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Abstract: Against the background of increasing installed capacity of wind power in the
power generation system, high-precision ultra-short-term wind power prediction is signif-
icant for safe and reliable operation of the power generation system. We present a method
for ultra-short-term wind power prediction based on a copula function, bivariate empirical
mode decomposition (BEMD) algorithm and gated recurrent unit (GRU) neural network.
First we use the copula function to analyze the nonlinear correlation between wind power
and external factors to extract the key factors influencing wind power generation. Then the
joint data composed of the key factors and wind power are decomposed into a series of
stationary subsequence data by a BEMD algorithm which can decompose the bivariate data
jointly. Finally, the prediction model based on a GRU network uses the decomposed data as
the input to predict the power output in the next four hours. The experimental results show
that the proposed method can effectively improve the accuracy of ultra-short-term wind
power prediction.

Key words: bivariate EMD decomposition, copula function, GRU network, meteorological
factor, ultra-short-term wind power prediction

1. Introduction

Due to the serious energy crisis and environmental problems, renewable energy has gained
worldwide attention for its large reserves, low carbon and renewable features [1, 2]. As a kind
of very important renewable energy source, wind energy has developed vigorously in the past
ten years [3]. The wind power capacity installed around the world has increased nearly 75-fold
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in the past 20 years, from 75 GW in 1997 to about 564 GW in 2018. Between 2009 and 2013,
wind power capacity doubled. In 2016, wind power accounted for 16% of renewable energy
generation [2, 3].Wind energy has a wide range of application scenarios. However, since wind
energy cannot be stored and it is intermittent, large-scale wind power grid connection will pose
serious risks to the power grid, which will bring many problems to the power grid dispatching and
frequency modulation [4]. Accurate and effective wind power forecasting is the key to realize the
integration of large-scale wind power. It can effectively alleviate the problem of wind abandoning
and power limiting, improve the grid dispatching, ensure the stable operation of wind turbines,
cut down the operational cost, increase the revenue of wind farms and realize complementary
power dispatching.

According to the requirements of the power generation system operation, the wind power
prediction has four levels [5]: ultra-short-term, short-term, medium-term, and long-term. The
predicted time range of the four levels are within four hours, four to twenty-four hours, one to
seven days, and more than seven days respectively.

The previous research results show that there are many complex factors affecting the accuracy
of wind power prediction [6]. Therefore, it is important to extract the key influencing factors
which closely affect wind power generation. Currently, the most commonly used algorithms
include correlation analysis [7], gray relational analysis [8], principal component analysis [9],
regression analysis [10], autoregressive analysis [11]. Because the correlation analysis, gray
relational analysis and principal component analysis are linear relationship analysis methods,
they are not applicable to the analysis of the non-linear correlation between wind power and
external impact factors. The regression analysis and autoregressive analysis will be restricted in
some cases because the factors and expressions used in the regression analysis and autoregressive
analysis are only estimates [10, 11]. In order to better analyze the non-linear correlation, we use
the copula function which can effectively analyze the non-linear correlation between the wind
speed and the external influence factors [5].

As the input of the prediction model, wind power data has the characteristics of random-
ness and volatility, which will also affect the accuracy of wind power prediction. In response
to this problem, the data processing methods proposed by the related researches combine
wavelet decomposition [12], empirical mode decomposition (EMD) [13], integrated empiri-
cal mode decomposition (EEMD) [14], complementary ensemble empirical mode decompo-
sition (CEEMD) [15], x-OCCO [16] and atomic sparse decomposition (ASD) [17]. These
methods decompose wind power data with randomness and fluctuation into a series of rela-
tively stable and periodic subsequences. In fact, there are many factors affecting wind power.
Sometimes we need to input more than one kind of data into the prediction model, such
as wind power and wind speed. Under this circumstance, the above-mentioned decomposi-
tion algorithm will not be able to use, because the above-mentioned method can only be
used to decompose the data of a variable. Therefore, we use bivariate empirical mode de-
composition (BEMD) to decompose the wind power data and the key influencing factors data
jointly.

The methods of wind power prediction can be divided into a physical method [18], statistical
method and machine learning method. Due to the consideration of various environmental physical
factors, the physical method is difficult to model and has low prediction accuracy. The common
statistical methods include a Bayesian model [19] and autoregressive model [20]. In recent years,
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traditional machine learning has been applied to wind power prediction, methods that mainly
include a support vector machine [21], radial basis function neural network [22], extreme learning
machine [23] and Recurrent Neural Networks (RNN) [24]. A Gate Recurrent Unit (GRU) neural
network is an improvement of an RNN. It is mainly used to study the time series problem, and
can effectively solve the problems of gradient disappearance, gradient explosion and excessive
model parameters. So we used the GRU neural network for wind power forecasting, a typical time
series problem.

In order to improve the accuracy of ultra-short-term wind power prediction, we propose an
ultra-short-term wind power prediction model. This model is based on a copula function, BEMD
and GRU neural network. Our work mainly includes the following contributions:

1. We use a copula function which can effectively analyze the non-linear correlation to analyze
the non-linear correlation between wind power and external factors, and extract the key
factors affecting wind power.

2. In order to fully consider the key factors in data decomposition, we use a BEMD algorithm
to decompose wind power data and the data of the key factors jointly.

3. We use a GRU neural network to construct our ultra-short-term wind power prediction
model which can effectively reduce the number of parameters of the model and deeply
explore the dependencies among data compared with an RNN and long short-term memory
(LSTM).

4. The experiment shows that the proposed ultra-short-term wind power prediction model can
effectively improve the prediction accuracy.

2. Methodology

In order to further improve the accuracy of ultra-short-term wind power prediction, we
propose a new prediction method. The flow chart of the method presented in this paper is shown
in the Fig. 1.

Our method mainly consists of three parts where:

1. A copula function is used to analyze the correlation between wind power and meteorological

factors, and extract the key influencing factors with the greatest correlation with wind power.

2. Bivariate data composed of wind power and the key influencing factors are used as the input

data of a BEMD algorithm, decomposed jointly to obtain a series of stable subsequence
data.

3. We use a construct ultra-short-term wind power prediction model based on a GRU neural

network.

Each sub-sequence decomposed in the second step corresponds to a GRU neural network
prediction model, and each sub-sequence data is used as input to train the corresponding GRU
neural network prediction model. Then we calculate predictive components of wind power cor-
responding to each subsequence by the trained GRU neural network prediction model.

Finally, all wind power prediction components are superimposed to get the final wind power
prediction value. The next three chapters will give a detailed introduction to the above three parts.
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Fig. 1. Ultra-short-term wind power forecasting process

3. Correlation analysis

3.1. Principle of copula function

Copula theory points out that an N-dimensional joint distribution function can be decomposed
into N marginal distribution functions and a copula function. The purpose of the copula function
is to connect the joint distribution function of each random variable X;, X, ..., Xy with the
marginal distribution function of each random variable [25] as shown in Equation (1).

F(x1, x2, ..., xn) = C (Fx, (x1), Fx,(x2), ..., Fx\ (xn)), (D
where: F(xi, x2, ..., xn) is the joint distribution function, Fx, (x1), Fx,(x2), ..., Fx, (xn) is
the marginal distribution function, C(uy, uy, . .., u,) is the copula function.

The commonly used binary copula functions are a binary normal copula, t-copula, the Gumbel
copula, Clayton copula and Frank copula function [5], which can describe the linear and non-
linear relationship among variables. Based on these copula functions, we use the Kendall rank
correlation coefficient and the Spearman rank correlation coefficient to measure the correlation
of random variables. These two coefficients describe the degree of consistency between random
variables X and Y, their range of values is between —1 and 1, when the correlation coefficient takes
a positive number, it means that the variables are positively correlated, and the negative number
means that the variables are negatively related. The larger the absolute value of the correlation
coefficient, the closer the correlation is.
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Assume that the marginal distribution functions of the connected random variables X, Y are
F(x) and G(y), respectively, and the corresponding copula function is C(u, v). Then the Kendall
rank correlation coefficient, the Spearman rank correlation coefficient and the copula function
C(u, v) have the following relationship in Equations from (2) to (6) [5].

11
T = 4f f C(u’ V)dC(u, V) - 1’ (2)
0 0

1 1

1 1
Ps = 12ffude(u,u)—3= 12ffC(u,v)dudv—3, 3)
0 0

0 0
U=F(x) ~U(Q1, 4
V =G(y) ~V(0,1), )
Cl-u,1-v)=PU>u,V>v)=1-u—-v+Cuv), (6)

where: C(u,v) =u+v—1+C(1 —u, 1 —v) is called the survival copula function of X and Y.

3.2. Correlation analysis process

The correlation analysis steps are as follows [5, 26]:

1. Data pre-processing. Firstly, through the test of integrity and rationality, find out the
missing and abnormal data. Secondly, for missing data points, we supplement them with
the following steps. Step 1: calculate the slope between the known values above and below
the missing value: k = (p,, — pm)/(n — m), p,, and p,, are the upper and lower known data
points of missing data points, respectively. Step 2: calculate the corresponding missing value
a(i) = by, +(i—m)x k. When the continuous lack of data points lasts more than eight hours,
delete the missing data period. Finally, normalize the original data after supplementation
and correction through min-max normalization as shown in Equation (7).

Xnorm = S~ Tmin_ . (7N
Xmax — Xmin

2. Determine the marginal distribution for each variable [5, 26]. The marginal probability
density distribution function of each random variable is determined by the non-parametric
kernel density estimation method based on the sample observation data of the random
variable.

3. Select the appropriate copula function. After determining the marginal distribution of
the random variables, select the appropriate copula function based on the shape of the
binary frequency histogram. Maximum likelihood estimation is used here to determine the
parameters of the copula [5, 26].

4. Calculation of the correlation coefficient. Calculate the Kendall and Spearman rank corre-
lation coefficients according to Equations from (2) to (6).
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4. BEMD decomposition algorithm

Empirical Mode Decomposition (EMD) proposed by Norden E. Huang [27] is widely used in
the analysis of nonlinear and non-stationary signals. The essence of the method is to extract the
Intrinsic Mode Function (IMF) from the original signal. Each IMF exhibits relative stationarity
and local periodicity. So, the EMD is ideal for processing high frequency, non-linear wind power
data [27, 28]. The EMD is based on the intuitive concept of “oscillation” which is naturally related
to local extrema. Its basic idea is that “univariate signal = fast oscillation superimposed on slow
oscillation”. When the decomposed data represent a bivariate signal, the concept of oscillation is
not applicable, and it is not clear how to define and interpret local extrema, so the EMD algorithm
cannot decompose bivariate data. To solve this problem, a BEMD based on the concept of rotation
is proposed. It is a two-dimensional extension of the usual concept of a univariate oscillation. The
basic idea of the BEMD is to formalize the following idea: “a bivariate signal = superimposed
on the fast rotation of slow rotation” [29].

For the BEMD, the IMF’s criteria are as follows:

1. The zero point and pole of the projection in any direction are equal or differ by one.

2. The real part of the projection in any direction is locally symmetrical about the time axis.

The specific steps of the BEMD algorithm are as follows [30]:

Step 1: the bivariate signals x(¢)are projected on the directions ¢y = 2kn/N, 1 < k < N
respectively. The real parts of the projection results are taken as shown in (8) [30]. Then the
maximum and minimum points of these projections are obtained respectively.

Py (1) = Re (e x(1)) . (8)

Step 2: firstly, each envelope curve is fitted in each direction by a cubic spline interpolation
method and tangent e 4, (¢) on the corresponding envelope curve at each time is obtained. And
then the average value of the envelope can be calculated according to (9) [30]. The envelope of the
bivariate signal is represented as a three-dimensional hose enclosing the original bivariate signal.
Only the fixed points of the three-dimensional hose in the horizontal and vertical directions are
considered here. So the extreme points can be respectively in the bottom, the top, the right side
and the left side of the hose. For a given moment, the mean of the envelope takes the center of
the four points.

2
mi(t) = 5 ) era, (0. ©)
k

Step 3: the difference between the original bivariate signal x(¢) and the envelope mean m (¢)
is shown as (10) [30].
hi () = x(t) — my(2). (10)
In order to eliminate the modal aliasing, take % (¢) as the original signal and repeat the above
three steps. As shown in (11) [30].

b1 (1) = hi(t) —my1(0). (1)

Repeatedly screening k times to make Aj () becomes an IMF component as shown in
(12) [30].
hi(t) = hik-1(2) — myi(2). (12)
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Let di(¢) = hy (1), d1(¢) is the first-order IMF of x(z).

Step 4: the residual component of the original signal r;(¢) can be obtained by subtracting the
original bivariate signal x(¢) from the first-order IMF d (¢). Repetition of the above steps for the
residual component yields IMFs of all orders and a the residual component that characterizes a
certain trend of the original signal. Thus, the original bivariate signal can be expressed as the
superposition of each IMF and residual component, as shown in (13) [30].

The stopping condition of the above decomposition process is any of the following:

1. When the IMF d,,(¢) or the residual component 7, () is small enough;

2. When the residual component r, () becomes a single point bivariate function, the IMF
cannot be decomposed from it.

x(0) = 1 di0) + ra0). (13)
i=1

5. Ultra-short-term wind power prediction model

5.1. Ultra-short-term wind power prediction

With the increasing installed capacity of wind power and the randomness of wind power,
accurate wind power prediction is very important for the safe and stable operation of the power
generation system. According to different time scales, wind power forecasting can be divided into
different types. Ultra-short-term wind power forecasting is to predict the wind power output in
the next four hours. Accurate ultra-short-term wind power forecasting can effectively strengthen
power grid management, improve power consumption, promote wind power grid integration,
realize mutual assistance and complementary dispatching of power.

5.2. GRU principle

As a variant of LSTM, there are only two gate structures in a GRU, an update gate and reset
gate, respectively. The role of the update gate is to determine how much state information needs
to be retained from past moments. The amount of the state information retained from the past
moments is proportional to the value of the update gate and the reset gate is used to decide,
whether to combine the current state information with the state information of the past moments.
The larger the value of the reset gate, the less information is ignored. The structure of the GRU
is shown in the Fig. 2 [31].

As shown in the structure diagram, x; is the input of the GRU structure, /, is the output of a
hidden layer, and the related calculation of the unit structure is shown in (14) to (17) [31].

=0 (W(z)xt ) h;_l), (14)
ry =0 (W(r)xt + U(r)ht_l) . (15)
hy = tanh (Wx, + U(r; * hy_y)), (16)

he = (1= 2) % by + 20 % by, (17)
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Fig. 2. Gated recurrent unit

where: z, and r, are the update gates and reset gates respectively; x; is the input; /,_; is the output
of the upper hidden layer; Ty is the summary of x, and h,_;; o is the Sigmoid function; tanh is
the hyperbolic tangent function; W@, U@, W) U W, U represent the training parameter
matrix; * is the product of the matrix.

5.3. Modeling process

The ultra-short-term wind power prediction model base on a GRU can be described by the
following (18):

(P(t), P(t+1), ..., P(t+k)) =

= F(P(t-1), P(t-2), ..., P(t—-n), m(t—1), m(=2), ..., m(t—n)), (18)
where: P(t), P(t + 1), ..., P(t + k) represent the value of predicted power for the next four hours,
k=15 W@ —-1), W(t - 2), ..., W(t — n) are the historical power value before the current time;
m(t — 1), m(t — 2), ..., m(t — n) represent the historical observation value of the meteorological
factor filtered by the copula function; the parameter n is obtained by the ergodic experiment.

For the experiments of the paper, correlation analysis, BEMD and a GRU neural network
prediction model are implemented in MATLAB R2016a. The implement environment for all of
the calculations is a personal computer with an Intel i5-8250U CPU and 8 GB of RAM.

5.4. Prediction accuracy assessment

In order to evaluate the performance of the prediction model, we use root-mean-square per-
centage error (RMSPE) and mean absolute percentage error (MAPE) as the evaluation indicators
for the performance of the prediction model. They estimate the total error and real-time bias
respectively. The two indicators are calculated by Equations from (19) to (20) [5].

1 (x, - £)2
RMSPE = | — > —L "7 %1 1
S N; — X 100°%, (19)
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MAPE = — » ——" x 100%, 20

N Z xt ¢ 20)

t=1

where: x; is the true value of wind power at time #; %; is the power prediction value of the
prediction model at time #; N is the number of data points in the test set.

6. Experimental analysis

6.1. Data

The data used in the three experiments bellow is collected from a wind farm in Jiangsu
Province on the eastern coast of China. The data include wind speed and direction of wind turbine
hub height, atmospheric temperature, atmospheric humidity, air pressure, and power generation.
The time interval between data points is fifteen minutes, a total of 35040 data points from January
1 to December 31, 2013. The installed capacity of the wind farms is 49 MW.

6.2. Result
A. Correlation analysis between meteorological factors and wind power

In this part, the correlation analysis between the wind speed and the wind power is taken as
an example to analyze. According to the correlation analysis step described above, the binary
frequency histogram between wind speed and wind power generation (WPG) is shown in Fig. 3.
According to Fig. 3, all the data are distributed on the diagonal, decreasing from the opposite ends
of the diagonal to the middle. Correspondingly, the density function of the joint distribution will
show the same characteristics. Therefore, according to these features expressed by the frequency
histogram, the binary normal copula function and the t-copula function are selected here as a
joint probability density function between wind speed and wind power.

Fig. 3. Binary frequency histogram of wind
speed and wind power

Frequency

WPG 0 Wind speed

After determining the copula function, the joint distribution model of wind speed and wind
power can be obtained. The experimental results of the density function and the distribution
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function are shown in Fig. 4 and Fig. 5. As shown in Fig. 4(a) and Fig. 5(a), the wind speed and
wind power distribution are mainly concentrated on a diagonal of 45°. Similar to the frequency
histogram, the density function shows a peak at both ends of the diagonal and a thick tail in
the middle. Wind speed and wind power have strong tail related features. When the wind speed
and wind power is high or low, the correlation between the two is obvious. For a binary normal
copula function, the calculation results of Kendall and Spearman rank correlation coefficients are
0.9233 and 0.9580, respectively. While the corresponding values of the binary t-copula function
are 0.9884 and 0.9744, respectively. The experimental result shows a strong rank correlation
between wind speed and wind power.

0

ISR IRIT
CharT

s, o‘":“““\

e

C(u,v)

0.5

05
WPG 0 o
WPG 0 o Wind speed Wind speed

(@) (b)

Fig. 4. Joint distribution model based on binary normal copula function: density function (a);
distribution function (b)

= 0.6

C(u,v

0.5 0.5

WPG 0 o Wind speed WPG 0 o Wwind speed
(a) (b)

Fig. 5. Joint distribution model based on the binary t-copula function: density function (a);
distribution function (b)
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Through the same method, we can obtain other results between different meteorological
factors and wind power, which are shown in Table 1.

Table 1. Correlation analysis results between meteorological factors and wind power

Binary copula Kendall Spearman

function Normal copula t-copula Normal copula t-copula
Wind speed 0.9233 0.9884 0.9580 0.9744
Wind direction 0.1479 0.1458 0.1217 0.1683
Pressure -0.2344 -0.2239 -0.2015 -0.2778
Temperature -0.2610 —0.2088 -0.2323 —-0.2682
Humidity 0.3429 0.3049 0.3231 0.3534

B. Bivariate EMD decomposition of wind speed and wind power

According to the correlation analysis results above, the wind speed and wind power with the
highest correlation are selected as input to the prediction model. The observation data of the wind
speed and the wind power at the same time are combined into a plural form as an input of the
BEMD. The wind power is taken as the real part while the wind speed is the imaginary part. Some
of the original experimental data are shown in Fig. 6. From the graph, the non-stationary data of
wind speed and wind power time series data can be observed. This feature has a great influence
on the accuracy of prediction results. The original data is decomposed into 10 IMF components

45 I I 1 I

wind speed
— WPG

B
o
T

(5}
o
T

w
(=]
T

[
wn
T

]
[=}
T

Wind speed(m/s)
WPG(MW)

o
T

(=]
o

0 400 800 1000 1200 1400 1600
Time(15min)

Fig. 6. Initial data of wind speed and wind power
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by BEMD, where the last IMF component represents the residual component of the original data
trend. Each IMF component is shown in Fig. 7. Comparing with the original data, it can be
concluded that the IMF component fluctuation after BEMD decomposition gradually becomes

o
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Fig. 7. BEMD decomposition results of wind speed and wind power: IMF1 (a); IMF2 (b); IMF3 (c);
IMF4 (d); IMFS5 (e); IMF6 (f); IMF7 (g); IMFS (h); IMFO (i); IMF10 (j)
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smooth, and the later the IMF component, the smoother the fluctuation becomes. In addition, the
decomposed data shows local relative periodicity and symmetry. Therefore, although the three
components of IMF1, IMF2, and IMF3 fluctuate at a high frequency, the characteristics of local

periodicity and symmetry make the prediction results of these three IMF components have good
accuracy.

C. Analysis of ultra-short-term wind power prediction results

In order to verify the effectiveness of our method, we set up three groups of comparative
experiments: Multilayer Perceptron (MLP) (power generation input) and GRU (power generation
input), GRU (power generation input) and GRU (wind speed + power generation input), GRU
(wind speed + power generation input) and GRU (wind speed + power generation input-BEMD).
These three groups of comparative experiments verify respectively the validity of the correlation
analysis based on a copula function, the data decomposition based on BEMD and a GRU neural
network to improve the accuracy of ultra-short-term wind power prediction. The predicted results
are shown in Fig. 8 and Table 2.

6 T T T T T
—6— Real Wind Power Generation

==+ MLP{Power Genaration Input)
GRU{Power Generation Input)

—+— GRU(Power Generation Input-EMD) |
GRU(Wind Speed+Power Generation Input

—&— GRU(Wind Speed+Power Generation Input-BEMD) ‘

Wind Power(MW)
[~]

4] 2 4 6 8 10 12 14 16
Time(15min)

Fig. 8. Wind power prediction result for the next 4 hours

To further verify the validity of the proposed model, RMSPE is used to evaluate the overall
error during the predicted period and MAPE is used to evaluate the real-time deviation. Compare
the MLP (power generation input) and GRU (power generation input) experiments, the MAPE
and RMSPE decrease by 3.37% and 2.91%, respectively. Compare GRU (power generation input)
and GRU (wind speed + power generation input) experiments, the MAPE and RMSPE decrease
by 1.75% and 4.29%, respectively. Compare GRU (wind speed + power generation input) and
GRU(wind speed + power generation input-BEMD), the MAPE and RMSPE decrease by 3.46%
and 5.29%, respectively.
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Table 2. Performance comparison of different forecast models

Prediction model MAPE RMSPE
MLP (power generation input) 24.15% 38.73%
GRU (power generation input) 20.78% 35.82%
GRU (power generation input-EMD) 17.68% 30.28%
GRU (wind speed + power generation input) 19.03% 31.54%
GRU (wind speed + power generation input-BEMD) 15.57% 26.25%

7. Conclusions

We propose a method to predict ultra-short-term wind power based on a copula function,

BEMD and GRU neural network. After theoretical analysis and setting up comparison experi-
ments, the following conclusions were obtained.

1. Through the Kendall and Spearman rank correlation coefficients, the copula function can
effectively analyze the nonlinear correlation between meteorological factors as well as wind
power and extract key meteorological factors.

2. BEMD can effectively decompose bivariate data, and the accuracy of ultra-short-term wind

power prediction based on the decomposition results has been improved.

3. The performance of a GRU neural network is better than a MLP neural network in deal-

ing with the time series prediction of ultra-short-term wind power prediction. The above
research results show that the proposed method for predicting ultra-short-term wind power
is effective.
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