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Abstract The paper is devoted to study the effect of gravity, magnetic
field and laser pulse on the general model of the equations of generalized
thermoelasticity for a homogeneous isotropic elastic half-space. The formu-
lation is applied under four theories of generalized thermoelasticity: the
coupled theory, Lord-Schulman theory, Green-Lindsay theory as well as
Green-Naghdi theory. By employing normal mode analysis, the analytical
expressions for the displacement components, temperature and the (me-
chanical and Maxwell’s) stresses distribution are obtained in the physical
domain. These expressions are also calculated numerically and correspond-
ing graphs are plotted to illustrate and compare the theoretical results. The
effect of gravity, magnetic field and laser pulse are also studied and displayed
graphically to show the physical meaning of the phenomena. A comparison
has been made between the present results and the results obtained by the
others. The results indicate that the effects of magnetic field, laser pulse
and gravity field are very pronounced.
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1 Introduction

The subject of generalized thermoelasticity has drawn the attention of re-
searchers due to its relevance in many practical applications. The gen-
eralized thermoelasticity theories involve hyperbolic type governing equa-
tions and admit finite speed of thermal signals. The extensive literature
on the topic is now available and we can only mention a few recent inter-
esting investigations [1–7]. Generalized theories of thermoelasticity have
been developed to overcome the infinite propagation speed of thermal sig-
nals predicted by the classical coupled dynamical theory of thermoelastic-
ity [8]. The non-classical theories of thermoelasticity, so-called generalized
thermoelasticity, have been developed to remove the paradox of the phys-
ically impossible phenomenon of infinite velocity of thermal signals in the
conventional coupled thermoelasticity, Lord-Shulman theory [9] and Green-
Lindsay theory [10]. In the 1990s, Green and Naghdi (G-N) have formulated
three models (I, II, III) of thermoelasticity for homogeneous and isotropic
material [11]. The model I of G-N theory after linearization reduces to the
classical thermoelasticity theory. The model II of G-N theory [12] does not
allow dissipation of the thermoelastic energy. In this model, the consti-
tutive equations are derived by starting with the reduced energy equation
and by including the thermal displacement gradient among the constitu-
tive variables. The effect of gravity in the classical theory of elasticity is
generally neglected. The effect of gravity on the problem of propagation
of waves in solids, in particular on an elastic globe, was first studied by
Bromwich [13]. Ailawalia and Narah [14] depicted the effects of rotation
and gravity in the generalized thermoelastic medium. Othman et al. [15]
studied the influence of the gravitational field and rotation on the gen-
eralized thermoelastic medium using a dual-phase-lag model. Das et al.
[16] investigated the surface waves under the influence of gravity in a non-
homogeneous medium. Othman and Hilal [17] studied the rotation and
gravitational field effect on two-temperature thermoelastic material with
voids and temperature-dependent properties using G-N III. Abd-Alla et al.
[18] investigated the propagation of a thermoelastic wave in a half-space
of a homogeneous isotropic material subjected to the effect of gravity field.
Abd-Alla et al. [19] studied the rotational effect on thermoelastic Stoneley,
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Love and Rayleigh waves in fibre-reinforced anisotropic general viscoelas-
tic media of higher order. The interplay of the Maxwell electromagnetic
field with the motion of deformable solids is largely being undertaken by
many investigators owing to the possibility of its application to geophys-
ical problems and certain topics in optics and acoustics. Moreover, the
earth is subject to its own magnetic field and the material of the earth
may be electrically conducting. Thus, the magneto-elastic nature of the
earth’s material may affect the propagation of waves. Many authors have
considered the propagation of electro-magneto-thermoelastic waves in an
electrically and thermally conducting solid. A comprehensive review of the
earlier contributions to the subject can be found in the study by Puri [20].
Abo-Dahab et al. [21] discussed the influence of thermal stress and mag-
netic field in thermoelastic half-space without energy dissipation. Abd-Alla
and Mahmoud [22] investigated the magneto-thermoelastic problem in ro-
tating non-homogeneous orthotropic hollow cylinder under the hyperbolic
heat conduction model.

The ultra short lasers are those with the pulse duration ranging from
nanoseconds to femtoseconds. The high intensity, energy flux, and ultra-
short duration laser beam have been studied in situations where very large
thermal gradients or an ultra-high heating rate may exist on the bound-
aries, this in the case of ultra-short-pulsed laser heating [23,24]. Marin [26]
investigated the temporally evolutionary equation for elasticity of microp-
olar bodies with voids.

Marin and Stan [27] obtained the weak solutions in elasticity of dipo-
lar bodies with stretch. Marin and Baleanu [28] studied the vibrations in
thermoelasticity without energy dissipation for micropolar bodies. The mi-
croscopic two-step models that are parabolic and hyperbolic are useful for
modifying the material thin films. When a metal film is heated by a laser
pulse, a thermoelastic wave is generated due to thermal expansion near the
surface.

The present paper aims to study the effect of gravity, magnetic field and
laser pulse on the general model of the equations of generalized thermoe-
lasticity for a homogeneous isotropic elastic half-space. The formulation
is applied under four theories of generalized thermoelasticity: the coupled
theory (CT), Lord-Schulman (L-S) theory, Green-Lindsay (G-L) theory as
well as Green-Naghdi (G-N II) theory. By employing normal mode analysis,
the analytical expressions for the temperature, displacement components
and the (mechanical and Maxwell’s) stresses distribution are obtained in
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the physical domain. These expressions are also calculated numerically and
corresponding graphs are plotted to illustrate and compare theoretical re-
sults. The effect of gravity, magnetic and laser pulse field are also studied
and presented graphically to show the influence of new parameters on the
phenomena.

2 Formulation of the problem and basic equations

Following the constitutive equations and field equations for a linear isotropic
generalized thermoelasticity in the context of four theories, we consider
a Cartesian coordinate system (x, y, z) having originated on the surface
y = 0 and z-axis pointing vertically into the medium of a half space (x ≥ 0).
For two-dimensional problems, we assume the dynamic displacement vector
as −→u = (u, 0, w), and all the considered quantities are functions of the time
variable t and of the coordinates x and z.

The basic governing equations of linear generalized thermoelasticity
with rotation and magnetic field in the absence of heat sources are given
by [22,24]:

µui,jj + (λ+ µ)uj,ij − γ

(

1 + θ0
∂

∂t

)

T,i +Gi = ρüi , (1)

kT,ii+k
∗Ṫ,ii = ρCe

(

n1
∂

∂t
+ τ0

∂2

∂t2

)

T+γT0

(

n1
∂

∂t
+ n0τ0

∂2

∂t2

)

(∇ · u)−ρQ̇ ,

(2)

σij =

[

λuk,k −
(

1 + θ0
∂

∂t

)

T

]

δij + 2µeij , i, j, k = 1, 2, 3 , (3)

eij =
1

2
(ui,j + uj,i) , i, j = 1, 2, 3 . (4)

The plate surface is illuminated by the laser pulse given by the heat input

Q =
I0γ

2πr2
exp

(

−z2

r2
− γx

)

f (t) , (5)

where I0 is the absorbed energy, r is the beam radius, and γ is constant.
The temporal profile can be defined as

f (t) =
t

t20
exp

(

− t

t0

)

,
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where t0 is the pulse rising time.
Due to the application of initial magnetic field H = H0n, resulting in

an induced magnetic field h and an induced electric field E, the simplified
linear equations of electrodynamics of slowly moving medium for a homo-
geneous, thermally and electrically conducting elastic solid are:

curl
→

h =
→

J +εo

→

E , (6)

curl
→

E = −µ0

→

h , (7)

div
→

h = 0 , div
→

E = 0 , (8)

→

E = −µ0

(

→
u ×

→

H
)

. (9)

The basic governing equations of a linear, homogenous thermoelastic medium
under the influence of a laser pulse and the gravitational field will be in the
forms:

µ∇2u+ (λ+ µ)
∂e

∂x
− γ

(

1 + θ0
∂

∂t

)

∂T

∂x
+ ρg

∂w

∂x
− µ0H0

∂h

∂x
= ρ

∂2u

∂t2
, (10)

µ∇2w+ (λ+ µ)
∂e

∂z
− γ

(

1 + θ0
∂

∂t

)

∂T

∂z
+ ρg

∂u

∂x
−µ0H0

∂h

∂z
= ρ

∂2w

∂t2
, (11)

k∇2T + k∗ ∂

∂t
∇2T = ρCe

(

n1
∂

∂t
+ τ0

∂2

∂t2

)

T

+ γT0

(

n1
∂

∂t
+ n0τ0

∂2

∂t2

)

(∇ · u) − ρ
∂Q

∂t
. (12)

Introducing the following dimensionless variables:

{

x′, z′
}

=
ω∗

c0
{x, z} , ϑ′

0 = ω∗ϑ0, t
′ = ω∗t, τ ′

0 = ω∗τ ,Q′ =
Q

w∗T0Ce
, (13)

{

u′, w′
}

=
ρc0ω

∗

υT0
{u,w} , T ′ =

T

T0
, δ′

ij =
δi j

υT0
, g′ =

g

c0w∗
h′ =

h

H0
, (14)

where

ω∗ =
ρCE c

2
0

K
, ρ c2

0 = λ+ 2µ .
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Eqs. (6)–(8) will be rewritten into the non-dimensional form (with dropping
primes for convenience):

∇2u+ b1
∂e

∂x
− b2

(

1 + θ0
∂

∂t

)

∂T

∂x
+ b3

∂w

∂x
−Rh

∂h

∂x
= b2

∂2u

∂t2
, (15)

∇2w + b1
∂e

∂z
− b2

(

1 + θ0
∂

∂t

)

∂T

∂z
+ b3

∂u

∂x
−Rh

∂h

∂z
= b2

∂2w

∂t2
, (16)

ε3∇2T + ε2
∂

∂t
∇2T = ε4

(

n1
∂

∂t
+ τ0ω

∗ ∂
2

∂t2

)

T

+ ε1

(

n1
∂

∂t
+ n0τ0

∂2

∂t2

)

e− ∂Q

∂t
, (17)

where

ε1 =
γ2T0

w∗c2
0ρCe

, ε2 =
k∗w∗

ρc2
0Ce

, ε3 =
k

ρc2
0Ce

, ε4 =
1

ω∗
, b1 =

λ+ µ

µ
,

b2 =
ρc2

0

µ
, b3 =

ρgc2
0

µ
, Rh =

µ0H
2
0

µ
.

Here ε1, ε2, and ε3 are the coupling constants.
Using the expressions relating the displacement components u (x, z, t),

and w (x, z, t) to each of the potential functions ψ1 (x, z, t) and ψ2 (x, z, t)
in the dimensionless forms

u =
∂ψ1

∂x
− ∂ψ2

∂z
and w =

∂ψ1

∂z
+
∂ψ2

∂x
. (18)

gives

e = ∇2ψ1 and

(

∂u

∂z
− ∂w

∂x

)

= ∇2ψ2 . (19)

Using (14) and (15) into (11)–(13) yields:

[

(1 + b1 −Rh) ∇2 − b2
∂2

∂t2

]

ψ1 + b3
∂

∂x
ψ2 − b2

(

1 + θ0
∂

∂t

)

T = 0 , (20)

−b3
∂

∂x
ψ1 +

[

∇2 − b2
∂2

∂t2

]

ψ2 = 0 , (21)
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−ε1

(

n1

ω∗

∂

∂t
+ n0τ0

∂2

∂t2

)

∇2ψ1 +

(

ε3 + ε2
∂

∂t

)

∇2T

−ε4

(

n1
∂

∂t
+ τ0ω

∗ ∂
2

∂t2

)

T = − ∂

∂t
Q . (22)

The constitutive relations will be:

σxx =
∂u

∂x
+ L

∂w

∂z
−
(

1 + θ0
∂

∂t

)

T , (23)

σyy = Le−
(

1 + θ0
∂

∂t

)

T , (24)

σzz =
∂w

∂z
+ L

∂u

∂x
−
(

1 + θ0
∂

∂t

)

T , (25)

σxz =
1

b2

(

∂u

∂z
+
∂w

∂x

)

, σxy = σyz = 0 , (26)

τzz = G

(

∂u

∂x
+
∂w

∂z

)

, (27)

where

L =
λ

λ+ 2µ
, G =

µeH
2
0

λ+ 2µ
.

3 The normal mode analysis

We can decompose the solution of the physical quantities in terms of the
normal mode as follows:

[ψ1, ψ2, T ] (x, z, t) = [ψ∗
1 , ψ

∗
2 , T

∗] (x) exp [i (ωt+ az)] , (28)

where [ψ∗
1 , ψ

∗
2 , T

∗] (x) are the amplitudes of the physical quantities, ω is the
angular frequency, i =

√
−1 and a is the wave number.

Using (28), Eqs. (20)–(22) will be:

[

D2 −B1

]

ψ∗
1 +B2Dψ

∗
2 −B3 (1 + θ0iω)T ∗ = 0 , (29)

−b3Dψ
∗
1 +

[

D2 −B2

]

ψ∗
2 = 0 , (30)

B5

[

D2 − a2
]

ψ∗
1 +

[

D2 − a2
]

T ∗ −B6T
∗ = B7

∂

∂t
Q , (31)
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where

B1 = a2 − b2ω
2

1 + b1 −RH
, B2 =

b3

1 + b1 −RH
, B3 =

b2

1 + b1 −RH
,

B4 = a2 − b2ω
2 , B5 =

ε1ω (n1i− n0τ0ω
∗ω)

(ε3 + ε2iω)
,

B6 =
−ε4ω (−n1i+ τ0ω

∗ω)

(ε3 + ε2iω)
, and D =

d

dx
, B7 =

−1

(ε3 + ε2iω)
.

Eliminating ψ∗
1 , ψ

∗
2 , and T ∗ from Eqs. (29)–(31) gives the differential equa-

tions:

[

D6 −B8D
4 +B9D

2 −B10

]

ψ∗
1 = B11

(

1 − t

t0

)

× exp

[

−
(

z2

r2
+

t

t0
+ γx+ iωt+ iaz

)]

, (32)

[

D6 −B8D
4 +B9D

2 −B10

]

T ∗ = B12

(

1 − t

t0

)

× exp

[

−
(

z2

r2
+

t

t0
+ γx+ iωt + iaz

)]

, (33)

[

D6 −B8D
4 +B9D

2 −B10

]

ψ∗
2 =

B13

(

1 − t

t0

)

exp

[

−
(

z2

r2
+

t

t0
+ γx+ iωt+ iaz

)]

, (34)

where
B8 = B1 +B4 +B6 +B2b3 −B3B5 −B3B5ϑ0i+ ω + a2 ,

B9 = a2B1 + a2B4 + a2B2b3 − a2B3B5 −B3B5B4 +B1B4 +B6B4 +B1B6

+b3B2B6+B3B5a
2iωϑ0 +B3B4B5iωϑ0 ,

B10 = a2B1B4 − a2B3B5B4 +B1B4B6 −B3B4B5a
2iωϑ0 ,

B11 = B3B7
(

γ2 + iωϑ0γ
2 −B4 −B4iωϑ0

) I0γ
2πr2t2

0

,

B12 = B7
[(

γ2 −B1
) (

γ2 −B4
)

+
(

γ2B2b3
)] I0γ

2πr2t2
0

,

B13 = −B3B7b3 (1 + iϑ0ω) I0γ2

2πr2t2
0

.
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Equation (32) can be factored as
(

D2 − k2
1

) (

D2 − k2
2

) (

D2 − k2
3

)

ψ∗
1 =

B11

(

1 − t

t0

)

exp

[

−
(

z2

r2
+

t

t0
+ γx+ iωt+ iaz

)]

, (35)

where k2
n (n = 1, 2, 3) are the roots of the characteristic equation of the

homogeneous equations (32)–(34).
The general solutions of (32)–(34) bound as x → ∞ are given by:

ψ1 (x, z, t) =
3
∑

n=1

Rn exp (−knx+ iωt+ iaz) + L1B11f1 , (36)

ψ2 (x, z, t) =
3
∑

n=1

H1nRn exp (−knx+ iωt+ iaz) + L1B13f1 , (37)

T (x, z, t) =
3
∑

n=1

H2nRn exp (−knx+ iωt+ iaz) + L1B12f1 . (38)

Here

H1n =
−b3kn

(k2
n −B4)

, n = 1, 2, 3 , H2n =

(

k2
n −B1

)

−B2H1nkn

B3
, n = 1, 2, 3

L1 = − 1

γ6 −B8γ4 +B9γ2 −B10
, f1 =

(

1 − t

t0

)

exp

(

−z2

r2
− t

t0
− γx

)

,

where Rn (n = 1, 2, 3) are some undefined coefficients.
To obtain the components of the displacement vector, substituting (36)

and (37) into (18) gives:

u (x, z, t) =
3
∑

n=1

M1nRn exp (−knx+ iωt+ iaz)

−
(

γI1 +
2zI2

r2

)

exp

(

−z2

r2
− t

t0
− γx

)

, (39)

w (x, z, t) =
3
∑

n=1

M2nRn exp (−knx+ iωt+ iaz)

+

(

−γI2 +
2zI1

r2

)

exp

(

−z2

r2
− t

t0
− γx

)

, (40)
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where M1n = −kn − iaH1n ,M2n = ia− knH1n , n = 1, 2, 3.
To get the components of the stress tensor, substitute (39), (40), and

(38) into (23)–(27):

σxx (x, z, t) =
3
∑

n=1

H3nRn exp (−knx+ iωt + iaz)

+ I4 exp

(

−z2

r2
− t

t0
− γx

)

, (41)

σyy (x, z, t) =
3
∑

n=1

H4nRn exp (−knx+ iωt+ iaz)

+ I5 exp

(

−z2

r2
− t

t0
− γx

)

, (42)

σzz (x, z, t) =
3
∑

n=1

H5nRn exp (−knx+ iωt+ iaz)

+ I6 exp

(

−z2

r2
− t

t0
− γx

)

, (43)

σxz (x, z, t) =
3
∑

n=1

H6nRn exp (−knx+ iωt + iaz)

+ I7 exp

(

−z2

r2
− t

t0
− γx

)

, (44)

τxx =
3
∑

n=1

H7n exp (−knx+ iωt + iaz)

+ I8 exp

(

−z2

r2
− t

t0
− γx

)

, (45)
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where

H3n = −M1nkn + LM2nia−H2n − iωθ0H2n ,

H4n = −knM1nL+ iaM2nL−H2n − iωθ0H2n ,

H5n = iaM2n − LM1nkn −H2n − iωθ0H2n ,

H6n = 1
b2 (M1nia−M2nkn) ,

H7n = M2nGia−M1nknGI1 = −B10L1

(

1 − t
t0

)

, I2 = B12

B10
I1 , I3 = B11

B10
I1 ,

I4 = γ
(

γI1 − 2z
r2 I2

)

+ 2z
r2

(

γI2 + 2zI1

r2

)

L− I3 − θ0

t0
I3 ,

I5 = E1γ
(

γI1 − 2zI2

r2

)

+ L2z
r2

(

γI2 + 2zI1

r2

)

− I3 − θ0

t0
I3 ,

I6 = 2z
r2

(

γI2 + 2zI1

r2

)

+ Lγ
(

γI1 − 2zI3

r2

)

− I3 − θ0

t0
I3 ,

I7 = 1
b2

[

2z
r2

(

γI1 − 2zI3

r2

)

+ γ
(

γI2 − 2zI1

r2

)]

,

I8 = Gγ
(

γI1 − 2zI2

r2

)

+G2z
r2

(

γI2 + 2zI1

r2

)

.

4 Boundary conditions

In this section, we determine the constants Rn (n = 1, 2, 3). The boundary
conditions under consideration should suppress the positive exponentials
to avoid unboundedness at infinity. The coefficients R1, R2, R3 are chosen
such that the boundary conditions on the surface at x = 0 are:

I The mechanical boundary conditions

σzz + τzz = −p1 exp (ωt+ iaz) , σxz = 0 . (46)

II The thermal boundary condition on the surface of the half space

∂T

∂x
= 0 , (47)

where p1 is the magnitude of the mechanical force.
Substituting the expressions of the considered variables in the above

boundary conditions, we can obtain the following equations satisfied by the
parameters:

3
∑

n=1

(H5n +H7n)Rn = −p , (48)

3
∑

n=1

H6nRn = 0 , (49)
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3
∑

n=1

−knH2nRn = 0 . (50)

Invoking the boundary conditions (45) and (46) at the surface x = 0 of
the plate, we get a system of three equations (47)–(49). Solving the above
system of the algebraic equations (47)–(49) by using Cramer’s rule we then
obtain values of the three coefficients Rn (n = 1, 2, 3) .

R1 =
∆1

∆
, R2 =

∆2

∆
, R3 =

∆3

∆
, (51)

where

∆ = (H51 +H71)(−k3H62H23 + k2H22H62)

+ (H52 +H72)(−k1H62H23 + k3H23H63)

+ (H53 +H73)(−k2H61H22 + k1H21H62) ,

∆1 = −P (−k3H62H23 + k2H63H22) ,

∆2 = P (−k3H61H23 + k1H63H21) ,

∆3 = −P (−k2H61H22 + k1H62H21) .

Hence, we obtain the expressions for the displacements, the temperature
distribution, and the other physical quantities of the plate surface.

5 Numerical results and discussion

For numerical computations, following Dhaliwal and Singh [25] the magne-
sium material was chosen. All units of the parameters used in the calcula-
tion are given in SI units.

The constants of the problem are taken as:
λ = 2.17 × 1010 N/m2, µ = 3.278 × 1010 N/m2, K = 1.7 × 102 W/mK ,

ρ = 1.74 × 103 kg/m3, , Ce = 1.04 × 103 J/kgK , ω∗ = 3.58 × 1011/s ,
µ0 = 4 × π × 10−3 , T0 = 298 K.
The laser pulse parameters are:
I0 = 102 J/m2 , r = 0.2 , γ = 25/m , t0 = 10.
The comparisons were carried out for:
p1 = 0.25 N/m2 , k∗ = 100 W/mK , a = 0.5 , ω = 2.9 rad/s , z = 2 m ,
t = 0.9 s , g = 9.8 m/s2, and x = 0–3.5 m.

The obtained 2D curves describe the change of behavior of the values of
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the real part of the temperature distribution T , components of displacement
u and w, normal stresses σxx, σzz and tangential stress σxz with distance
x, for CT, L-S, G-L, and G-N theories have been shown in generalized
thermoelasticity medium with constants H0 = 9 × 105, g = 9.8, t = 0.9,
on the other hand with different values of gravity, laser pulse and mag-
netic field. These distributions are shown graphically in Figs. 1–32 for
time t = 0.9 with respect to a wide range of 0 ≤ x ≤ 3.5. These fig-
ures represent the solution obtained using the CT theory: n0 = 0 , n1 =
1 , τ0 = 0 , ϑ0 = 0, L-S theory: n0 = 1 , n1 = 1 , τ0 = 0.2 , ϑ0 = 0,
G-L theory: n0 = 0 , n1 = 1 , τ0 = 0.2 , ϑ0 = 0.3, and G-N theory:
n0 = 0 , n1 = 1 , τ0 = 1 , ϑ0 = 0. We notice that the results for the temper-
ature, displacement, and stress distributions when the relaxation time is
included in the heat equation are distinctly different from those when the
relaxation time is not included in the heat equation, because the thermal
waves in Fourier’s theory travel with an infinite speed of propagation as op-
posed to the finite speed in the non-Fourier case. This demonstrates clearly
the difference between the coupled and the generalized theories of thermoe-
lasticity. Also, these distributions are shown graphically in Figs. 9–16 with
different values of gravity: g = 0, 5, 7, and 9.8. Also, these distributions
are shown graphically in Figs. 17–24 with different values of laser pulse:
t = 0, 0.3, 0.6,, and 0.9, and in Figs. 25–32 with different values of mag-
netic field: H0 = 0, 2 × 105, 3 × 105, and 5 × 105. The distributions of all
physical quantities converge to zero as the distance x tends to infinity.

Figure 1 shows the distribution of displacement component u with re-
spect to x-axis. The effects of parameters of the theories on the curves are
the strongest for the G-N theory, after that L-S after that G-L, and the
smallest effects concern the theory CT.

Figure 2 displays the distribution of displacement component w with
respect to x-axis. We note the difference in effects according to different
theories where the effects are strong in the theory of G-N while in other
theories are weak.

Figures 3, 4, and 7 illustrate the distribution of normal stress σxx, σzz

and τzz + σzz with respect to x-axis. The effects of parameters of the the-
ories on the curves are the strongest for the G-N theory, while in other
theories are weak.
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Figure 1: Displacement u distribution versus x calculated with the help of four theories.

Figure 2: Displacement w distribution versus x calculated with the help of four theories.
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Figure 3: Stress distribution σxx versus x calculated with the help of four theories.

Figure 4: Stress distribution σzz versus x calculated with the help of four theories.
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Figure 5 shows the distribution of tangential stress σxz with respect to
x-axis. It is clear that all curves always begin from zero for the four theo-
ries to satisfy the boundary condition at x = 0, We note the difference in
effects according to different theories, where the effects are strong in the
theory of G-N, while in other theories are weak.

Figure 6 illustrates the distribution of normal stress τzz with respect
x-axis. The effects of parameters of the theories on the curves are the
strongest for the CT theory, while in other theories are weak.

Figure 8 displays the distribution of temperature T with respect to
x-axis. We note the difference in effects according to different theories where
the effects are strong in the theory of CT while in other theories are weak.

Figures 9 and 10 show the distribution of displacement components u,
w with respect to x-axis for different values of gravity field g. It is observed
that the displacement component u decreases with the increasing gravity
field in the interval [0, 3] except at g = 0 in the interval [1.8, 3], while it
tends to zero in the interval [3, 3.5]. The displacement component w de-
creases with the increasing gravity field in the interval [0,3] and it tends to
zero in the interval [3, 3.5].

Figures 11 and 12 show the distribution of normal stress components
σxx, σzz with respect to x-axis for different values of gravity field g. It is
observed that the normal stress component σxx decreases with the increas-
ing gravity field in the interval [0, 0.5], while it increases with the increasing
gravity field in the interval [0.5, 3]. It tends to zero in the interval [3, 3.5].
The normal stress component σzz increases with the increasing gravity field
in the interval [0,3], while it approaches zero in the interval [3, 3.5].

Figure 13 describes the distribution of tangential stress component σxz

with respect to x-axis for different values of gravity field g. It is observed
that the tangential stress component increases with the increasing gravity
field in the interval [0, 3.2], while it tends to zero in the interval [3.2, 3.5].

Figures 14 and 15 illustrate the distribution of magnetic stress compo-
nent τzz and total magnetic and normal stress τzz + σzz with respect to
x-axis for different values of gravity field g. An increase of these quantities
is observed with the increasing gravity field in the interval [0,3], while tend
to zero in the interval [3, 3.5].
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Figure 5: Stress distribution σxz versus x calculated with the help of four theories.

Figure 6: Stress distribution τzz versus x calculated with the help of four theories.
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Figure 7: Stress distribution τzz + σzz versus x calculated with the help of four theories.

Figure 8: Temperature distribution T versus x calculated with the help of four theories.
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Figure 9: Displacement distribution u versus x under the effect of gravity force.

Figure 10: Displacement distribution w versus x under the effect of gravity force.
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Figure 11: Stress distribution σxx versus x under the effect of gravity force.

Figure 12: Stress distribution σzz versus x under the effect of gravity force.
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Figure 13: Stress distribution σxz versus x under the effect of gravity force.

Figure 14: Stress distribution τzz versus x under the effect of gravity force.
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Figure 15: Stress distribution τzz + σzz versus x under the effect of gravity force.

Figure 16: Temperature distribution T versus x under the effect of gravity force.
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Figure 16 shows the distribution of temperature T with respect to x-axis
for different values of gravity field g. The temperature has an oscillatory
behavior for a thermoelastic medium in the interval [0, 3]. It is observed
that the temperature increases with the increasing gravity field in the in-
terval [0, 0.5], while it decreases with the increasing gravity field in the
interval [0.5, 3]; and it tends to zero in the interval [3, 3.5].

Figures 17 and 18 present the distribution of displacement components
u, w with respect to x-axis for different values of laser pulse t. It is observed
that the displacement component u increases with the increasing laser pulse
in the interval [0,3], while it decreases with the increasing the laser pulse
in the interval [0.3, 1.4], and tends to zero in the interval [1.4, 3.5]. The
displacement component w increases with the increasing laser pulse in the
interval [0, 1.1], while it decreases with the increasing the laser pulse in the
interval [1.1, 2.3], and approaches zero in the interval [2.3, 3.5].

Figures 19 and 20 show the distribution of normal stress components
σxx, σzz with respect to x-axis for different values of laser pulse t. The
normal stress components have an oscillatory behaviour for a thermoelas-
tic medium in the interval [0, 2.5]. It is observed that the normal stress
component σxx increases with the increasing laser pulse in the interval [0,
0.8], while it decreases with the increasing laser pulse in the interval [0.8,
2], and tends to zero in the interval [2, 3.5]. The normal stress component
σzz increases with the increasing laser pulse in the interval [0,3], while it
decreases with the increasing laser pulse in the interval [0.3, 1.5], as well
it increases with the increasing laser pulse in the interval [1.5, 2.5] and it
approaches zero in the interval [2.5, 3.5].

Figure 21 illustrates the distribution of tangential stress component σxz

with respect to x-axis for different values of laser pulse t. The tangential
stress has an oscillatory behaviour for a thermoelastic medium in the inter-
val [0, 2.5]. It is observed that the tangential stress component decreases
with the increasing laser pulse in the interval [0, 1.4], while it increases with
the increasing laser pulse in the interval [1.4, 2.5], and it tends to zero in
the interval [2.2, 3.5].

Figures 22, 23 show the distribution of magnetic stress component τzz

and total magnetic and normal stress τzz + σzz with respect to x-axis for
different values of laser pulse t. The magnetic stress component and total
magnetic and normal stress have an oscillatory behaviour for a thermoelas-
tic medium in the interval [0, 2.5]. It is observed that the magnetic stress
component decreases with the increasing laser pulse in the interval [0,1],
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while it increases with the increasing laser pulse in the interval [1, 2.2], and
it tends to zero in the interval [2.2,3.5]. The total magnetic and normal
stress increase with the increasing laser pulse in the interval [0, 0.4], while
they decrease with the increasing laser pulse in the interval [0.4, 1.6], they
increase with the increasing laser pulse in the interval [1.6, 2.5] and tend
to zero in the interval [2.5, 3.5].

Figure 24 exhibits the distribution of temperature T with respect to
x-axis for different values of time t. The temperature has an oscillatory
behaviour for a thermoelastic medium in the interval [0,2]. It is observed
that the temperature decreases with the increasing laser pulse in the inter-
val [0, 0.8], while it increases with the increasing laser pulse in the interval
[0.8, 2], and it approaches zero in the interval [2, 3.5].

Figure 25 shows the distribution of displacement component u with re-
spect to x-axis for different values of magnetic field H0. It is observed that
the displacement component u increases with the increasing magnetic field
in the interval [0, 0.1], while it decreases with the increasing magnetic field
in the interval [0.1, 1.4], increases with the increasing magnetic field in the
interval [1.4, 2.5], and it tends to zero in the interval [2.5, 3.5].

Figure 26 illustrates the distribution of displacement component w with
respect to x-axis for different values of magnetic field H0. It is observed
that the displacement component increases with the increasing magnetic
field in the interval [0,1.2], while it tends to zero in the interval [1.2, 3.5].

Figures 27 and 28 show the distribution of normal stress components
σxx, σzz with respect to x-axis for different values of magnetic field H0. The
normal stress components have an oscillatory behaviour for a thermoelastic
medium in the interval [0,2]. It is observed that the normal stress compo-
nent σxx increases with the increasing time in the interval [0, 0.8], while it
decreases with the increasing magnetic field in the interval [0.8, 1.7], and
it tends to zero in the interval [1.7, 3.5]. The normal stress component σzz

decreases with the increasing magnetic field in the interval [0, 1.5], while
it increases with the increasing magnetic field in the interval [1.5, 2] and it
tends to zero in the interval [2, 3.5].

Figure 29 exhibits the distribution of tangential stress component σxz

with respect to x-axis for different values of magnetic field H0. The tangen-
tial stress has an oscillatory behaviour for a thermoelastic medium in the
in the interval [0, 2.2]. It is observed that the tangential stress component
decreases with the increasing magnetic field in the interval [0,1], while it
increases with the increasing magnetic field in the interval [1, 2.2], and it
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approaches zero in the interval [2.2, 3.5].
Figures 30 and 31 present the distribution of magnetic stress component

τzz and total magnetic and normal stress τzz + σzz with respect to x-axis
for different values of magnetic field H0. The magnetic stress component
and total magnetic and normal stress have an oscillatory behaviour for a
thermoelastic medium in the interval [0, 2.5]. It is observed that the mag-
netic stress component decreases with the increasing magnetic field in the
interval [0,1], while it increases with the increasing magnetic field in the
interval [1, 2.2], and it tends to zero in the interval [2.2, 3.5]. The total
magnetic and normal stress decrease with the increasing magnetic field in
the interval [0, 1.4], while they increase with the increasing magnetic field
in the interval [1.4, 2.5], and tend to zero in the interval [2.5, 3.5].

Figure 32 shows the distribution of temperature T with respect to x-axis
for different values of magnetic field H0. The temperature has an oscillatory
behaviour for a thermoelastic medium in the interval [0,2]. It is observed
that the temperature decreases with the increasing magnetic field in the
interval [0, 0.8], while it increases with the increasing magnetic field in the
interval [0.8, 2], and it approaches zero in the interval [2, 3.5].

Figure 17: Displacement distribution u versus x under the effect of laser pulse.
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Figure 18: Displacement distribution w versus x under the effect of laser pulse.

Figure 19: Stress distribution σxx versus x under the effect of laser pulse.
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Figure 20: Stress distribution σzz versus x under the effect of laser pulse.

Figure 21: Stress distribution σxz versus x under the effect of laser pulse.
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Figure 22: Stress distribution τzz versus x under the effect of laser pulse.

Figure 23: Stress distribution τzz + σzz versus x under the effect of laser pulse.
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Figure 24: Temperature distribution T versus x under the effect of laser pulse.

Figure 25: Displacement distribution u versus x under the effect of magnetic field.
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Figure 26: Displacement distribution w versus x under the effect of magnetic field.

Figure 27: Stress distribution σxx versus x under the effect of magnetic field.
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Figure 28: Stress distribution σzz versus x under the effect of magnetic field.

Figure 29: Stress distribution σxz versus x under the effect of magnetic field.
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Figure 30: Stress distribution τzz versus x under the effect of magnetic field.

Figure 31: Displacement distribution τzz +σzz versus x under the effect of magnetic field.
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Figure 32: Temperature distribution T versus x under the effect of magnetic field.

6 Conclusions

The results of the present work can be summarized as:

1. The method which is presented in the paper is applicable to a wide
range of problems in thermodynamics and thermoelasticity.

2. The presence of a magnetic field plays a significant role in all the
physical quantities. The temperature, displacement components, and
stress components decrease or increase. Therefore, the presence of
gravity field, laser pulse, and a magnetic field in the current model is
of significance.

3. The results are graphically described for the medium of crystal. The
present theoretical results may provide interesting information for ex-
perimental scientists/researchers /seismologists working on this sub-
ject.

4. All the physical quantities satisfy the boundary conditions.
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5. The values of all physical quantities converge to zero with the increas-
ing distance x, and all functions are continuous.

6. The gravity field, magnetic field and time as a physical operator have
a significant role in the considered physical quantities.

7. The result provides a motivation to investigate conducting magneto-
thermoelectric materials as a new class of applicable magneto-thermo-
electric solids. The results presented in this paper should prove useful
for researchers in material science, designers of new materials, physi-
cists as well as for those working on the development of magneto-
thermo-elasticity and in practical situations as in geophysics, optics,
acoustics, geomagnetic and oil prospecting, etc.

Received 8 April 2018
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