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Abstract 

This study aims to evaluate changes in the frequency and severity of historical droughts (1980–2018) and then model 
future droughts occurrences (2019–2099) in the Lepelle River Basin (LRB), using Intergovernmental Panel on Climate 
Change (IPPC) General Circulation Model (GCM) simulations for two representative concentration pathways (RCP8.5 and 
RCP4.5). Firstly, the present-day and future hydrology of the LRB are modelled using the weather evaluation and planning 
(WEAP) model. Mann–Kendall tests are conducted to identify climate trends in the LRB. The reconnaissance drought in-
dex (RDI) and the streamflow drought index (SDI) are employed to explore hydro-meteorological droughts in the Lepelle 
River Basin, South Africa. The RDI and SDI are plotted over time to assess drought magnitude and duration. The simulated 
temporal evolution of RDI and SDI show a significant decrease in wetting periods and a concomitant increasing trend in the 
dry periods for both the lower and middle sections of the LRB under RCP4.5 as the 22nd century is approached. Lastly, the 
Spearman and Pearson correlation matrix is used to determine the degrees of association between the RDI and SDI drought 
indices. A strong positive correlation of 0.836 is computed for the middle and lower sections of the LRB under the RCP8.5 
forcing. Further findings indicate that severe to extreme drought above –2.0 magnitude are expected to hit the all three sec-
tions of the LRB between 2080 and 2090 under RCP8.5. In the short term, it is suggested that policy actions for drought be 
implemented to mitigate possible impacts on human and hydro-ecological systems in the LRB. 

Key words: drought, high-resolution-climate-data, Lepelle-River-Basin, representative concentration pathways (RCPs), 
weather evaluation and planning (WEAP) 

INTRODUCTION 

It has been established worldwide that climate varia-
bility exists on all time scales, and floods and droughts are 
extremes associated with variability in precipitation [ZHU 
et al. 2017]. Adding to climate variability, climate change 
has been identified as a key driver for modifying the hy-
drological cycle via global warming. Climate change refers 
to any long-term (over at least 30 years), significant 
change in the expected patterns of average weather in 
a specific region [WATKINS 2007]. Climate change in the 
negative direction can lead to a total annihilation and dis-
appearance of cities. A good example is the disappearance 

of the Mayan cities of South America [TURNER, SABLOFF 
2012]. Analogously, it has been widely acknowledged that 
the frequency and magnitude of extreme hydrologic events 
can be modulated by enhanced climate variability due to 
climate change. Relatedly, according to the precipitation 
outlook based on climate change scenarios , increasing 
concentrations of greenhouse gases are likely to result in 
very different patterns of heavy rain, extreme drought, and 
heavy snow in some regions [YOO et al. 2012]. There is 
a collective agreement that in recent decades, extreme 
drought events seem to be growing in frequency in many 
countries [SPINONI et al. 2014], including South Africa. 
For example, between 2017 and 2018, South Africa expe-
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rienced one of the worst droughts in history. One of the 
cities that was hardest hit was Cape Town where several 
measures were put in place to avoid “Day Zero” (dam lev-
els below 13.5%) [PARKS et al. 2019]. Similarly, in Kwa-
Zulu-Natal seldom tornadoes date back to the 1900s but 
within 24 hours two tornadoes accompanied by above av-
erage monthly rainfall devasted the cities of KwaZulu-
Natal these occurred on 22 and 23 November 2019 accord-
ing to “Daily News KwaZulu natal” [KUBHEKA 2019]. 
These extreme events point directly to the impacts of run-
away climate change. 

MATERIALS AND METHODS 

STUDY AREA 

The Lepelle River Basin (LRB), formerly known as 
the Olifants River Basin, is one of Southern Africa’s most 

important catchments. Geographically, the Lepelle River 
Basin is in the northeastern corner of South Africa and 
southern Mozambiq ue  bounded  by coord ina tes 
23°46’24.0” S to 26°33’40” S and 28°19’28.5” E to 
31°57’25.5” E (Fig. 1). The Lepelle River is approximately  
770 km long and, with its tributaries, drains 54,570 km2 
which is an area equivalent to the size of Slovakia or Croa-
tia. Its waters irrigate farming across the western section of 
the Mpumalanga Province in South Africa and supply wa-
ter to several coal operated power stations in the area. The 
river flows also through the Limpopo Province’s platinum 
belt and supplies water to several mines. It then flows 
through the Drakensberg mountains and down the escarp-
ment to irrigate farms in the “Lowveld” (situated in Mpu-
malanga Province of South Africa) and brings life to the 
Kruger National Park. It finally joins the Limpopo River in 
Mozambique, before flowing into the Indian Ocean South 
of Xai-Xai. This makes the river critical to the economies  

 
Fig. 1. Location map: a) the nine Water Management Areas of South Africa, b) the Lepelle River Basin with the Quaternary catchments, 

the Lepelle River and its major tributaries, streamflow stations and dams; source: own elaboration 

b) 

a) 
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of both South Africa and Mozambique [POLLARD et al. 
2018]. The 30 dams along its course also provide water to 
three provinces during times of drought and approximately 
ten million people rely on this water. 

In terms of water security, according to the Associa-
tion for Water and Rural Development report [POLLARD et 
al. 2018], the Lepelle River, it was noted that in 2005 the 
river stopped flowing for 78 days despite the fact that it 
was not in a “dry cycle” a similar stoppage occurred in 
January 2016 and January 2018, prompting widespread 
concern and calls for an integrated focus on all the easter-
ly-flowing rivers of the Lowveld of South Africa. The 
Lepelle River Basin is a significant basin because it is the 
largest contributor of flows to the transboundary Limpopo 
River. Despite the enabling legislative framework for wa-
ter reform in South Africa introduced in 1998, most rivers 
in this catchment continue to degrade in both quality and 
quantity. Given that these rivers form part of transbounda-
ry hydrological systems, the implications are of wider geo-
graphical significance across sub-Saharan Africa. Indeed, 
flows into Mozambique support the livelihoods of between 
6,000 and 10,000 small-scale farmers and mangroves 
which are a critical conservation priority [POLLARD et al. 
2018]. Thus, changes in flow and water quality will have 
major impacts and highlight the importance of a systemic 
approach to drought resilience in the region.  

Three representative Quaternary catchments of the 114 
Quaternary catchments namely B11B, B42A and B71H 
were selected for discussion in this study. B11B is in the 
upper LRB, B42A is almost centrally located and falls into 
the middle LRB while B71H falls in the lower LRB with 
elevations of 1578 m, 1597 m and 504 m respectively and 
mean annual precipitations of 701.2 mm, 640.2 mm and 
668.3 mm respectively. Figure 1 also shows the stream-
flow gauge used for calibrating the model was located at 
catchment B71H. 

Between 2016 and 2018, the lower part of the LRB 
saw one of the most severe droughts in history. Prior to 
this the LRB also experienced other extreme events, such 
as the floods in 2000 and 2012. Various studies [CONDIE, 
LEE 1982; DALRYMPLE 1960; MAGHSOOD et al. 2019; 
ORSINI-ZEGADA, ESCALANTE-SANDOVAL 2016] have in-
vestigated aspects related to these flood events but little 
has been done in terms of drought prediction. There is evi-
dence for the spatiotemporal variation of droughts, which 
take the form of band-limited and quasi-oscillatory varia-
tions, linked with the El Niño–Southern Oscillation  
(ENSO). This paper seeks to interrogate and identify future 
hydro-meteorological droughts using two drought indices: 
namely the reconnaissance drought index (RDI) and the  
 

streamflow drought index (SDI). Some studies have at-
tempted to analyse drought intensity and duration using 
wavelet analysis [GYAMFI et al. 2019] while others have 
tried to analyse drought frequency using Global Wavelet 
Power [LEE et al. 2016]. GONZÁLEZ, VALDÉS [2010] advo-
cated for the use of mean frequency of occurrence (MFR) 
to analyse and characterise drought. Although, the fre-
quency of a specific hydrologic variable should not be 
treated independently of the frequency of the generating 
mechanisms. [LEE et al. 2012] Hence there is a need to 
predict drought occurrences via warning signals with suffi-
cient lead time to implement mitigation strategies. To 
achieve this, the present-day and future hydrology of the 
LRB is determined under two scenarios of climate change 
using the weather evaluation and planning (WEAP) model. 
It is used to simulate future streamflow of the LRB as well 
as explore and fit probability distribution functions (PDFs) 
to the future hydro-meteorological variables in order to 
identify meteorological and hydrological droughts at dif-
ferent time scales using the two different indices (RDI and 
SDI). Finally, trend analysis is carried out on future 
streamflow and rainfall variables using Mann–Kendall 
trend analysis to determine if a discernible trend in the pat-
terns of drought exist. 

DATA 

Scientific uncertainties 

Three major sources of uncertainties that have not 
been overcome in climate modelling studies are as follows. 
First is the uncertainty associated with the selection of 
a climate change scenario. This uncertainty relates to pro-
jections of future greenhouse gas concentrations [MAURER 
2007]. The second uncertainty is the limited ability of 
GCMs to reproduce a future climate based on the selected 
emission scenario. The third uncertainty results from bias-
es in the statistical downscaling approach. This study em-
ployed six GCMs (ACCESS, CCSM, CNRM, GDFL, 
MPI-ESM and Nor-ESM1-M) to characterize the uncer-
tainties when investigating the variability of drought under 
scenarios of climate change (see Tab. 1).  

Simulated climate variables from the GCMs are exam-
ined for similar statistical characteristics using three ap-
proaches. The first approach compares the statistical prop-
erties of the simulated data with that of the observed from 
the LRB weather station during the historical period (intra 
and inter annual variability and timing). Then statistical 
hypothesis tests (i.e., 𝑡-test and 𝐹-test) are used to deter-
mine if the mean and variance of the observed and simu-  

Table 1. Global Circulation Models used as source data for downscaling 

Acronym Meaning Location Reference 
ACCESS Australian Community Climate and Earth System Simulator Australia PURI [2005] 
CCSM NCAR/UCAR Community Climate System Model USA  COLLINS et al. [2006] 
CNRM Centre National de Recherches Météorologiques France  BORDERIES et al. [2019] 

GFDL Geophysical Fluid Dynamics Laboratory Princeton University USA formerly 
known as college of New Jersey LIN et al. [1994]  

MPI-ESM Max Planck Institute Earth System Mode Germany  GIORGETTA et al. [2013] 
NorESM1-M Norwegian Earth System Model Norway  BENTSEN et al. [2013] 
Source: own elaboration based on the references in column 4. 
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Table 2. Descriptive statistics for observed and simulated streamflow (m3)  

Value Mean Median Mode Min SD CV 
Streamflow statistics 

Simulated 9.91∙107 5.00∙107 1.19·109 3.38∙106 1.51∙108 152.06 
Observed 1.31∙108 4.32∙107 1.46·109 7.72∙105 2.29∙108 175.12 

Percentage difference (%) 
Absolute 24.14 15.79 18.99 338.13 34.13 13.16 
Explanations: SD = standard deviation, CV = coefficient of variation.  
Source: own elaboration based on model results from the modelled LRB hydrology. 

lated data are significantly different from each other, re-
spectively [SEMENOV, BARROW 1997]. The second ap-
proach compares various statistical variables, namely the 
mean, median and maximum values of the simulated cli-
mate variables with historical data. The third approach 
simulates streamflow of the LRB using WEAP and then 
compares it with observed streamflow at a streamflow 
gauge (B7H009). The reason for using only one gauge is 
because this station provided the most comprehensive da-
taset. The 8 km resolution data from the Centre for Scientific 
and Industrial Research (CSIR) was established to be very 
similar to the historical data by comparing their means, 
standard deviations, coefficient of variations and maximums 
as seen in Table 2 it was then used for the WEAP model. 

The descriptive statistics presented in Table 2 indicate 
that the observed and simulated data are positively corre-
lated. Also, the Student t-test is equal to zero at a 0.05 sig-
nificance level. Coefficient of determination is 0.7169 for 
the calibration period and 0.706 for the validation period 
and the slope is close to 1 and intercept close to 0 as sug-
gested [AHNERT et al. 2007]. Other data that were incorpo-
rated into the model include, crop coefficient for the major 
crops grown in the regions, latitude, runoff resistance fac-
tor, preferred flow direction, demand sites, withdrawal 
nodes, reservoirs and their various operating systems and 
various other requirements of the model. Data for each 
demand sites included water demand arising from industri-
al, energy, agricultural, mining, urban and rural water de-
mands. These data were projected to 2035 and, in some 
cases, to 2040 by the report. However, projections for 
these demands up to 2099 were extrapolated using two 
major growth scenarios (high growth and low growth). 
Downscaling methods that reproduce a future climate 
based on selected emission scenarios are used to overcome 
the uncertainty related to the limited ability of GCMs. 

Downscaling of GCMS 

GCMs are a powerful tool to perform climate projec-
tions at a global scale, but they are generally unsuitable to 
provide climate data for impact studies as they are charac-
terised by coarse resolutions of 1–5 degrees in latitude or 
longitude. This resolution is not suitable to analyse some 
important phenomena that occur at spatial scales of tens of 
kilometres. In addition, local topographic peculiarities such 
as rain shadows or wind tunnel effects are often not identi-
fied by global models with resolutions of 250 × 250 km per 
grid cell. Thus, in order to analyse local and regional 
scales, the global climate models must be downscaled to 

resolutions between 1 × 1 km and 50 × 50 km [ENGEL-
BRECHT et al. 2011; SMID, COSTA 2018]. 

Two downscaling techniques can be distinguished: dy-
namical downscaling e.g. THATCHER et al. [2015], using 
high-resolution, numerical regional climate models, and 
statistical downscaling e.g. SCHMIDLI et al. [2007], based 
on statistical relationships between large-scale predictor 
variables and regional ones. Each technique has ad-
vantages and disadvantages. Dynamical downscaling simu-
lates climate mechanisms without any previous assump-
tions about relationships between the current and the future 
climate. This is because history is not a good predictor of 
the future. Rainfall and other climate variables such as 
temperature, wind speed and relative humidity have signif-
icant variability, are distinctively non-Gaussian, exhibit 
relatively complicated spatiotemporal dependence and 
cannot be easily derived from atmospheric dynamic equa-
tions. Although advanced, dynamical downscaling comes 
with the constraints of being expensive in terms of compu-
ting resources and professional expertise. It may also be 
sensitive to uncertain parameterizations and may propagate 
biases from the GCM to the regional scale. Statistical 
downscaling is much cheaper to perform from a computa-
tional perspective and may correct for biases of the GCM. 
However, it assumes that the relationships between large-
scale and local climate are constant (stationarity). It also 
requires substantial amounts of observed data and does not 
capture climate mechanisms.  

One of the most effective tools for providing high-
resolution climate analysis through downscaling is repre-
sented by regional climate models (RCMs), which can 
provide an accurate description of climate variability at 
a regional scale. Moreover, RCMs show the capacity to 
provide a detailed description of climate extremes that are 
often more important than mean values which is critical for 
the research presented here. In order to capture explicit 
effects, downscaling techniques are applied to the global 
circulation models, resulting in projections with resolutions 
of 50 × 50 km to 8 × 8 km per grid cell or finer. As the grid 
cells become smaller, the computational costs (in terms of 
elapsed time) become higher, which is why very few high-
resolution experiments with grid cells of 1 × 1 km are cur-
rently conducted for small areas [ENGELBRECHT et al. 
2011]. These researches applied both techniques within the 
CLUVA project and a multimodal ensemble of simulations 
of present-day and future climate has been made available 
for each of the South African cities spanning 1961–2099. 

The data provided by ENGELBRECHT et al. [2011] in-
clude precipitation, temperature, wind speed and relative 
humidity. These data were useful for modelling the future 
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hydrology of the LRB under climate change projections 
using two emission scenarios, namely the RCP8.5 and 
RCP4.5 scenarios.  

Representative concentration pathway (RCP) 4.5. 
RCP4.5 is a scenario of long-term, global emissions of 
greenhouse gases, short-lived species, and land-use-land-
cover which stabilizes radiative forcing at 4.5 W·m–2 (ap-
proximately 650 ppm CO2-equivalent) in the year 2100 
without ever exceeding that value [THOMSON et al. 2011]. 
Population and economic growth are moderate. Oil con-
sumption is estimated to remain fairly constant through to 
2100. Nuclear power and renewables play an increasingly 
greater role. Significantly, cropping and grassland area 
declines while reforestation increases the area of natural 
vegetation [WAYNE 2013]. It was generated by the global 
change assessment model (GCAM) [WISE et al. 2009]. 

Representative concentration pathway (RCP) 8.5. 
RCP8.5 is the last scenario in the AR5 report. It represents 
the nightmare scenario in which emissions continue to in-
crease rapidly through the early and mid-parts of the 21st 
century. By 2100 annual emissions have stabilised at just 
under 30 Gt of carbon compared to around 8 Gt in 2000 
[WAYNE 2013]. Rising radiative forcing pathway which 
leads to 8.5 W·m–2 (~1370 ppm CO2) by 2100 [RIAHI et al. 
2011]. Concentrations of CO2 in the atmosphere increase to 
950 ppm by 2100 and continue increasing for an additional 
100 years. Population growth is high, reaching 12 billion by 
the end of the 21st century. This scenario is highly energy 
intensive with total consumption continuing to grow 
throughout the century reaching well over three-times cur-
rent levels. Oil use grows rapidly until 2070 after which it 
drops even more quickly. Coal provides the bulk of the 
large increase in energy consumption. Land use continues 
current trends with crop and grass areas increasing and for-
est area decreasing [RIAHI et al. 2011]. It was developed by 
the model for energy supply strategy alternatives and their 
general environmental impact (MESSAGE). 

The six GCMs were averaged and then used for mod-
elling the present-day and future hydrology of the LRB 
under climate change with emphasis on future drought 
predictions. The Quaternary catchments (QCs) were cho-
sen for analysis each from one of the broader LRB catch-
ments (Upper Lepelle-B11B, Middle Oliants-42A and 
Lower Lepelle-71H). Below are the methods used to eval-
uate the future drought situation for the LRB. 

Streamflow data  

Historical streamflow data used in this research was 
obtained from the National Department of Water and Sani-
tation (DWS). The future streamflow data was generated 
from the LRB future hydrology model. The LRB future 
and present-day hydrology was modelled using weather 
evaluation and planning (WEAP). WEAP’s soil moisture-
method was used to model the LRB hydrology. WEAP 
operates on the basic principle of water balance account-
ing, WEAP is applicable to municipal and agricultural sys-
tems, single sub-basins or complex river systems. Moreo-
ver, WEAP can address a wide range of issues, including 
sectoral demand analyses, water conservation, water rights 

and allocation priorities, groundwater and streamflow sim-
ulations, reservoir operations, hydropower generation and 
energy demands, pollution tracking, ecosystem require-
ments, and project benefit-cost analyses. 

The analyst represents the system in terms of its vari-
ous supply sources (e.g., rivers, streams, groundwater, res-
ervoirs), withdrawal, transmission, and wastewater treat-
ment facilities; ecosystem requirements, water demands 
and pollution generation. The data structure and level of 
detail can be customized to meet the requirements of a par-
ticular analysis, and to reflect the limits imposed by re-
stricted data. WEAP applications generally include several 
steps. The study definition sets up the time frame, spatial 
boundary, system components and configuration of the 
problem. The WEAP Current Accounts (catchment hy-
drology without future scenarios) provide a snapshot of 
actual water demand, pollution loads, resources and sup-
plies for the system. Alternative sets of future assumptions 
are based on policies, costs, technological development, 
and other factors that affect demand, pollution, supply and 
hydrology. Scenarios are constructed consisting of alterna-
tive sets of assumptions or policies. Finally, the scenarios 
are evaluated with regard to water sufficiency, costs and 
benefits, compatibility with environmental targets, and 
sensitivity to uncertainty in key variables. The LRB was 
modelled by several steps starting from creating the entire 
basin of the catchment and then subdividing the basin into 
the 114 Quaternary catchments (QC) of the Lepelle River 
Basin. The Quaternary catchments were automatically cre-
ated in automatic catchment delineation mode by the help 
of 3 arc seconds digital elevation model (DEM). Elevation 
bands were also created automatically because temperature 
changes with elevation. Land cover categories were also 
generated. The QCs were then inputted with the 8 km reso-
lution climate data (precipitation, temperature, wind speed 
and relative humidity) one by one coming to a total of 484 
data points. Square kilometre areas for the QCs were ad-
justed where necessary. The model was calibrated using 
historical data from the year 1980 to 1996 using stream-
flow station B7H009 shown Figure 1B of study area. 
These stations were ones with the second largest area with-
in the LRB and had no missing data within the calibration 
period. Sensitivity analysis were carried out using some of 
the model parameters such as the deep conductivity, runoff 
resistance factor and deep-water capacity. Below is a list of 
model performance criteria were employed to ascertain the 
model simulation performance and the results. 
A. Descriptive statistics: mean, standard deviation and 

coefficient of variation (CV)  
B. Root mean square error (RMSE) and mean absolute 

error (MAE)  
C. Coefficient of determination (R2)  
D. Nash Sutcliffe coefficient of efficiency (NSE)  

a) modified with absolute values of residuals (NSEj) 
b) modified by use of relative deviation (Erel)  

E. Index of agreement (d) 
a) modified with absolute values of residuals (dj)  
b) modified by use of relative deviation (drel). 
Performance statistics were computed and compared 

for both simulated and observed streamflow (Tab. 3). 
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Table 3. Efficiency criteria results for model validation 

Assessment criterion Overall basin 
Root mean square error (RMSE) 0.107 
Mean absolute error (MAE) 0.061 
Coefficient of determination (R2) 0.706 
Nash–Sutcliffe coefficient of efficiency NSE 0.600 
NSEj (high flow prediction) 0.995 
NSErel (low flow prediction) 0.723 
Index of agreement 0.802 
dj (high flow prediction) 0.607 
drel (low flow prediction) 0.808 

Explanation: the values for R2 and NSE are of high importance for validat-
ing the model performance. 
Source: own elaboration based on model validation results. 

DROUGHT ANALYSIS BY DROUGHT INDICES 

Reconnaissance drought index (RDI)  

RDI was developed by TSAKIRIS and VANGELIS 
[2005]. RDI is based on the ratio between cumulative val-
ues of precipitation and evapotranspiration (PET). The ini-
tial value of the RDI is obtained by calculating a ratio αk 
between the precipitation in a given area and the total po-
tential evapotranspiration for each consecutive period of 
the k months in a year. It is mathematically expressed as 
follows: 

 𝛼𝑘 =
∑ 𝑃𝑖𝑖
𝑗=𝑘
𝑗=1

∑ 𝑃𝑃𝑃𝑖𝑖
𝑗=𝑘
𝑗=1

 𝑖 = 1(1)𝑁 and 𝑗 = 1(1)𝑘 (1) 

Where: Pij and PETij are the precipitation and potential 
evapotranspiration respectively for the jth and the ith year 
and N is the total number of years. The values of αk follow 
satisfactorily both the lognormal and the gamma distribu-
tions in a wide range of locations and different time scales, 
in which they were tested [TIGKAS et al. 2013; VANGELIS 
et al. 2013]. Where the lognormal distribution is applied, 
the following equation can be used for the calculation of 
𝑅𝑅𝑅st: 
 𝑅𝑅𝑅𝑠t

(𝑖) = 𝑦𝑖−𝑦�
𝜎�𝑦

 (2) 

Where: yi is the �ln𝛼𝑘
(𝑖)�, 𝑦� is its arithmetic mean and 𝜎�𝑦 is 

its standard deviation. When the gamma distribution is 
applied, the 𝑅𝑅𝑅st can be calculated by fitting the gamma 
probability density function (PDF) to the given frequency 
distribution of αk [TIGKAS et al. 2013; VANGELIS et al. 
2013]. For short reference periods (e.g. monthly or  
3-months) which may include zero values for the cumula-
tive precipitation of the period, the 𝑅𝑅𝑅st can be calculated 
based on a composite cumulative distribution function 
which includes: 
– the probability of zero precipitation,  
– the gamma cumulative probability. 

RDI is calculated for a hydrological year in 3-, 6-, 9- 
and 12-month reference periods. This shows the different 
nature of RDI in comparison to other drought indices, since 
RDI is calculated for predetermined reference periods and 
not as a “rolling” index of constant duration. So, RDI in 
this study was used to calculate meteorological drought 
index. Table 4 shows RDI based drought classification. 

Table 4. Reconnaissance drought index (RDI) based drought 
classification 

State Description RDI criterion 
1 mild drought  (–0.5) – (–1.0) 
2 moderate drought (–1.0) – (–1.5) 
3 severe drought  (–1.5) – (–2.0) 
4 extreme drought < –2.0 and below 

Source: TIGKAS et al. [2013]. 

Streamflow drought index (SDI) 

SDI provides a good estimate of hydrological drought 
in any given area. The SDI focuses directly on the drought 
because of abnormally low flow conditions. So given 
a time series of monthly streamflow volumes Qij, in which 
i denotes the hydrological year and j the month within that 
hydrological year (j = 1 for October and j = 12 for Septem-
ber), Vik can be obtained based on the equation: 

𝑉𝑖𝑖 = ∑ 𝑄𝑖𝑖3𝑘
𝑗=1  𝑖 = 1, 2 … , 𝑗 = 1,2 … ,12 𝑘 = 1, 2, 3, 4.. (3) 

Where: Vik is the cumulative streamflow volume for the ith 
hydrological year and the kth reference period, k = 1 for 
October–December, k = 2 for October–March, k = 3 for 
October–June, and k = 4 for October–September. Based on 
the cumulative streamflow volumes Vik the streamflow 
drought index (SDI) is defined for each reference period k 
of the ith hydrological year as follows: 

 𝑆𝑆𝑆𝑖𝑖 = 𝑉𝑖𝑖 −𝑉�𝑘
𝑆𝑘 

 𝑖 = 1, 2, . . , 𝑘 = 1, 2, 3, 4 (4) 

in which 𝑉�𝑘 and Sk are respectively the mean and the 
standard deviation of cumulative streamflow volumes of 
the reference period k as these are estimated over a long 
period of time. In this definition the truncation level is set 
to 𝑉�𝑘 although other values based on rational criteria could 
be also used. Table 5 shows the SDI drought classification. 

Table 5. Streamflow drought index (SDI) based drought classifi-
cation 

State Description SDI criterion 
0 non-drought  ≥ 0.0 
1 mild drought  (–1.0)–(0.0) 
2 moderate drought (–1.5)–(–1.0) 
3 severe drought  (–2.0)–(–1.5) 
4 extreme drought < –2.0 and below 

Source: TIGKAS et al. [2013]. 

Probability distribution functions (PDFs) selection 

Various distribution functions exist in hydrological 
modelling. In order to minimise computation, the Sig-
maXL model was used to determine the PDF with best fit 
where possible. SigmaXL uses the Anderson Darling  
p-value (AD p-value) as the criteria to determine best fit. 
All distributions and transformations are considered and 
the model with the highest AD p-value is initially selected 
(denoted as adpvalmax). A search is then carried out for 
models that are close, having an AD p-value greater than 
adpvalmax 0.1 (with an added criterion that AD p-value be 
>0.2), but having fewer parameters than the initial best fit 
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model. If a simpler model is identified, then this is selected 
as the best fit [SigmaXL Inc. 2019]. 

RESULTS AND DISCUSSIONS 

DROUGHT DISTRIBUTION 

The best fit distributions where used for the PDFs but 
are not shown here together with their transformations to 
normal. This PDFs were computed using both the maxi-
mum likelihood parameter of estimation the Log-likeli-
hood estimation parameter where necessary using 
[SigmaXL 2019]. This is an advantage over most distribu-
tion methods. The Johnson distribution was found to be the 
most suited distributions for majority of the Quaternary 
catchments (QCs). The Johnson distribution is categorised 
into a family of probability distributions first investigated 
by N.L. Johnson in 1949. These include the SU, SB and SL 
families where S stands for the specification limits of U – 
unbounded distribution, B – bounded distribution, and L – 
log-normal distribution. For this region, the Johnson’s SB 
family (JSB) dominated. The capability of JSB in estimat-
ing the integral parameters, especially rainfall rate (R) and 
reflectivity (Z), results very close to that of gamma distri-
bution. In particular, for light precipitation, JSB is superior 
to with fractional standard error (FSE) of 11% with respect 
to values ranging between 25% and 37% for gamma 
[TOKAY et al. 2016]. Also, recent studies have shown that 
the Gamma distribution is not a one size fits all for all lo-
cations and data type [AYODELE, OGUNJUYIGBE 2015; 
GYAMFI et al. 2019]. But it is still a good PDF for most 
regions and data types. 

The use of different statistical distributions in describ-
ing the probabilistic nature of streamflow suggests the in-
homogeneity of records arising mainly from dissimilarities 
in physical characteristics, climatic tendencies, hydrologi-
cal regimes, and hierarchy. Therefore, the use of different 
statistical distributions that best fit the local context is ad-
monished. This agrees with studies by GYAMFI et al. 
[2019]. An ideal statistical distribution irrespective of the 
geographic location must be one that is flexible enough to 
fit the full range of observations under consideration. For 
this reason, all the drought indices where distributed with 
the Gamma distribution since it was the closest available 
distribution to the Johnson’s for the computations in the 
DrinC software described by [VANGELIS et al. 2013].  

METEOROLOGICAL AND HYDROLOGICAL DROUGHT 

In Figures 2 and 3, on the left-hand side and the right-
hand side are charts showing the meteorological and hy-
drological drought indices using reconnaissance drought 
index (RDI) and streamflow drought index (SDI) respec-
tively. The magnitudes of the drought can be determined 
from Figures 2 and 3 by classifying the drought using Ta-
bles 3 and 4 respectively. For RCP8.5 it can be seen from 
Figure 2, that years where the indices show a dip below 
zero indicate dryer years ranging from mild to severe and 
extreme cases of meteorological drought. A cursory view 
of the chart B71H for both SDI and RDI reveals for in-

stance that the lower Lepelle River Basin will experience 
a mild meteorological drought between 2022 and 2024. 
A predicted hydrological drought (SDI) appears to lag the 
meteorological drought by 1.5 years and is noticeable from 
2023–2025. Also, an extreme meteorological drought is 
forecast between 2046 and 2048 while for the associated 
hydrological drought is forecast between 2047 and 2048 
under RCP8.5. This observation is expected since hydro-
logical drought only becomes visible after meteorological 
drought has occurred. Again, a consistent increase in hy-
drological drought magnitude is observed for catchment 
B42A and B71H under RCP4.5. It is pertinent to highlight 
that as the 22nd century is approached, drought and flood 
events begin to occur for longer durations and at a higher 
frequency. Also, because the volume of water in the Earth 
is constant (1 386 billion km3) [BLEAMASTER, CROWN 
2010], it then is a truism that higher drought frequencies 
invariably means higher flood frequencies. This is because 
energy can neither be created nor destroyed in order to 
maintain the constant volume of water. Also, the impact of 
climate change is accentuated when one compares the fre-
quency of drought for the future and historically (Figs. 2, 
3). There is a much higher frequency of droughts and 
floods as we approach the 22nd century than it is now and 
in the past. Of course, this observation assumes nothing is 
done and we head into the 22nd century with increasing 
concentrations of carbon dioxide emissions and increasing 
population growth trends.  

MANN–KENDALL TREND TEST 

The seasonal and annual non-parametric test for trends 
in drought patterns was carried out using Mann–Kendall 
test and for the 6 cases 4 showed that at α = 0.001 or at 
0.1% significance level the null hypothesis of no trend 
could be rejected. However, the remaining two cases 
which were for the Upper Lepelle River (B11B) for both 
RCPs, the annual test shows a trend at a significance level 
greater than 10% as observed in Table 6 in the rows with + 
sign and the blank rows depicting these trends.  

Although droughts are observed, complimentary se-
vere wet episodes are also predicted which appear to be 
more frequent than observed during the historical data. 
Thus, the total annual flow does not appear to be affected 
significantly but will differ in timing and seasonality for 
most of the LRB under RCP4.5; except for the middle and 
lower reaches.  

CORRELATION BETWEEN RDI AND SDI DROUGHT 
INDICES 

Lastly, Spearman and Pearson correlation test and 
multiple regression (method of least squares) analyses (R2) 
were performed to determine how the meteorological and 
hydrological drought indices were related. In Table 7, the 
correlation indices were compared and the ones having 
Spearman indicate that Spearman showed stronger positive 
correlation than Pearson except in row 3 of column 2 where 
Pearson was the stronger of the 2. 
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 historical drought index,  future drought index 

Fig. 2. Reconnaissance drought index (RDI) and streamflow drought index (SDI) forced by representative concentration pathway  
RCP8.5 in Quaternary catchments (B11B, B42A and B71H); RCP8.5 = the highest or worst case global emission scenario which could 

result in an increase of temperature to about 3.2-5.4°C as we heard to the 21st century; source: own study  
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 historical drought index,  future drought index 

Fig. 3. Reconnaissance drought index (RDI) and streamflow drought index (SDI) forced by representative concentration pathway  
RCP4.5 in Quaternary catchment (B11B, B42A and B71H); RCP4.5 = scenario of long-term, global emissions of greenhouse gases, 
short-lived species, and land-use-land-cover which stabilizes radiative forcing at 4.5 W·m–2 in the year 2100 without ever exceeding  

that value; source: own study 
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Table 6. Mann–Kendall annual and seasonal trend test results for 
the Upper Lepelle River (B11B) for representative concentration 
pathways RCP4.5 and RCP8.5 (first year 1980, last year 2098) 

Time series Test Z 
(RCP4.5) 

Test Z 
(RCP8.5) 

Significance 
(RCP4.5) 

Significance 
(RCP8.5) 

October –1.35 –3.98 
 

*** 
November –1.34 3.01 

 
** 

December –2.72 2.45 ** * 
January 0.49 1.31 

  
February –3.44 0.24 ***  
March –1.96 –2.30 + * 
April –4.10 –2.13 *** * 
May –3.89 –0.72 ***  
June –2.45 –0.76 *  
July –3.90 –0.69 ***  
August –1.78 –1.58 +  
September –2.31 –3.05 * ** 
Annual 0 –0.92 

  
Winter –2.28 –0.80 *  
Spring –0.92 –4.92 

 
*** 

Summer –2.08 3.50 * *** 
Autumn –4.61 –2.05 *** * 
Explanations: RCP4.5 = as in Fig. 3; RCP8.5 = as in Fig. 2; *** if trend at 
α = 0.001 level of significance, ** if trend at α = 0.01 level of signifi-
cance, * if trend at α = 0.05 level of significance, + if trend at α = 0.1 
level of significance. If the cell is blank, the significance level is greater 
than 0.1 [SALMI et al. 2002]. 
Source: own study.  

Table 7. Correlation matrix for reconnaissance drought index 
(RDI) and streamflow drought index (SDI) forced by representa-
tive concentration pathways RCP8.5 and RCP4.5 

Quaternary 
catchment RCP Correlation matrix  

(p < 0.05) R2 Adjusted R2 

B11B 
8.5 

0.3629 – Spearman 0.0037 0.0 
B42A 0.8462 – Spearman 0.6949 0.6923 
B71H 0.8259 – Spearman 0.7040 0.7015 
B11B 

4.5 
0.0034 – Spearman 0.0 0.0 

B42A 0.276 – Pearson 0.0762 0.0683 
B71H 0.045 – Spearman 0.0027 0.0 

Explanations: Quaternary catchments as in Figure 1; RCP8.5, RCP4.5 as 
in the Tables 5 and 6 respectively; R2 = determination coefficient.  
Source: own study. 

The two QCs drought indices under RCP8.5 exhibit 
a strong positive correlation while a weak to no correlation 
is observed for the remaining catchments. A possible ex-
planation for this could be that, in the future, different wa-
ter management schemes and decisions are likely to be 
implemented for the various catchments of the LRB.  

DISCUSSION 

Looking at chart 11B between 2057 and 2059 under 
RCP8.5 a mild meteorological drought is observed. While 
this is not severe it is worth noting that it is a departure 
from the normal judging from history between 1980–2019 
for the upper Lepelle River Basin. A striking contrast is 
however observed from 2058 when a severe drought oc-
curs. While this may not be an urgent concern given the 
lead time available to act, measures must be put in place 
given the duration of this droughts which impact may be 
felt for five consecutive years between 2058 and 2063. On 

the other hand, hydrological drought as observed by SDI 
drought indices show more severe droughts along through 
to the end of the 21st century. These slight discrepancies 
between meteorological and hydrological drought indices 
begs the question for the differences. These differences 
could be as a result of unsupervised indiscriminate abstrac-
tion of water from streams due increasing population and 
unsustainable water use. Note that RCP8.5 scenario has 
been used to model this hydrology in this case which sup-
ports more urbanisation and industrialisation as seen in 
Table 8. The increase in population can be attributed to the 
rapid urbanisation in the upper LRB due to income oppor-
tunities from mining activities seeing that the LRB is rich 
in coal deposits and accounts for more than 50% of South 
Africa’s coal-fired electricity plants [DE LANGE et al. 
2005]. Another source of income are the tourist attractions 
such as the Kruger National Park and the Blyde River 
Canyon [DWS 2018]. The middle and lower LRB repre-
sented in Figure 2 by B42A and B71H respectively how-
ever, shows similar meteorological and hydrological 
drought pattern. Again, one can see that because the popu-
lation of these two areas are fairly constant, hence perhaps 
water abstraction is fairly stable. 

Table 8. Summary of scenarios adopted for the future the Lepelle 
River Basin (LRB) hydrology model 

Sce-
nario 

Climate 
variable Land-use WC/WDM Population 

growth (%) Case 

1 RCP8.5 pro-indu-
strialisation 

high growth 
(25%) 1.55 worst  

2 RCP4.5 pro-agri-
culture 

moderate 
growth (15%) 1.20 medium  

Explanations: RCP8.5 and RCP4.5 as in the Tables 5 and 6 respectively. 
WC = water conservation, WDM = water demand management.  
Source: own study. 

Now in Figure 3 modelled by RCP4.5 the Upper LRB 
appears to be very similar given that abstractions will sta-
bilize over time. A rather fascinating observation is seen in 
the middle (B42A) and lower LRB (B71H) under RCP4.5 
for hydrological drought indicated by the SDI. A possible 
reason for the mild but constant hydrological drought 
could be as a result of future water abstraction for agricul-
tural irrigation purposes given that it is pro-agriculture as 
shown in Table 8. 

So, while the future looks disturbing for some of the 
catchments of the LRB namely all troughs below 0 indicat-
ing droughts and are seen to be more persistent as we ap-
proach the end of the 21st century. These can be observed 
in B42A RDI, B42A SDI, B71H RDI, B42A SDI for 
RCP8.5 and also observed in B11B RDI, B42A SDI and 
B71H SDI for RCP4.5, it is relieving to note that with 
timely interventions water availability can still be guaran-
teed. These interventions could range from building more 
dams to harvest flood waters from the extreme wet periods, 
curbing illegal water abstractions, water-shedding, reduc-
ing carbon emissions by using more environmentally 
friendly technologies etc. 

The 8 km resolution data was very much useful in 
identifying the unique and localised hydrological varia-
tions into the future of the LRB. 
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CONCLUSIONS 

The drought situation and water availability of the 
Lepelle River Basin (LRB) are modelled for the period of 
2020–2099. Firstly, the probability distribution functions 
for the climate variables of the LRB, particularly rainfall 
and streamflow. Secondly, using two comprehensive 
drought indices for three representative catchments B11B, 
B42A and B71H of the 114-Quaternary catchment of the 
LRB under two representative concentration pathways 
(RCP) forcings, the future drought characteristics were 
explored. Lastly, Mann–Kendall trend tests were conduct-
ed coupled with correlation and multiple regression analy-
sis for the drought indices at a significance level of p < 0.05.  

1. The Johnson’s specification limit of bounded family 
of probability density function (PDF) was the best fit for 
the models and the Gamma PDF was equally acceptable. 

2. The reconnaissance drought index (RDI) and 
streamflow drought index (SDI) showed varying character-
istics of drought for different areas of the LRB. 

3. Drought indices revealed a varying degree of mag-
nitude and periodicity for the different catchments under 
the two RCPs. 

4. A mild meteorological drought is predicted for the 
lower LRB under RCP8.5 between 2022 and 2024. 

5. It is worth noting that a mild but increasing trend of 
drought is predicted as the 22nd century is approached for 
the middle and lower LRB under RCP4.5. 

6. Modelling indicates that droughts and floods will 
occur more frequently and for longer periods. 

7. In absolute terms, total amount of annual rainfall 
and streamflow seems to mirror current levels, but the tim-
ing and the variability of these variable are predicted to be 
impacted by climate change and hence could be problemat-
ic for water use planning and agricultural purposes. 

The modelling indicates that the absolute total 
amounts of annual rainfall and streamflow will match cur-
rent levels, but the timing and variability of these variables 
will be affected by climate change and hence could be 
problematic for planning and agricultural purposes. Thus, 
the simulations suggest that mitigations measures against 
drought and flooding will have to be implemented in the 
LRB in the very near future. The closest mild-moderate 
drought period is forecast for 2022–2024 and is seen in the 
B71H catchment under RCP4.5 which leaves less margin 
for preparation and for the development and implementa-
tion of mitigation measures in a predominantly rural area 
such as the Lepelle River Basin.  
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