d o u b l e g e t P r i c e () {

21 r e t u r n getNumJobs () + 1 . 0 ;

22 }

See that the method getDemand() not only uses an array, but also returns a

variable floating–point value. Both arrays and non–integer variables are not supported

in some model checkers, e.g. in Prism.

Yet, hc has a number of translation techniques, like streamlining the code or

emulating arrays, that attempt to remove or replace unsupported elements. The compiler

does not always manage, though, to optimise out all double variables, partly because

there are e.g. strict rules on the order of accessing fields so to not inadvertently modify

a model’s behaviour.

The next method, getNumJobs(), returns how many households generate a load

at the current time. There is a range definition on the local numJobs – obviously, the

number of jobs can never be larger than the number of households. We could also put

the same range on the return value of the method, yet that would not change a thing –

hc finds out by itself, that getNumJobs()’s range results from the one of numJobs.

Yet putting the range only on the return value would not be propagated backward to

numJobs – hc does not know, if numJobs is allowed to be outside 〈0, N〉, before

flow of control reaches the return statement.

In the next listing, we have two methods related to the end of a single time interval.

The comment of the first method describes it precisely. The method will be used by the

scheduler to decide, if to end its activity.

Listing 7: Other methods of Microgrid, part 2.

1 /∗ ∗

2 ∗ I f <code >MAX_TIME</ code > has been r e a c h e d .

3 ∗

4 ∗ @return i f t h e s i m u l a t i o n i s f i n i s h e d

5 ∗ /

6 p u b l i c s t a t i c b o o l e a n i s F i n i s h e d () {

7 r e t u r n t ime == MAX_TIME;

169

8 }

9 /∗ ∗

10 ∗ C a l l e d by t h e s c h e d u l e r a t t h e end of each i n t e r v a l .

11 ∗

12 ∗ /

13 p u b l i c s t a t i c vo id e n d I n t e r v a l () {

14 numJobs = getNumJobs () ;

15 Model . s t a t e A n d (" measure ") ;

16 numJobs = 0 ;

17 / / r e d u c e j o b c o u n t e r s

18 f o r (i n t i = 0 ; i < M i c r o g r i d .NUM_HOUSEHOLDS; ++ i)

19 h o u s e h o l d s [i] . t i c k () ;

20 ++ t ime ;

21 }

The second method, endInterval(), does several things needed at the end of

each time interval. Firstly, it puts the number of jobs i.e. loads of electricity, into

a field. It does so only to measure that value by a model checker – this is why

Model.state() saves a position within an automaton after the field (a fragment of

the state vector) already has the current value, assigning a label to reference that position.

Another purpose of the method endInterval() is to decrease by one the counters,

that represents lengths of time that are left each load.

Let us browse the thread classes of each player, beginning with the scheduler.

Listing 8: Class Scheduler.

1 c l a s s S c h e d u l e r e x t e n d s T u r n P l a y e r

Scheduler is a subclass of TurnPlayer, which is provided by the game

package, and which itself is a subclass of Thread.

Listing 9: Fields of Scheduler.

1 p r o t e c t e d f i n a l s t a t i c b o o l e a n NON_DETERMINISTIC = f a l s e ;

2

3 p r o t e c t e d f i n a l Random s t r a t e g y ;

The scheduler (not to be confused with hc’s schedulers) is normally proba-

bilistic, but it also has a modifier, that can make it non–deterministic instead – if

NON_DETERMINISTIC is true, a strategy is decided by a Random object. Random

is the simplest case of declaring strategy. Special wrappers for writing custom choice

methods, or for declaring a common strategy, exist in hc’s library.

The scheduler has also a constructor, called by the main thread:

170

Listing 10: Constructor of Scheduler.

1 p u b l i c S c h e d u l e r (TurnGame t a b l e) {

2 s u p e r (t a b l e , 0) ;

3 s t r a t e g y = new Random () ;

4 }

The statement in line 2 passes to the super-class TurnPlayer a reference to the

game in which a player participates, and also the player’s number. The number is

required by the logic rPATL. Here, the scheduler is assigned 0. The households declare

in their constructors subsequent numbers 1, 2, . . . N .

There is yet another method in Scheduler – run(), which is a top method of a

thread, and thus also a top ‘method’ of the respective automaton:

Listing 11: Methods of Scheduler.

1 @Override

2 p u b l i c vo id run () {

3 do {

4 / / s e l e c t a h o u s e h o l d

5 i n t a d d r e s s ;

6 i f (NON_DETERMINISTIC)

7 / / non−−d e t e r m i n i s t i c c h o i c e

8 a d d r e s s = s t r a t e g y . n e x t I n t (M i c r o g r i d .

9 NUM_HOUSEHOLDS) ;

10 e l s e

11 / / p r o b a b i l i s t i c c h o i c e

12 a d d r e s s = (i n t)

13 (Math . random () ∗M i c r o g r i d .NUM_HOUSEHOLDS) ;

14 / / c o n t a c t t h e s e l e c t e d h o u s e h o l d

15 t u r n N e x t (1 + a d d r e s s) ;

16 t u r n W a i t () ;

17 / / end of t h e c u r r e n t round

18 M i c r o g r i d . e n d I n t e r v a l () ;

19 } w h i l e (! M i c r o g r i d . i s F i n i s h e d ()) ;

20 Model . f i n i s h () ;

21 }

The constant NON_DETERMINISTIC is set within the main thread, so at the time

of generating this automaton, it is exactly known which branch of the choice in lines

6–13 is unconditionally executed, and which branch is dead. The compiler takes use of

that knowledge and removes completely the condition at line 6 and one of the branches

from the automaton.

There is a probabilistic choice in lines 12–13. As discussed, the exact behaviour

of that kind of choice, as opposed to the non–deterministic one, is known – in this

case, draw a natural number in the range 0, 1, . . . N − 1, using an uniform probability

171

distribution. Thus, if NON_DETERMINISTIC is false, the scheduler, even that it is a

player, has only a single, hard–wired strategy, defined in the very model.

After a household is selected by the scheduler by setting the local variable

address, that exact household has a next move. The next player to move is declared

by the player that currently moves, using a super-class’ method turnNext(i), where

i is the player’s number (line 15). After the scheduler selects the next player to move, it

waits for its own move using turnWait() (line 16). When a time of its move comes

again, the discussed Microgrid.endInterval() is called.

The scheduler’s loop’s condition in line 19 calls a method

Microgrid.isFinished(), which returns, if to end the simulation. If yes,

then the already mentioned method Model.finish() is called and the scheduler

ends. For a model checker it means, that the scheduler’s automaton will stay in some

final state forever. For a JVM it means, that the scheduler’s thread will return from the

method run(), and thus will terminate.

The class of a household should now be self–explaining. A number of constants,

directly related to a household, is declared here, and not in Microgrid:

Listing 12: Fields of Household.

1 /∗ ∗

2 ∗ Maximum t ime of r u n n i n g a s i n g l e job , i n i n t e r v a l s .

3 ∗ /

4 p r o t e c t e d f i n a l s t a t i c i n t MAX_JOB_TIME = 4 ;

5 /∗ ∗

6 ∗ Expec ted number o f j o b s p e r day .

7 ∗ /

8 p r o t e c t e d f i n a l s t a t i c i n t EXPECTED_JOBS = 9 ;

9 /∗ ∗

10 ∗ P r i c e l i m i t , above which t h i s h o u s e h o l d may

11 ∗ back−−o f f .

12 ∗ /

13 p r o t e c t e d f i n a l s t a t i c d o u b l e PRICE_LIMIT = 1 . 5 ;

14 /∗ ∗

15 ∗ P r o b a b i l i t y o f s t a r t i n g a t a s k i n d e p e n d e n t l y o f t h e c o s t .

16 ∗ /

17 p r o t e c t e d f i n a l s t a t i c d o u b l e P_OVER_LIMIT = 0 . 8 ;

18 /∗ ∗

19 ∗ A r u n n i n g job , i n i n t e r v a l s .

20 ∗ /

21 p u b l i c i n t /∗@(0 , MAX_JOB_TIME) ∗ / j o b = 0 ;

22

23 p r o t e c t e d f i n a l Random s t r a t e g y ;

In particular, the constant clim is represented by PRICE_LIMIT, and similarly,

Pstart is implemented as P_OVER_LIMIT. There is also job variable. If zero, the

172

household does not generate a load. If non–zero, then the field expresses the time left of

generating the load bought, in intervals.

A household has a constructor, executed by the main thread, like it was in the case

of Scheduler:

Listing 13: Constructor of Household.

1 p u b l i c Household (TurnGame t a b l e , i n t playerNum) {

2 s u p e r (t a b l e , playerNum) ;

3 s t r a t e g y = new Random () ;

4 }

and, as TurnGame is a thread, the run() method:

Listing 14: Run method of Household.

1 @Override

2 p u b l i c vo id run () {

3 w h i l e (t r u e) {

4 t u r n W a i t () ;

5 i f (i s I n t e r r u p t e d ())

6 b r e a k ;

7 i f (j o b == 0 && Math . random () < M i c r o g r i d . getDemand () ∗

8 EXPECTED_JOBS) {

9 / / d e c i d e i f t o g e n e r a t e a l o a d

10 b o o l e a n l o w P r i c e = M i c r o g r i d . g e t P r i c e () < PRICE_LIMIT ;

11 i f (l o w P r i c e | | Math . random () < P_OVER_LIMIT | |

12 / / a r i g h t t o back−−o f f i s g r a n t e d ; dec ide ,

13 / / i f t o g e n e r a t e a l o a d anyway

14 s t r a t e g y . n e x t I n t (2) == 0)

15 j o b = 1 + (i n t) (Math . random () ∗MAX_JOB_TIME) ;

16 }

17 t u r n N e x t (0) ;

18 }

19 }

In lines 5–6, the already discussed loop exit statements are seen. They have no

effect on an automaton generated by hc, as neither hc’s interpreter, nor automatons

themselves, can cause an interrupt. The sole reason of these statements is to take part in

stopping a Java application on the JVM side.

In line 7, there is another variant of a probabilistic choice – Math.random()

< Microgrid.getDemand()*EXPECTED_JOBS. This time a boolean condition

is evaluated, by comparing a random value, drawn using an uniform distribution, to a

variable value, that here translates to a probability of this if’s sub-condition becoming

true.

There is yet a third, rather self–explaining method in Household, called by

Microgrid.endInterval() (the call statement is located in Listing 7, line 19)

173

on each household whenever a time interval ends.

Listing 15: The other method of Household.

1 /∗ ∗

2 ∗ C a l l e d by t h e s c h e d u l e r a f t e r each t u r n .

3 ∗ /

4 p u b l i c vo id t i c k () {

5 i f (j o b > 0)

6 −−j o b ;

7 }

The source code we studied is enough to generate a model. In fact, it also generates

a series of properties in a probabilistic logic. But model checkers may have also other

features, not explicitly supported by hc. A verbatim section may help in using these –

its contents is simply appended to the output model file as is, if the output format allows:

Listing 16: Appending to the output model file.

1 /∗@modelAppend (

2

3 r e w a r d s " v a l u e 1 "

4 measure & job1 >0 : 1 / numJobs ;

5 e n d r e w a r d s

6

7 r e w a r d s " v a l u e 1 2 "

8 measure & job1 >0 : 1 / numJobs ;

9 measure & job2 >0 : 1 / numJobs ;

10 e n d r e w a r d s

11

12 r e w a r d s " v a l u e 1 2 3 "

13 measure & job1 >0 : 1 / numJobs ;

14 measure & job2 >0 : 1 / numJobs ;

15 measure & job3 >0 : 1 / numJobs ;

16 e n d r e w a r d s

17

18) ∗ /

Here, reward structures for Prism are seen. The term measure refers to a formula

generated by hc, thanks to the statement in line 15 of Listing 7. We will return to that

formula later.

So, let us generate Prism–compliant files, but before, there is the question which

scheduler should be chosen by hc (that scheduler has nothing to do with the class

Scheduler).

Schedulers, as mentioned, define time invariants on states, but in effect also, what

kind of order of operation is possible within a network of automatons. There is the

default scheduler that leaves an automaton as is – with that scheduler applied, any state,

174

by default, e.g. without delay operations like Thread.sleep(), may last any time

from 0 to infinite, unless some fairness conditions are imposed by a model checker. This

is a good scheduler for finding bugs in a concurrent code – as opposed to what a real

operating system does, any possible order of execution is taken into account. We could

use such a scheduler for our model, but it is more than we need here – the model is a

turn game, and so there is no non–determinism confined within the order of activity of

the automatons, that could be altered if e. g. some states would be merged between

synchronisation points. We can give a hint to hc about that, by using a scheduler

that makes each non–synchronising state implicitly hidden – implicitly, because there

is no extra information put into the output model, like time invariants, and only hc

knows, that a certain interference is impossible, and that in turn grants more freedom to

the compiler’s optimiser, which may be more aggressive in performing a partial order

reduction [5], what in turn may result in smaller, more compact automatons.

Let us run hc:

$ hc -sh -i -op -v0 Microgrid.java

In the case of a Prism model, there are two files generated: Microgrig.nm

contains a model of a Prism’s type smg, because players were defined, and

Microgrig.pctl contains the properties to check.

The output model file will contain formulas that represent states saved with

Model.state(), and also all final static fields, extracted from the model. These

can be, thus, used in properties or in the appended verbatim section.

Listing 17: Constants in the model file.

1 f o r m u l a measure = (s3 =8) ;

2

3 c o n s t i n t DAYS = 3 ;

4 c o n s t i n t EXPECTED_JOBS = 9 ;

5 c o n s t i n t INTERVALS = 1 6 ;

6 c o n s t i n t MAX_JOB_TIME = 4 ;

7 c o n s t i n t MAX_TIME = 4 8 ;

8 c o n s t i n t NUM_HOUSEHOLDS = 3 ;

9 c o n s t d o u b l e PRICE_LIMIT = 1 . 5 ;

10 c o n s t d o u b l e P_OVER_LIMIT = 0 . 8 ;

The formula measure is added thanks to the call at line 15 in Listing 7. As

turnEnd() is called by the scheduler, the formula points to the local variable of the

automaton Scheduler.

Naming conventions are not applied to the constants, even that they are fields, as

these fields are static, an thus are not owned by any object passed to Model.name().

Instead, a field’s name is directly used, and in the case of a name conflict, the name is

prefixed with that of a respective class.

175

In the case of an output for Prism, the compiler generates yet another file, a one

with properties, whose initial fragment is as follows:

Listing 18: Properties – a fragment.

1 / / a t t ime 1

2 < <1 , 2 , 3>> R{" v a l u e 1 2 3 "}max=? [F t ime =1]

3 / / a t t ime 2

4 < <1 , 2 , 3>> R{" v a l u e 1 2 3 "}max=? [F t ime =2]

5 / / a t t ime 3

6 < <1 , 2 , 3>> R{" v a l u e 1 2 3 "}max=? [F t ime =3]

7 / / a t t ime 4

8 < <1 , 2 , 3>> R{" v a l u e 1 2 3 "}max=? [F t ime =4]

As seen, the expressions make use of player numbers declared in constructors of

automaton threads, of a reward structure appended to the model as seen in Listing

16, and of a state variable time, declared in Listing 3. A property that checks

for a total expected value of a household after the simulation ends might contain

time=MAX_TIME.

6.2. Example of range checking

Let us shorten the array with the demand curve by one element, so that its new size

is 15, and thus not as much as the number of time intervals per day.

Listing 19: An array one element too short.

1 p u b l i c s t a t i c f i n a l d o u b l e [] DEMAND = {

2 0 . 0 6 1 4 , 0 . 0 3 9 2 , 0 . 0 3 0 4 , 0 . 0 3 0 4 ,

3 0 . 0 3 5 5 , 0 . 0 5 1 8 , 0 . 0 6 5 1 , 0 . 0 6 4 3 ,

4 0 . 0 6 2 5 , 0 . 0 6 1 8 , 0 . 0 6 1 4 , 0 . 0 6 9 5 ,

5 0 . 0 8 8 7 , 0 . 1 0 1 3 , 0 . 1 0 0 5 , /∗ 0 . 0 7 6 2 , ∗ /

6 } ;

The array is indexed with time % INTERVALS, as seen in line 5 of Listing 6. The

variable time can be as large as MAX_TIME = 48, and that maximum value (amongst

some other values), modulo INTERVALS, is greater than the new array size. Clearly,

indexing of DEMANDwould be incorrect for certain time intervals. The compiler, though,

is not able to prove in this case, if time actually has values, at the time of indexing the

array, that make the indexing invalid – it is not a model checker anyway. It concludes,

however, that its limited proving algorithm is not able to rule out such a possibility. Thus,

it gets suspicious enough to decorate the transition, at which the indexing occurs, with an

additional guard. Because of the same reason, hc also creates an additional transition,

that is triggered in the case of an invalid indexing. The following fragments of the output

model file show these two transitions:

176

Listing 20: Accessing an array one element too short.

1 [] (s0 =2) & ((mod (t ime , 16)) <=14) −>

2 ((DEMAND_index_nested__lmod_ltime_C_w16_r_r) ∗ 9) : (s0 ’ = 3) &

3 (Household114runMicrogr id_ge tNumJobs_numJobs ’ = 0) +

4 (1 . 0 − ((DEMAND_index_nested__lmod_ltime_C_w16_r_r) ∗ 9)) :

5 (s0 ’ = 1 1) ;

6 [] (s0 =2) & ((mod (t ime , 16)) >14) −> (e r r o r ’ = 1) ;

Let us include, for completeness, the formula generated to emulate indexing of the

array:

Listing 21: Example formula for accessing the array.

1 f o r m u l a DEMAND_index_nested__lmod_ltime_C_w16_r_r =

2 (mod (t ime , 16)) =0 ? 0 .0614 :

3 ((mod (t ime , 16)) =1 ? 0 .0392 :

4 ((mod (t ime , 16)) =2 ? 0 .0304 :

5 ((mod (t ime , 16)) =3 ? 0 .0304 :

6 ((mod (t ime , 16)) =4 ? 0 .0355 :

7 ((mod (t ime , 16)) =5 ? 0 .0518 :

8 ((mod (t ime , 16)) =6 ? 0 .0651 :

9 ((mod (t ime , 16)) =7 ? 0 .0643 :

10 ((mod (t ime , 16)) =8 ? 0 .0625 :

11 ((mod (t ime , 16)) =9 ? 0 .0618 :

12 ((mod (t ime , 16)) =10 ? 0 .0614 :

13 ((mod (t ime , 16)) =11 ? 0 .0695 :

14 ((mod (t ime , 16)) =12 ? 0 .0887 :

15 ((mod (t ime , 16)) =13 ? 0 .1013 :

16 0 . 1 0 0 5))))))))))))) ;

Note that the expression time % INTERVALS is embedded within the formula.

It is an example of hc’s attempts at simplifying the vector state when generating to

Prism.

6.3. Locals and fields

The compiler does not treat local variables very seriously, as it assumes, that only

the field variables are generally checked. Yet, it does not mean that locals are always

optimised out. For example, the source model might store the contents of a field in a

local, and then the local might be read multiple times. hc could get rid of the local and

make the generated automaton read the field multiple times instead. Yet, the compiler is

careful in such situations – it does not know, if the field is modified by another automaton

in the meantime. hc would not even join field accesses from two serial transitions into

a single transition, as the merged transitions would mean accessed at the same time

instant.

177

The compiler can be much more lax in the case of locals. See the update in the

following listing.

Listing 22: A reset of a local variable.

1 [] (s0 =6) & (1 . 5 <= (Household114runMicrogr id_ge tNumJobs_numJobs

2 + 1 . 0)) −> (s0 ’ = 7) &

3 / / r e s e t

4 (Household114runMicrogr id_ge tNumJobs_numJobs ’ = 0) ;

The long name indicates a local variable. The name contains an instance of an object,

and also a trace of subsequent method calls. See that the variable is read, and then

immediately reset to its initial value. This is because hc found out, that the variable does

not transport a meaningful value any longer. The resets may improve the performance

of Prism or other checkers, because assigning a single constant value to a variable may

limit state explosion. But the resets also cause, that if you want to check for a local

in a model property, then beside determining the variable’s long name, you should also

analyse the output file. Especially that hcmay merge a set of local variables into a single

one.

As field variables are never reset by hc, it is sometimes advantageous to do that by

hand. See Listing 7, line 16, for an example of a source–level reset.

6.4. Analytic and statistical versions

Models that work best with Prism’s analytic engines may differ from

these that work better with simulators. This is why hc provides a method

Model.isStatistical() in its library. The method’s default return value is false

within hc, but true within a JVM. You may use that function in the model’s source to

tune that model to the way its properties will be computed by a model checker.

Let’s modify Microgrid.java to adapt to Model.isStatistical().

In the case of Prism, it can be more important to reduce the number of states. In

the cases of JVM or of a simulator, reducing the number of operations may matter more.

The original model aimed at the former – this is why Microgrid.numJobs was reset

within the scheduler (Listing 7, line 16), so that households had to recompute exactly

the same value. Good for Prism’s game engine, but not necessarily for a Monte–Carlo

simulator.

Let us modify the method Microgrid.newInterval(), so that numJobs is

not zeroed in the case of the statistical variant:

178

Listing 23: A conditional zeroing of numJobs.

1 p u b l i c s t a t i c vo id e n d I n t e r v a l () {

2 numJobs = getNumJobs () ;

3 Model . s t a t e A n d (" measure ") ;

4 i f (! Model . i s S t a t i s t i c a l ())

5 numJobs = 0 ;

6 / / r e d u c e j o b c o u n t e r s

7 f o r (i n t i = 0 ; i < M i c r o g r i d .NUM_HOUSEHOLDS; ++ i)

8 h o u s e h o l d s [i] . t i c k () ;

9 ++ t ime ;

10 }

Now, a household, after the scheduler’s first move, may read the initial value of

numJobs, which is correctly zero, as no jobs had been generated so far. In the

subsequent moves of households, the number of jobs is written to the field by the

scheduler. The state space grows, but households may now just read the value in

question, instead of computing it by itself. Let getPrice() be modified to enable

that:

Listing 24: New version of getPrice().

1 p u b l i c s t a t i c d o u b l e g e t P r i c e () {

2 i n t n ;

3 i f (Model . i s S t a t i s t i c a l ())

4 n = numJobs ;

5 e l s e

6 n = getNumJobs () ;

7 r e t u r n n + 1 . 0 ;

8 }

And that’s it – the automatons will generated as in the previous version

of Microgrid.java if hc is not supplied with the option -S, that makes

Model.isStatistical() true. On the JVM, in turn, a simulator–tuned version

will be run, unless Model.isStatistical() is made false by setting a system

property hc.statistical=false, e.g. by a JVM’s -D option.

As simulators are often used specially to run large models, let the number of

households in the grid be dependent on Model.isStatistical() as well:

Listing 25: Number of households made dependent on the

model version.

1 p u b l i c s t a t i c i n t NUM_HOUSEHOLDS =

2 Model . i s S t a t i s t i c a l () ? 5 : 3 ;

Note that the field is not more final. This is because hc is more strict on final

variables (also the blank ones) than a standard Java compiler – hc won’t allow, that

179

two values of a final variable are ever seen. This is why the compiler analyses the

code, that computes a final variable’s initial value for possible reads of the same

final variable. In order to do that, hc recurses through method calls amongst other.

Yet, the compiler analyses exclusively these methods that belong to the class, to

which also belongs a given final variable. Any methods of foreign classes are thus

forbidden in declarations of finals. In our example, NUM_HOUSEHOLDS belongs to

Microgrid, while isStatistical() belongs obviously to Model. In effect, we

need to make the discussed field non–final, or use an intermediate helper variable, if

NUM_HOUSEHOLDS needs to be final, e.g. to be present in the section of constants in

the output file.

Note that a non–final NUM_HOUSEHOLDS won’t be added to the state vector, as hc

finds out, that the variable is never written to within the automaton threads, and thus can

be seen by the automatons merely as a constant.

6.5. External constants

Sometimes it is desired to define a constant value not within the model sources, but at

the command line, of either hc or a model checker. Let us modify Microgrid.java

once again to use external constants.

Let there be two constants, whose values are missing from the model specification:

Listing 26: Number of households is an undefined value.

1 /∗∗

2 ∗ Number o f h o u s e h o l d s .

3 ∗ /

4 p u b l i c s t a t i c i n t NUM_HOUSEHOLDS = Model . i n t C o n s t ("HOUSEHOLDS") ;

and

Listing 27: Price limit is externally definable as well.

1 /∗∗

2 ∗ P r i c e l i m i t , above which t h i s h o u s e h o l d may

3 ∗ back−−o f f .

4 ∗ /

5 p r o t e c t e d f i n a l s t a t i c d o u b l e PRICE_LIMIT =

6 Model . d o u b l e C o n s t (" PRICE_LIMIT ") ;

The field Microgrid.NUM_HOUSEHOLDS must be set at hc’s command line, as the

main thread makes use of that field’s value:

$ hc Microgrid.java --const HOUSEHOLDS=3~9:2 -op -v0 -sh -i

See that there is a set of values that specifies the number of households: 3 to 9 with

the step of 2. If there is at least a single constant with multiple values, hc changes the

180

structure of the output files into that of an experiment mode: a directory is created, and

for every possible combination of constants a separate model is created. A file key.txt

contains the key to the naming of the generated files.

The field Household.PRICE_LIMIT does not need to be specified during hc’s

work, but it needs to be specified somewhere before the model can be computed, for

example at Prism’s command line:

$ prism -const PRICE_LIMIT=1.5 Microgrid/3.nm

Microgrid/3.pctl

If the model is run on the JVM, the constants should be defined as system properties

whose names begin with hc.const., e. g.

$ java -Dhc.const.HOUSEHOLDS=3 -Dhc.const.PRICE_LIMIT=1.5

-cp $HC_HOME/lib/hc.jar:. example/Microgrid

7. Discussion

Model checkers are able to verify more and more advanced systems, not only in the

sense of size, but also in the sense of automaton formalisms supported. Such systems

may require more complex implementation, where a simple specification language is

not enough. The current version of hc attempts to fulfil some of the new requirements –

generation of additional classes of models is available, like Prism’s pta and smg ones,

and ranges on variables and expressions help in both self–verification of large models,

and in time– and memory–efficient analysis of them by model checkers.

Aknowledgement

This work has been supported by Polish Ministry of Science and Higher Educa-

tion project N N516 407138, “Metody i narzędzia rozproszonego modelowania sieci

bezprzewodowych”.

References

[1] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL. In

Lecture Notes in Computer Science, volume 3185, pages 200–236. Springer, 2004.

[2] H. Hildmann and F. Saffre. Influence of variable supply and load flexibility on

demand-side management. In Proc. 8th International Conference on the European

Energy Market (EEM’11), pages 63–68, 2011.

181

[3] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-

bilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd

International Conference on Computer Aided Verification (CAV’11), volume 6806

of LNCS, pages 585–591. Springer, 2011.

[4] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model checking

for probabilistic timed automata. In Y. Lakhnech and S. Yovine, editors, Proc.

Joint Conference on Formal Modelling and Analysis of Timed Systems and Formal

Techniques in Real-Time and Fault Tolerant Systems (FORMATS/FTRTFT’04),

volume 3253 of LNCS, pages 293–308. Springer, 2004.

[5] D. Peled. Ten years of partial order reduction. In A. J. Hu and M. Y. Vardi, editors,

Computer Aided Verification, volume 1427 of Lecture Notes in Computer Science,

pages 17–28. Springer Berlin Heidelberg, 1998.

[6] A. Rataj. More flexible models using a new version of the translator of Java sources

to timed automatons J2TADD. Theoretical and Applied Informatics, 21(2):107–114,

2009.

[7] A. Rataj, B. Wozna, and A. Zbrzezny. A translator of Java programs to TADDs. In

Concurrency, Specification and Programming (CS&P 2008), pages 524–535, Gross

Vaeter near Berlin, Germany, 2008.

Translacja gier probabilistycznych w J2TADD

Streszczenie

Artykuł prezentuje nową wersję translatora J2TADD. Dodane zostało tłumaczenie

procesów markowowskich z niedeterministycznymi graczami, mogącymi formować

koalicje mające różne cele. By ułatwić pisanie gier probabilistycznych dodane zostało

kilka specyficznych dla gier konstrukcji, jak również specjalna biblioteka.

Aktualnej wersja posiada również kilka innych usprawnień:

• wybory, które są zwykłymi wyrażeniami języka Java, jednak hc tłumaczy je na

specyficzne dla automatów rozgałęzienia probabilistyczne lub niedeterministy-

czne;

• można definiować dopuszczalne wartości zmiennych, co pomaga w sprawdzaniu

wewnętrznej spójności modelu, a także może przyspieszyć jego rozwiązanie;

• różne metody specyfikacji niezmienników i warunków zegarowych.

Artykuł prezentuje jako przykład prostą grę probabilistyczną, modelującą rynek

lokalnego dostawcy energii elektrycznej. W ramach przykładu omawiane są wersje

automatów do rozwiązywania metodą analityczną i symulacyjną.

182

